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Diabetes is the most common cause of vision deterioration and subsequent vision loss in people worldwide. Long-term hyperglycemia
causes structural, neurovascular and metabolic changes in the eye, leading to a progressive loss of light sensitive retinal cells, degeneration
of retinal layers and neuroinflammation of optic nerve fibers and, if not treated, leading to the development of diabetic retinopathy and
optic nerve damage. Growing evidence indicates that the pathological changes observed in the retina and optic nerve affected by prolonged
hyperglycemia might results from several interconnected molecular events and biochemical signaling cascades such as excessive protein
glycation, increased oxidative stress and local inflammation triggered by the receptor for advanced glycation end-products (RAGE) along with
the upregulation of molecules involved in angiogenesis and cytoskeleton modification including vascular endothelial growth factor (VEGF)
and RhoA/Diaph1/profilin1 system. In this review, we focus on the latest advances in uncovering major factors involved in the pathogenesis
of diabetic retinopathy and discuss novel, non-invasive treatment options aimed at the cause rather than symptoms of the disease.
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INTRODUCTION
Diabetes and Retina
Diabetic retinopathy

Diabetes mellitus is one of the fastest-growing
non-communicable diseases worldwide. According to
the International Diabetes Federation, one in ten adults
globally live with diabetes (Sun et al., 2022). Chronic, es-
pecially uncontrolled, diabetes is associated with both
microvascular and macrovascular complications. Among
the most affected organs by microvascular pathology are
kidneys and retina. The increasing global prevalence of
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diabetes hasbeen accompanied by a corresponding rise in
the incidence of diabetic retinopathy (DR). DR is a neuro-
vascular complication that affects approximately 30-40%
of individuals with diabetes, often resulting in vision im-
pairment or its loss (Yau et al., 2012). Currently, the glob-
al prevalence of DR stands at approximately 103 million
individuals and is projected to rise to 161 million by 2045
(Teo et al., 2021). The most significant non-modifiable
risk factor for DR is the duration of diabetes, while the
most critical modifiable factor is chronic hyperglycemia
(Klein et al., 1989; Scanlon et al., 2013). Additionally, gly-
cemic variability (GV), defined as fluctuations in blood
glucose levels, has emerged as a contributor to DR patho-
genesis. The role of GV in diabetic complications became



Acta Neurobiol Exp 2025, 85: 138-148

increasingly evident with the advent of continuous glu-
cose monitoring (CGM) technologies (Hsing et al., 2021;
Cai et al., 2023; Zhai et al., 2023).

Improvements in time in range (TIR) are associated
with a decreased risk of DR. Beck et al. (2019) demon-
strated that each 10-percentage point decrease in TIR in-
creased the adjusted hazard ratio for DR development by
64% (95% CI: 51-78; P<0.001). Both lower TIR and elevat-
ed HbA1c levels indicate poor metabolic control and are
predictive of increased DR risk (Walicka & Franek, 2024).
However, clinicians should note that rapid improvement
in glycemic control may paradoxically worsen DR, a phe-
nomenon known as early worsening of DR (EWDR). This
underscores the dominant role of glucose metabolism in
DR pathogenesis (Feldman-Billard et al., 2018; Vilsbgll et
al., 2018; Matuszewski et al., 2021; Buckley et al., 2025).

Neuro-ophthalmic Manifestations in Diabetes Beyond DR

In addition to DR, diabetes can affect the optic nerve,
although ocular neuropathies are less common than pe-
ripheral neuropathies. Prolonged hyperglycemia leads
to structural, neurovascular, and metabolic changes
within the eye, resulting in progressive loss of photo-
receptor cells, degeneration of retinal layers, and optic
nerve neuroinflammation (Lee et al., 2023). Diabetes is
associated with both diabetic papillopathy and anteri-
or ischemic optic neuropathy and it is considered a risk
factor for several forms of glaucoma (Muayad et al.,
2025). Moreover, gestational diabetes has been linked
to optic nerve hypoplasia, particularly the superior
segmental variant, which may serve as a clinical mark-
er of maternal diabetes (Nelson et al., 1986). If left un-
controlled, diabetes can lead to both DR and optic nerve
damage, ultimately resulting in visual impairment or
blindness. While these complications were traditionally
considered to be purely microvascular, advanced imag-
ing technologies have revealed that inflammation and
neurodegeneration also play significant roles (de Lemos
et al., 2024). Metabolic dysfunctions associated with di-
abetes including oxidative stress and dyslipidemia fur-
ther contribute to retinal tissue damage. These patho-
genic insights into DR have facilitated the development
of novel therapeutic agents targeting microvascular in-
jury, inflammation, and metabolic dysregulation in DR.

