Abstract
Oxidative stress has been implicated in cognitive impairment in both experimental animals and humans. This implication has led to the notion that antioxidant defence mechanisms in the brain are not sufficient to prevent oxidative damage, and that dietary intake of a variety of antioxidants might be beneficial for preserving brain function. The present study, therefore, aimed to investigate the protective effect of melatonin against radiation-induced impairment in the learning ability of mice. Twenty days oral administration of melatonin (0.1 mg/kg b.w.), followed by an acute exposure to ¡-radiation (6 Gy), inhibited the radiation-induced decline in learning ability. Biochemical estimation of brain protein carbonyls, malondialdehide (MDA) and reduced glutathione (GSH) in these mice indicated that radiation-induced augmentation of protein oxidation and lipid peroxidation had been significantly ameliorated in melatonin treated, irradiated mice. Radiation-induced deficit of glutathione was also normalized by melatonin administration, as there was no statistical difference from normal at P<0.001. Results indicate the antioxidative as well as neuroprotective properties of melatonin against the radiation. These findings support results showing melatonin as a free radical scavenger. Correspondence should be addressed to K. Manda, Email: kailashmanda@yahoo.comThis work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2007 Acta Neurobiologiae Experimentalis
Downloads
Download data is not yet available.