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Abstract. Post-mortem MRI (magnetic resonance images) studies
followed by histopathological examination were used to study the size
and the shape of the lateral part of the transverse fissure of the brain in
seven individuals with Alzheimer disease (AD) and five controls. In
control brains, the lateral part of the transverse fissure is a narrow cleft
protruding laterally as choroid and hippocampal recesses. In
AD-affected brains, the lateral part of the transverse fissure becomes a
large subarachnoid space as a result of different degrees of atrophy of
various hippocampal and parahippocampal structures. Our findings
directly indicate the relationship between changes in the hippocampal
and parahippocampal structures and the size of the lateral part of the
transverse fissure. Sector CA1, the subiculum, the entorhinal cortex,
and the parahippocampal isocortex are the most affected, whereas the
dentate gyrus is much less affected. Adjacent thalamic structures,
which are less vulnerable to the AD pathology, do not appear to
contribute to transverse fissure changes. The size and the shape of the
lateral part of the transverse fissure of the brain in AD reflect the
atrophy of the hippocampus and parahippocampal structures.
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INTRODUCTION

Extensive pathology of the hippocampal forma-
tion has been reported in Alzheimer disease (AD),
which has been characterized as a hippocampal
dementia (Ball et al. 1985). The pathological
changes include senile plaques, neurofibrillary tan-
gles and granulovacuolar degeneration, and pro-
gressing neuronal loss leading to the atrophy of the
hippocampal formation (Ball and Lo 1977, Ball
1978, Kemper 1984, Tomlinson and Corsellis 1984,
Hyman et al. 1986, Hyman et al. 1988, McKee et al.
1990, 1991, Mizutani et al. 1990, Van Hoesen and
Hyman 1990, Braak and Braak 1991, Brady and
Mufson 1991, Struble et al. 1991). As the disease pro-
gresses, the hippocampal formation becomes partially
disconnected from its major afferent and efferent
pathways (Hyman et al. 1984). Neurotransmitter defi-
cits and profound loss in the density of synaptic termi-

nals contribute to the clinical picture of AD (Davies

1979, Hamos et al. 1989, Goto and Hirano 1990).

The hippocampal atrophy seen on computed to-
mography (CT) and magnetic resonance images
(MRI) correlates with the presence and the severity
of Alzheimer disease (Seab et al. 1988, de Leon et
al. 1989, George et al. 1990, Squire et al. 1990,
Kesslak et al. 1991, Jobst et al. 1992). de Leon et al.
(de Leon et al. 1988, 1992) and George et al.
(George et al. 1990) observed dilatation of the lat-
eral part of the transverse fissure of the brain in AD
and suggested that it can serve as an indicator of hip-
pocampal atrophy. Moreover, in cross-sectional and
longitudinal radiological studies, they demonstrated
the diagnostic and predictive value of hippocampal
changes in the progress of AD (de Leon et al. 1989).

The transverse fissure of Bichat (fissura trans-
versa cerebri) separates the telencephalic structures
from those of the diencephalon. It is composed of
two parts: the medial, which separates the thalamus
from the fornix and corpus callosum, and the lateral,
which is situated between the thalamus and the
parahippocampal gyrus. The lateral part of the
transverse fissure (LTF) communicates medially
with the ambient cistern (Castel et al. 1988, Duver-
noy 1988, Nagata et al. 1988).

Although the histopathology of the hippocampal
formation in AD is well recognized, the pathology
of the structures surrounding the LTF, as seen on
MR, is less understood. The purpose of this study
is (1) to describe the LTF and surrounding struc-
tures as observed on MRI and in histopathological
studies and (2) to examine in AD the relationships
between the atrophy of hippocampus and surrounding
structures, and the pathological changes of the LTF.

METHODS

The study was performed on 12 brains: seven
from AD patients and five controls. The AD brains
were collected by the NYU/IBR Alzheimer Disease
Research Center and the control brains by the De-
partment of Anatomy, School of Medicine in
Gdarisk. The control subjects were 71 to 79 years of
age, and AD patients, 73 to 88 years of age. Within
a few months before death, the AD patients were
staged using the Global Deterioration Scale (GDS; Re-
isberg et al. 1982). One patient was rated as a GDS 6
(moderate to severe dementia), the remaining six were
rated as 7 (severe dementia). The clinical records for
the control material were examined and family mem-
bers interviewed to establish normal functioning.