Novel Therapeutic Strategies in DR:
Sulodexide and Fenofibrate
Sulodexide

Sulodexide, a glycosaminoglycan with venoactive
properties, has been in clinical use for over three de-
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cades. It comprises 80% low-molecular-weight hepa-
rin and 20% dermatan sulfate (Cosmi et al., 2003; An-
dreozzi, 2012; Gericke et al., 2021). Initially indicated
for thromboembolic disease, venous insufficiency and
arterial occlusive disorders, sulodexide has also shown
efficacy in treating hard exudates in mild to moder-
ate non-proliferative DR (NPDR) (Song et al., 2015). Its
pharmacological actions in the retina include anti-in-
flammatory, antithrombotic, fibrinolytic, and antiox-
idant effects. Sulodexide’s negative charge stabilizes
the retinal vascular endothelium (Broekhuizen et al.,
2010; Yin et al., 2017; Dauth et al., 2023, Kaur & Harris,
2023). A multicenter, double-masked, randomized con-
trolled trial (DRESS) involving 130 patients with type
1 and type 2 diabetes demonstrated the efficacy of su-
lodexide at 50 mg daily for 12 months. The treatment
group showed a significantly greater reduction in hard
exudate severity compared to placebo (39.0% vs. 19.3%;
X%, P=0.005) (Song et al., 2015). Additional studies indi-
cated improvements in glycocalyx thickness and nor-
malization of retinal vascular permeability (Broekhui-
zen et al., 2010).

Fenofibrate

Fenofibrate, a fibrate-class lipid-lowering agent,
functions as an agonist of peroxisome prolifera-
tor-activated receptor-alpha (PPARa). Dyslipidemia is
a well-established risk factor for DR progression. A co-
hort study involving 1,340 patients found that 83% of
those with DR had coexisting dyslipidemia (Amutha et
al., 2017). Elevated LDL cholesterol levels, in particu-
lar, have been implicated in DR pathogenesis (Lee et
al., 2018). Fenofibrate’s effects include inhibition of in-
flammation, suppression of VEGF expression under hy-
poxic conditions, and enhancement of the blood-retina
barrier. It also downregulates pro-inflammatory medi-
ators like ICAM-1 and MCP-1, and inhibits transcrip-
tion factors such as HIF-1 and NF-«B (Chen et al., 2013;
Mazzeo et al., 2020; Gallucci et al., 2022). In genetically
modified mice lacking PPARa, fenofibrate lost its pro-
tective effect, confirming receptor dependency (Chen
etal., 2013).

In animal models, fenofibrate reduced retinal vascu-
lar permeability by inhibiting COX-2, fibronectin, and
collagen IV expression, while promoting tight junction
integrity via ZO-1 (Trudeau et al., 2011; Roy et al., 2015).
Neuroprotective effects have also been demonstrated,
including decreased glial activation and reduced apop-
tosis in retinal ganglion cells (Bogdanov et al., 2015).

Two large clinical trials, FIELD and ACCORD-EYE,
further validated fenofibrate’s efficacy. The FIELD study
(n=9.795) showed a significant reduction in macular
edema and need for laser treatment in patients with
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existing retinal changes, irrespective of plasma lipid
levels (Keech et al., 2007). In the ACCORD-EYE study,
fenofibrate slowed DR progression over four years
(P=0.006) (ACCORD Study Group et al., 2010). The LENS
study (n=1.150) confirmed a 27% reduction in DR pro-
gression or need for ophthalmologic intervention in
patients with early-stage DR (Henry et al., 2024; Preiss
et al., 2024; Silva & Aiello, 2024; Varughese et al., 2025).

