Abstract
The face is one of the most important stimuli carrying social meaning. Thanks to the fast analysis of faces, we are able to judge physical attractiveness and features of their owners’ personality, intentions, and mood. From one’s facial expression we can gain information about danger present in the environment. It is obvious that the ability to process efficiently one’s face is crucial for survival. Therefore, it seems natural that in the human brain there exist structures specialized for face processing. In this article, we present recent findings from studies on the neuronal mechanisms of face perception and recognition in the light of current theoretical models. Results from brain imaging (fMRI, PET) and electrophysiology (ERP, MEG) show that in face perception particular regions (i.e. FFA, STS, IOA, AMTG, prefrontal and orbitofrontal cortex) are involved. These results are confirmed by behavioral data and clinical observations as well as by animal studies. The developmental findings reviewed in this article lead us to suppose that the ability to analyze face-like stimuli is hard-wired and improves during development. Still, experience with faces is not sufficient for an individual to become an expert in face perception. This thesis is supported by the investigation of individuals with developmental disabilities, especially with autistic spectrum disorders (ASD).This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2008 Acta Neurobiologiae Experimentalis
Downloads
Download data is not yet available.