Evidence for nerve growth factor - ganglioside interaction in forebrain cholinergic neurons

Abstract

Cholinergic neurons of the forebrain respond trophically to nerve growth factor (NGF) in some experimental circumstances. The cholinergic cell system of the nucleus basalis magnocellularis (NBM) which projects to the cortex shows signs of cellular degeneration following limited devascularizing cortical lesions, while no apparent damage is observed in the remaining ipsilateral cortex. These cholinergic cells possess receptors for NGF and the administration of this peptide into the cerebroventricular space prevents cell shrinkage and loss of activity of the biosynthetic enzyme for acetylcholine, choline acetyltransferase (ChAT). Analogous trophic responses can be elicited in this system with the application of the sialoganglioside GM1. In addition, GM1 can increase the effects of NGF on ChAT activity in lesioned neurons of the NBM-to-cortex model system described above. This cooperative interaction is observed even when ineffective doses of GM1 are administered. Furthermore, an interaction between these two putative neurotrophic substances has been noted over other cholinergic parameters such as cortical high affinity choline uptake (HACU). These studies confirm the idea that trophic factors can be utilized to rescue degenerating neurons of the CNS and, in addition, lend support to the concept that gangliosides can facilitate actions of endogenously produced trophic factors.
PDF
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 1990 Acta Neurobiologiae Experimentalis

Downloads

Download data is not yet available.