RAGE and its extracellular ligands:
Amplifiers of pathology in DR

Despite the advances described above, it remains es-
sential to identify molecular targets involved in specific
signaling pathways in the pathogenesis of DR, in order
to develop more precise interventional strategies. In-
creasing evidence indicates that pathological changes
observed in the retina and optic nerve in diabetes are
largely driven by prolonged hyperglycemia, which re-
mains the most important modifiable risk factor. Chron-
ic hyperglycemia can initiate a series of interconnected
molecular events and biochemical signaling cascades,
including excessive protein glycation resulting in in-
creased oxidative stress, and local inflammation medi-
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ated by the receptor for advanced glycation end-prod-
ucts (RAGE). Therefore, a thorough investigation of
RAGE-mediated signaling pathways is critical to under-
standing the development of DR (Zglejc-Waszak et al.,
2021; Juranek et al., 2022). RAGE was first identified as
a cell surface receptor for advanced glycation end-prod-
ucts (AGEs), which are products of nonenzymatic gly-
cation and oxidation of proteins and lipids (Neeper et
al., 1992; Schmidt et al., 1994). These compounds accu-
mulate during physiological aging, as well as in patho-
logical conditions such as diabetes, inflammatory dis-
eases, and neurodegenerative disorders. RAGE belongs
to a group of pattern recognition receptors, which are
also part of the RhoA signaling cascade. It also functions
as a signal transduction receptor, whose activation trig-
gers the release of proinflammatory molecules, oxida-
tive stressors, and cytokines (Schmidt et al., 2000).
Long-term hyperglycemia drives metabolic changes
in the retina and optic nerve, leading to increased pro-
tein glycation. Increase in protein glycation prompts
the activation of endothelial and microglial RAGE and
stimulates the production of reactive oxygen spe-
cies (ROS) and inflammatory responses (Fig. 1). Under
normal conditions, RAGE expression in the retina re-
mains low in neuronal, vascular, and epithelial layers.

Fig. 1. Diabetic retinopathy pathogenesis - role of RAGE signaling axis. Anatomical and functional changes in retina and optic nerve are among the most
common complications of diabetes and a major cause of vision loss in the world. The underlying pathological processes leading to the development
of diabetic retinopathy include increased oxidative stress and protein glycation, inflammation, accelerated vessel proliferation and photoreceptor
degradation. RAGE signaling axis plays a prominent role in many of these processes, contributing to multiple downstream metabolic pathways involved
in diabetic complications. Representative digital scans of healthy and non-healthy retina (nonproliferative diabetic retinopathy). Retina images: eye, optic
nerve and surrounding structures created in BioRender. Juranek, J. (2025) https://BioRender.com/I8j6y6p.
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However, its expression significantly increases under
hyperglycemic conditions and in diabetes (Fan et al.,
2021). Studies have shown that deletion of RAGE leads
to reduced vascular permeability, leucostasis, and mi-
croglial activation in the retina over a six-month peri-
od in type 1 diabetic mice. In type 2 diabetic monkeys,
RNA sequencing of the retinal pigment epithelium re-
vealed an upregulation of AGE/RAGE signaling, as well
as increased activity in complement and inflammatory
pathways (Fan et al., 2021) signifying the importance
of RAGE in the pathogenesis of diabetic visual impair-
ments. These changes are accompanied by the upregu-
lation of molecules involved in angiogenesis and cyto-
skeletal modifications, including vascular endothelial
growth factor (VEGF) and RhoA/Diaph1/profilinl sys-
tem (Fan et al., 2021).

RAGE signaling pathway lead to vascular inflamma-
tion, increased permeability of the blood-retinal bar-
rier, endothelial dysfunction, and pathological alter-
ations in both neural and vascular layers of the retina,
ultimately resulting in the development of DR (Bari-
le et al., 2005). Interestingly, evidence suggests that
Miiller cells are particularly vulnerable to hyperglyce-
mia. Most likely, this is in response to the hyperglyce-
mia-induced overproduction of AGEs and their interac-
tion with RAGE activating Miiller cells. This overactiv-
ity leads to the overexpression of glial fibrillary acidic
protein (GFAP), which in turn promotes gliosis (Kida et
al., 2021). Studies indicate that RAGE’s contribution to
DR may be linked to its ability to bind various ligands,
thereby activating multiple detrimental signaling path-
ways. Here, we discuss both AGE and non-AGE, protein
ligands of RAGE.

