Vinpocetine ameliorates developmental hyperserotonemia induced behavioral and biochemical changes: role of neuronal function, inflammation, and oxidative stress
821.jpg
PDF

Abstract

Hyperserotonemia, during the early developmental phase, generates behavioral and biochemical phenotypes associated with autism spectrum disorder (ASD) in rats. Phosphodiesterase‑1 (PDE1) inhibitors are known to provide benefits in various brain conditions. We investigated the role of a selective PDE1 inhibitor, vinpocetine on ASD‑related behavioral phenotypes (social behavioral deficits, repetitive behavior, anxiety, and hyperlocomotion) in a developmental hyperserotonemia (DHS) rat model. Also, effects on biochemical markers related with neuronal function brain derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (pCREB), inflammation interleukins (IL‑6 and IL‑10) and tumor necrosis factor–alpha (TNF‑α), and oxidative stress (TBARS and GSH) were studied in important brain areas (frontal cortex, cerebellum, hippocampus, and striatum). Administration of 5‑methoxytryptamine (5‑MT) to rats prenatally (gestational day 12) and in early developmental stages postnatal day (PND 0 – PND 20), resulted in impaired behavior and brain biochemistry. Administration of vinpocetine daily (10 and 20 mg/kg) to 5‑MT rats from PND 21 to PND 48 resulted in an improvement of behavioral deficits. Also, vinpocetine administration significantly increased the levels of BDNF, ratio of pCREB/ CREB, IL‑10, and GSH, and significantly decreased TNF‑α, IL‑6, and TBARS levels in different brain areas. Finally, our correlation analysis indicated that behavioral outcomes were significantly associated with the biochemical outcome. Vinpocetine, a selective PDE1 inhibitor, rectified important behavioral phenotypes related with ASD, possibly by improving markers of neuronal function, brain inflammation, and brain oxidative stress. Thus, PDE1 could be a potential target for pharmacological interventions and furthering our understanding of ASD pathogenesis.
PDF
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Acta Neurobiologiae Experimentalis

Downloads

Download data is not yet available.