BDNF expression in cat striate cortex is regulated by binocular pattern deprivation
773.jpg
PDF

Abstract

Deprivation of patterned visual information, as in early onset congenital cataract patients, results in a severe impairment in global motion perception. Previously we reported a delayed maturation of the peripheral visual field representation in primary visual area 17, based on a 2-D DIGE screen for protein expression changes and in situ hybridization for the activity reporter gene ZIF268. To corroborate these findings we here explore the binocular pattern deprivation (BD)-regulated expression of brain-derived neurotrophic factor (BDNF), a well-described neurotrophin precipitously regulated by early visual experience. To assess the timing of maturation-related BDNF expression we compared the central and the peripheral visual field representations of area 17 of 1, 2, 4 and 6-month-old and adult cats reared under normal visual conditions. To scrutinize the outcome of BD, four different deprivation strategies were compared, including early onset BD from birth and lasting for 2, 4 or 6 months (2BD, 4BD, 6BD), and late onset BD for 2 months upon 2 months of normal vision (2N2BD), as animal models of congenital and delayed onset cataract. During normal cortical development the BDNF transcript levels, measured by quantitative RT-PCR, remained stable. Higher BDNF mRNA levels were found in central area 17 of 2BD and 6BD animals compared to age-matched controls. In central area 17, the high BDNF mRNA levels at the end of the BD period may activate a mechanism by which plastic processes, halted by deprivation, may begin. We here confirm that the peripheral visual field representation of area 17 matures slower than its central counterpart. Only in central area 17 normal visual input upon BD could upregulate BDNF mRNA which may lead to a fast activation of local plastic adaptations.
PDF
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Acta Neurobiologiae Experimentalis

Downloads

Download data is not yet available.