Advanced Glycation End-products (AGEs)

AGEs are critical ligands for RAGE (Xue et al., 2011)
formed endogenously under conditions such as hy-
perglycemia, aging, oxidative stress, and renal failure.
Exogenous sources include dietary intake and tobacco
products (Cerami et al., 1997). AGEs contribute to both
microvascular and macrovascular complications of di-
abetes, and their interaction with RAGE plays a central
role in the development of DR. AGEs comprise a hetero-
geneous group of compounds, including carboxymeth-
yllysine (CML), carboxyethyllysine (CEL), methylglyox-
al-lysine dimer (MOLD), glyoxal-lysine dimer (GOLD),
glycolic acid lysine amide (GALA), and pyralline. In
diabetic retinas, AGE accumulation has been observed
in vascular cells, neurons, and glial cells, which may
contribute to retinal dysfunction. AGE/RAGE signaling
has been shown to increase NF-kB and VEGF levels, pro-
moting vascular abnormalities.
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The presence of AGEs in retinal vessels and neurog-
lia leads to pericyte damage, an early and critical event
in the pathogenesis of DR (Kim et al., 2012). During di-
abetes, AGEs accumulate in retinal capillary pericytes,
which are essential for endothelial cell survival. The
destruction of pericytes results in basement membrane
thickening, endothelial damage, hyperpermeability,
and vasodilation. Activation of AGE-RAGE axis gener-
ates ROS in cultured retinal pericytes, increases NF-kB
activation, lowers the Bcl-2/Bax ratio, and elevates
caspase-3 activity, ultimately leading to pericyte apop-
tosis and VEGF overproduction (Hammes et al., 2002;
Yamagishi et al., 2002; Kim et al., 2012). Recent studies
indicate that even low concentrations of AGEs can in-
duce NF-kB expression, promoting neuronal apoptosis
and reduced neurite regeneration in cultured retinas
(Bikbova et al., 2013). Hyperglycemia also impairs the
ability of pericytes to protect against inflammation-in-
duced apoptosis in the retina, Inhibition of AGE/RAGE
signaling thus presents a promising therapeutic strate-
gy for preventing the progression of DR.

Liraglutide, a glucagon-like peptide-1 (GLP-1) ana-
log, has demonstrated protective effects against AGEs
and preserves retinal function in early-stage DR. Early
administration of liraglutide inhibits retinal pericyte
migration, reduces microvascular permeability, and
supports blood-retinal barrier (BRB) integrity (Lin et
al., 2018). Aminoguanidine, an AGE formation inhibitor,
has also shown efficacy in animal models by reducing
retinal damage, pericyte loss, microaneurysm forma-
tion, endothelial proliferation, and AGE accumulation
(Hammes et al., 1991). Other AGE blockers, such as pyr-
idoxamine, have been effective in reducing capillary
atrophy and extracellular matrix gene expression in
diabetic rat retinas (Stitt et al., 2002; Fig. 2).

Carboxymethyllysine (CML) is one of the most
abundant AGEs in diabetic patients and binds to RAGE,
influencing cellular physiology (Kislinger et al., 1999).
Elevated CML levels have been detected in blood of pa-
tients with both non-proliferative and proliferative DR.
Immunohistochemical studies have shown increased
anti-CML antibody staining in the extracellular matrix
of diabetic retinas, associated with elevated CD40 ex-
pression (Choudhuri et al., 2013). CML is a significant
predictor of photoreceptor disruption, particularly in
the external limiting membrane (ELM) and ellipsoidal
zone, which are associated with reduced visual acuity.
Increased serum CML levels also correlate with struc-
tural changes in the RPE, suggesting that CML may
serve as a biomarker for retinal neurodegeneration and
changes in retinal thickness in type 2 diabetes (Hernan-
dez et al., 2020).