The brains were fixed in 10% buffered formalin
for one to three months. The fixed brains were
scanned at 3-weeks of fixation, with formalin
drained, in a plastic container. Brains were scanned
in a supine-like position and aligned using LASAR
lights with standard protocol which included both
T1 and T2 weighted studies, using a Phillips 1.5
Tesla GYROSCAN MRI scanner. The T1 images
were obtained in sagittal, coronal and axial planes.
The plane for the axial and coronal sections was
determined from the sagittal study obtained with a
650/30 sequence with a thickness of 6 mm with
20% gaps. The axial plane was established as the
plane parallel to the visualized long axis of the LTF
and the head and body of the hippocampus. The co-
ronal plane was determined as the plane perpen-
dicular to the axial plane. The axial and coronal
images were obtained at the 650/30 sequence with
a three-mm-thickness with 10% gaps.



In the histologic study, all AD and control brains
were cut on the coronal plane into five-mm-thick
slabs. None of the brains had macroscopically de-
tectable infarcts or other gross pathological
changes. After embedding in paraffin, coronal
eight-um-thick serial sections were cut and stained
with cresyl violet, hematoxylin-eosin, Bielschow-
sky silver, and Loyez methods. Clinical diagnosis
of AD was confirmed by neuropathological exam-
ination, using the criteria recommended by the NIH
(Khachaturian 1985). The control brains did not
meet neuropathological criteria for AD.

For all patients and controls the axial MRI im-
ages were rated for the extent of dilatation of the
LTF. Also the atrophy of the hippocampal forma-
tion and parahippocampal gyrus was rated using the
coronal MR images and histological slides. In ad-
dition, from the histological slides, atrophy of the
lateral geniculate body and pulvinar was evaluated.
For both MRI and histologic estimations, we used
the following 4-point rating scale: no changes (0),
mild (1), moderate (2) and severe (3).

On coronal histological sections, morphometric
studies were performed in each part of the hippo-
campus and parahippocampal gyrus on the level of
the lateral geniculate body. Cross-sectional areas of
all parts in these structures were measured using a
projector (final magnification x28; Documator-
Zeiss Jena) and morphometrical program Sigma-
Scan (Jandel Scientific Corp.). The atrophy of the
structures surrounding the LTF was estimated in
comparison with the control brains and classified as
follows: O - no changes; 1 - atrophy less than 20%;
2 - atrophy ranging between 20 to 40%; and 3 -
atrophy greater than 40%.

RESULTS

Coronal sections

On coronal section, the dorsal and ventral sur-
faces and the fundus of the LTF can be distin-
guished (Fig. 1). Rostrally, the dorsal surface of the
LTF is formed by the optic tract and the cerebral pe-
duncle (not shown), and caudally, by the lateral ge-
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niculate body and the pulvinar. The ventral surface
i1s composed of the subiculum, presubiculum, and
parasubiculum. In most brains, this subicular com-
plex forms an elevation on the upper surface of the
parahippocampal gyrus. The fundus of the LTF is
formed by the dentate gyrus, the hippocampal fim-
bria, and the tela choroidea of the temporal horn of
the lateral ventricle. The tela choroidea is attached
to the lateral surface of the fimbria and forms the
fundus of the choroid recess (also called choroid fis-
sure), which is the most lateral extension of the
LTF.

The second extension of the LTF is the hippo-
campal recess. The fimbria forms the dorsal surface
of the hippocampal recess and the subiculum,
and/or presubiculum the ventral surface. The me-
dial aspect of dentate gyrus forms the fundus. The
hippocampal recess possesses two extensions: the
fimbriodentate and hippocampal sulci.

Dilatation of the lateral ventricle and the LTF, in-
cluding hippocampal and choroid recesses, and
changes in their shape are consistent features of AD
brains (Fig. 1B,D,F).

Changes of the LTF occur together with the
atrophy of both gray and white matter of the para-
hippocampal gyrus. The upper surface of the para-
hippocampal gyrus is flattened as a result of atrophy
of the subicular eminence.

Alterations of the fundus of the LTF are associ-
ated with dilatation of both of its recesses. They are
caused by atrophy of the hippocampus. In the hip-
pocampal formation, numerous neuritic plaques
and tangles appear, together with neuronal loss. The
involvement of the hippocampal formation is not
uniform, there are significant topographical dif-
ferences in the distribution of plaques and tangles.
The pyramidal layer of the cornu Ammonis and the
cortex of the parahippocampal gyrus are mainly af-
fected. Neuronal loss is the most extensive in the
pyramidal layer of CA1 and less prominent in the
CA4, CA3, and CA2 sectors. No significant
changes in the dentate gyrus are detectable.

