Limits of learning enhancements with nicotine in old male rats
652.jpg
PDF

Abstract

Findings with young adult humans and animal models suggest that nicotine may serve both neuroprotective and cognition enhancing roles in old animals. A pair of experiments was conducted to examine drug-induced modification of the cholinergic nicotinic receptor subtype on rates of learning by young and aged rats. In experiment I males (4-7 months or 20-25 months old) were administered nicotine (0.0, 0.3 or 0.7 mg/kg injected s.c. daily) and tested in both a T-maze non-spatial discrimination paradigm and a hole board spatial task. Nicotine failed to improve acquisition by young animals on either task. Nicotine also failed to improve non-spatial learning by old animals. However, both dosages of nicotine improved performance by the old males in the spatial paradigm. In experiment II, a 5-choice serial discrimination paradigm designed to better evaluate visual attention and spatial working memory in aging was used. Groups of old male rats were administered nicotine or mecamylamine (2 or 8 mg/kg), an antagonist of the nicotinic cholinergic receptor. Results were that the 0.3 mg nicotine group learned the task fastest and achieved the highest learning asymptote. Both learning rates and final levels of performance were worst in the 8 mg mecamylamine group. However, the 2 mg mecamylamine rats were the equals of the control group and both reached a higher asymptote than the 0.7 mg nicotine group. These data suggest that healthy old animals can accrue benefits from nicotinic activation but that the benefits are complex, being limited to certain dosages and to specific cognitive skills.
PDF
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2005 Acta Neurobiologiae Experimentalis

Downloads

Download data is not yet available.