AGEs like CML are also likely to promote inflamma-
tion, a major contributor to diabetic complications,
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Fig. 2. Novel and experimental treatment in diabetic retinopathy therapy. While fenofibrate and sulodexide have been on the market for some time,
their use in DR therapy has been very recent. Both drugs reduce the need for more invasive and expensive treatment making them a very desirable
alternative to other more cumbersome and/or expensive options. Liraglutide, aminoguanidine and pyridoxamine are AGE blockers and have been
successfully used in treating DR in animal models of the disease. It might be speculated that while still in the experimental phase, these drugs will enter

clinical trial soon.

including DR. AGEs increase CD40 expression, which
promotes pro-inflammatory responses. AGE-induced
signaling upregulates CD40 in endothelial and Miiller
cells, enhancing ICAM-1 expression and CCL2 produc-
tion (Portillo et al., 2024). The herb Trapa bispinosa
Roxb., known for its antioxidant properties, inhibits
CML formation and AGE cross-linking. Systemic admin-
istration of Trapa bispinosa Roxb. and lutein has been
shown to reduce AGE accumulation in retinas of strep-
tozotocin-induced diabetic rats. Improvements in ret-
inal blood flow regulation, decreased GFAP expression
in Miiller cells, and reduced VEGF levels have also been
observed (Hanaguri et al., 2022).

Methylglyoxal (MGO), a reactive AGE precursor
formed during glycolysis and pyralline, a Maillard
reaction product formed during glucose-protein in-
teraction may accumulate in retina and optic nerve
head in chronic hyperglycemia and contribute sig-
nificantly to diabetic pathology (Amano et al., 2001;
Schlotterer et al., 2019). AGE accumulation in optic
nerve vessels is also believed to impair microcircula-
tion and contribute to diabetic optic neuropathy. In
retinal endothelial cells, MGO induces lysyl oxidase
expression via RAGE, promoting matrix stiffening and
inflammation. MGO also triggers ROS-induced mito-
chondrial dysfunction, NLRP3 inflammasome activa-
tion, and pyroptosis. Furthermore, MGO reduces the
immunosuppressive activity of retinal pericytes and
alters the VEGF/Ang2 ratio, contributing to endothe-
lial dysfunction (Bento et al., 2010; Chandrakumar et
al., 2023; Wang et al., 2024).

RAGE protein ligands

Finally, S100B and HMGB1 are two well character-
ized non-AGE, protein ligands for RAGE (Pachydaki et
al., 2006; Juranek et al., 2022). S100B is expressed by as-
trocytes and serves as a biomarker of neuronal damage
under oxidative stress. While decreased S100B levels
have been noted in patients with peripheral neuropa-
thy—suggesting a neuroprotective role, elevated S100B
levels have been detected in serum and vitreous sam-
ples of patients with DR. Immunofluorescence studies
have also shown elevated RAGE and S100B expression
in diabetic retinas (Pachydaki et al., 2006). ST00B-RAGE
signaling induces VEGF production, which is a key
factor in ocular neovascular diseases, including DR.
Although primarily nuclear protein, HMGB1 is active-
ly or passively secreted. Its levels are elevated in the
vitreous fluid and epiretinal membranes of DR patients
(El-Asrar et al., 2011; Abu El-Asrar et al., 2012). HMGB1
is implicated in optic nerve damage, angiogenesis, and
inflammation in diabetes. Blocking HMGB1 signal-
ing may offer protection against optic nerve damage.
HMGB1 also upregulates signal transducer and activa-
tor of transcription-3 (STAT-3) in diabetic retinas (Mo-
hammad et al., 2017), and its release from ARPE-19 cells
under hypoxic conditions contributes to hypoxia-in-
duced pathology in DR (Chang et al., 2017) (Fig. 3).

Lastly, advanced oxidation protein products (AOPP),
which structurally and functionally resemble AGEs, also
signal through RAGE. Formed during oxidative stress,
AOPPs contribute to tissue damage, increase microvas-
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Fig. 3. Short description of RAGE and its main ligands in physiology and pathology.

cular endothelial permeability, and promote fibrogenic
responses. Elevated AOPP levels have been positively cor-
related with the severity of DR. Spectrophotometric anal-
yses have demonstrated significantly higher AOPP levels
in patients with DR (Baskol et al., 2008). In rats diagnosed
with prediabetes, a significant increase in AOPP concen-
tration was observed not only in serum but also in the ret-
ina, and melatonin supplementation reduced the concen-
tration of these oxidized proteins (Djordjevic et al., 2018).