In two of seven AD brains, the size of the lateral
geniculate body and the pulvinar-forming dorsal
surface of the LTF was reduced. However, in those
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two cases the mild reductions do not appear to in-
fluence the size and the shape of the fissure. The di-
latation of the LTF appears to be more determined
by hippocampal and parahippocampal atrophy.

The coronal plane MRI images of the AD brains
(Fig. 1) were consistent with the previously de-
scribed pathological changes that affect the hippo-
campus and parahippocampal gyrus. In AD brains,
the dilatation of the LTF including its choroid and
hippocampal recesses was also prominent on MRI.
On the coronal MRI, the LTF and the lateral ven-
tricle appeared as a large, uniform cerebrospinal
fluid space without evident separation.

Fig. 1. Coronal sections at the
level of the lateral geniculate
body of the control (A,C,E) and
AD (B,D,F) brains. A and B,
scheme; C and D, MRI; E and F,
histological slides stained with
Loyez method. In AD brain, the
LTF is dilated, and the choroid
(CR) and hippocampal (HR) re-
cesses are enlarged. Atrophy of
the parahippocampal gyrus (PG)
including the subiculum (S) is
apparent. Hippocampal atrophy
encompasses the cornu Am-
monis (CA), sparring the dentate
gyrus (DG). Structures: Fi, Fim-
bria; HS, Hippocampal sulcus;
LGB, Lateral geniculate body;
LV, Lateral ventricle; PS, Presu-
biculum; TC, Tela choroidea, ar-
rowhead - Fimbriodentate sulcus.

Sagittal sections

On sagittal MRI sections of control brains (Fig.
2 A,C,E), the LTF appears as a narrow space sep-
arating the lateral geniculate body and the pulvinar
from the parahippocampal gyrus. The uncus forms
the anterior surface of the fissure. The LTF is largest
just posterior to the uncus and protrudes rostrally
and ventrally, forming the uncal sulcus, which sep-
arates the uncus from the parahippocampal gyrus.
Atits anterior and posterior end, the LTF terminates
at the tela choroidea, which separates the subarach-
noid space from the lateral ventricle.



In AD atrophied brains (Fig. 2B,D,F), the LTF
was enlarged in the dorsoventral dimension. The
ventral surface was much lower than in normal
brains due mainly to severe atrophy of the parahip-
pocampal gyrus.

Axial sections

On axial sections (Fig. 3), the LTF is bordered
laterally by the dentate gyrus and fimbria; rostrally
by the uncus and head of the hippocampus; caudally
by the parahippocampal gyrus, and medially by the
ambient cistern and cerebral peduncles. In the axial
view the two extensions of the LFT are indistinct as
aresult of partial volume averaging.

MRI of AD-affected brains (Fig. 3B,D,F) vis-
ualizes dilatation of the LTF almost along the whole
length of the hippocampal body. The CSF space be-
tween the uncus and the parahippocampal gyrus in-
creases significantly. The enlargement of this CSF
space is due predominantly to atrophy of the hippo-
campus and the parahippocampal gyrus: the cases
with moderate to severe hippocampal atrophy on
axial scans were generally the cases that had the
corresponding atrophy rating for the hippocampus
and the parahippocampal gyrus on the histopatho-
logical slides.
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Fig. 2. Sagittal section of the
LTF in the control (A,C) and AD
(B,D) brains. A and B, schemes;
Cand D, MRI.In AD, the LTF is
enlarged in dorsoventral dimen-
sion; atrophy of the parahippo-
campal gyrus (PG) occurs as
does severe atrophy of the uncus
(Un). Structures: AA, Amygda-
loid body; CR, Choroid recess;
LGB, Lateral geniculate body;
LV, lateral ventricle; Pul, Pulvi-
nar; arrowheads - Uncal sulcus.

DISCUSSION

The morphology of the LTF in pathological con-
ditions is not well known, but its dilatation and
changes of shape have been found in brains with pa-
thology of the hippocampal formation (de Leon et
al. 1988, 1989, 1992, George et al. 1990, Ambro-
setto and Bacci 1991). CT and MRI studies suggest
that these changes of the LTF are correlated with
atrophy of the hippocampal formation (de Leon et
al. 1988, 1992, George et al. 1990). However, the
impact in AD of atrophy of different structures of
this region on the size and the shape of the trans-
verse fissure and its recesses has not been estab-
lished.

