Abstract
While the effect of cortex stimulation on pain control is widely accepted, its physiological basis remains poorly understood. We chose an animal model of pain to study the influence of sensorimotor cortex stimulation on tooth pulp stimulation evoked potentials (TPEPs). Fifteen awake rats implanted with tooth pulp, cerebral cortex, and digastric muscle electrodes were divided into three groups, receiving 60 Hz, 40 Hz and no cortical stimulation, respectively. TPEPs were recorded before, one, three and five hours after continuous stimulation. We observed an inverse relationship between TPEP amplitude and latency with increasing tooth pulp stimulation. The amplitudes of the early components of TPEPs increased and their latency decreased with increasing tooth pulp stimulation intensity. Cortical stimulation decreased the amplitude of TPEPs; however, neither the latencies of TPEPs nor the jaw-opening reflex were changed after cortical stimulation. The decrease in amplitude of TPEPs after cortical stimulation may reflect its anti-nociceptive effect.This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2010 Acta Neurobiologiae Experimentalis
Downloads
Download data is not yet available.