RAGE-Diaph1 Axis and Intracellular Signal
Transduction

The interaction between RAGE and Diaph1 was first
described by Prof. Schmidt and her team in 2008 (Hud-
son et al., 2008). In that study, authors described in de-
tail the binding mechanisms between the cytoplasmic
domain of RAGE and the formin homology 1 (FH1) do-
main of Diaphl (Rai et al., 2012). The study proved to
be crucial in elucidating RAGE signal transduction path-
ways and demonstrated that, for RAGE to effectively
transduce extracellular signals into the cell, it must bind
to Diaph1. Conversely, Diaph1 may execute its functions
either in conjunction with RAGE or independently.

Since this discovery, substantial progress has been made
in clarifying the role of RAGE-Diaph1 signaling in neuroin-
flammation and hyperglycemia (Ruiz et al., 2021; Theoph-
all et al., 2025). A number of small-molecule RAGE-Diaph1

inhibitors have been patented (Manigrasso et al., 2021) en-
abling both experimental and clinical studies.

Recent studies have shown that Diaph1 is highly ex-
pressed in human gliomas (Zhang et al., 2017); however,
detailed information regarding its cellular localization
and Diaph1-mediated mechanisms of dysfunction in the
rodent or human central nervous system (CNS) has not
yet been fully elucidated. The RAGE-Diaph1 interaction
has been studied extensively in the context of neuro-
logical complications of diabetes and Alzheimer’s dis-
ease. It has been established that Diaph is essential for
RAGE signal transduction, including activation of mito-
gen-activated protein kinases (MAPKs), Rho GTPases,
and phosphatidylinositol 3-kinase (PI3K)/Akt signaling
pathways (Hudson et al., 2008; Touré et al., 2012). The
aberrant activation of these pathways carries substan-
tial pathological implications. RAGE-Diaph1 interaction
promotes the generation of ROS, induces cellular mi-
gration, upregulates inflammatory cytokines, and sub-
sequently downregulates ATP-binding cassette (ABC)
cholesterol transporters such as ABCA1 and ABCGL1.
These effects contribute to intracellular lipid accumu-
lation and associated cellular dysfunction (Kumar et al.,
2013; Daffu et al., 2015). Notably, as demonstrated by
our research and that of our collaborators, the effects
of RAGE-Diaph1 signaling are influenced by several fac-
tors, including but not limited to cell type, ligand form
and concentration, and the duration of signal activation
(acute versus chronic) (Derk et al., 2018) (Fig. 4).
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Fig. 4. RAGE-ligand pathways. Extracellular ligands such as AGEs, S100B, HMGB1 bind to RAGE's external domains, triggering its conformational changes,
allowing it to bind to Diaph1, its cytosolic partner and initiating a series of intracellular events leading to the increased production of reactive oxygen
species (ROS), activation of nuclear factor kappa B (NF-kB) and overexpression of vascular endothelial growth factor (VEGF) in hyperglycemia affected
retina. Excessive presence of ROS and enhanced expression of NF-kB and VEGF triggers detrimental biochemical pathways, leading to retina inflammation
and neovascularization and optic nerve degeneration, resulting in vision impairment and, if not, treated, vision loss. Created in BioRender. Juranek, J.
(2025) https://BioRender.com/v79b6q9 (retina) and https://BioRender.com/akq9of5 (cell nucleus with mitochondria).
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CONCLUSION

DR is a profound complication of diabetes that con-
tributes to its morbidity. Currently, the most common
form of management for DR is stabilization of glucose
metabolism. Two promising new drugs, sulodexide
and fenofibrate, have shown some efficacy in the man-
agement of DR. However, there remains a significant
unmet need in the management of DR, which requires
attention. Although therapies that target individual
components of DR, such as vascular pathology, inflam-
mation, and neurodegeneration, could be explored,
a drug that modulates a common molecular axis im-
pacting all these components is more likely to provide
a comprehensive mechanism for managing DR. Current
evidence, as described in this review, suggests that sig-
naling through the RAGE/Diaph1 pathway may repre-
sent an axis implicated in all the pathological compo-
nents of DR. We therefore suggest that small molecules
targeted at this pathway are likely to be therapeutic
candidates for DR.
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