In normal brains, the LTF is a narrow cleft,
which has been described in several anatomical
(Lilequist 1959, Duvernoy 1988, Nagata et al.
1988) and MRI (Castel et al. 1988, Naidich et al.
1988, Sedat and Duvernoy 1990, Bronen and
Cheung 1991a, 1991b, Tien et al. 1992) studies. The
LTF is the lateral wing of the ambient cistern (Lile-
quist 1959, Duvernoy, 1988). This part of the trans-
verse fissure has choroid and hippocampal recesses;
the hippocampal recess possesses fimbriodentate
and hippocampal sulci, which we distinguish in
both anatomical and MRI studies.
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Fig. 3. Axial section of the LTF in control (A,B) and AD (C,D)
brains. A and C, scheme; B and D, postmortem axial MRI.
Severe (D) dilatation of the LTF in AD brain. Atrophy of the
cornu Ammonis (CA) and parahippocampal gyrus (PG) is ap-
parent. Structures: A, Ambient cistern; AA, Amygdaloid
body; CP, Cerebral peduncle; DG, Dentate gyrus; Ent, Entor-
hinal cortex; HH, Head of hippocampus; LV, Lateral ven-
tricle; S, Subiculum; Un, Uncus; arrowheads - Hippocampal
sulcus, arrow - Uncal sulcus.

Pathological changes of LTF have been de-
scribed in only a few papers (de Leon et al. 1988,
1989, 1992, George et al. 1990, Ambrosetto and
Bacci 1991). The size and the shape of the LTF
changed in AD, notably in the early stages of dis-
ease (de Leon et al. 1988, 1992, George et al. 1990).
They appear to be related to the pathology of the
hippocampal structures and the parahippocampal
gyrus. Even slight atrophy of the bordering struc-

tures may result in the enlargement of the LTF. Our
studies show several characteristic features of this
pathology: (1) the atrophy of the parahippocampal
gyrus causes the dilatation of the LTF in the dor-
soventral dimension; (2) atrophy of the hippocam-
pal body enlarges the choroid and hippocampal
recesses of the LTF; and (3) in AD, alteration of the
size and the shape of the LTF and its recesses is
caused by uneven atrophy of the hippocampal and
parahippocampal structures.

Pathological changes in the parahippocampal
gyrus are common and possible even in early stages
of AD (Ball 1978, Hyman et al. 1984, Kemper
1984, Ball et al. 1985, Van Hoesen and Hyman
1990). MRI studies have shown reductions by more
than 40% in the volume of the parahippocampal
gyrus (entorhinal cortex) in AD brains (Kesslak et
al. 1991). The atrophy is associated with cellular pa-
thology. Neurofibrillary changes are extensive and
are related to massive neuronal loss, mainly in the
superficial layers of the entorhinal cortex (Hyman
et al. 1987, 1988, Hyman and Van Hoesen 1989,
Arnold et al. 1991, Van Hoesen et al. 1991, Bobin-
ski et al. 1992, Morys et al. 1992). Also, the subicu-
lum is consistently and densely affected with
neurofibrillary tangles (NFTs) with corresponding
cell loss (33-42%) (Shefer 1973, 1978, Hubbard
and Anderson 1985, Arnold et al. 1991, Bobinski et
al. 1992, Morys et al. 1992).

The shape of the LTF changes mainly as a result
of different degrees of atrophy of the hippocampal
structures and the parahippocampal gyrus. Neuro-
pathological studies reveal significant topographi-
cal differences in neuronal loss and numbers of
NFTs and neuritic plaques (Ball 1978, Kemper
1978, Braak and Braak 1985, 1990, 1991, Van
Hoesen et al. 1986, Kalus et al. 1989, Akiyama et
al. 1990, Bobinski et al. 1992, Morys et al. 1992).
Sector CA1, the subiculum, the entorhinal cortex,
and the parahippocampal isocortex are the most af-
fected in contrast to the dentate gyrus, which shows
only slight atrophy. Also the lateral geniculate body
and the pulvinar of the thalamus, which form the
dorsal surface of the LTF, are seldom atrophic or af-
fected by these pathologic changes.



On the basis of our observations, we conclude
that changes in size and shape of the LTF of the
brain are good markers of hippocampal and para-
hippocampal atrophy. They are distinguishable in
both the coronal and sagittal planes. However, the
axial CT or MRI sections enable the most complete
assessment of the AD atrophy in this region. Only
this plane shows the whole hippocampal body and
its relationship both to the LTF and to the lateral
ventricle. Therefore, we propose that visualizing
the hippocampal formation on the axial view is es-
pecially useful in the diagnosis and evaluation of
AD pathology.
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