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Effects of morphine on conditioned place preference 
and pain are independent of uptake‑2 

Mohammad Saeid Souri1, Mohaddeseh Sadat Alavi2, Ali Ahmadian Salami1, Ali Roohbakhsh3*

1 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran 
2 Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran 

3 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran  
* Email: roohbakhsha@mums.ac.ir

Morphine changes neurotransmitter release, including norepinephrine, dopamine, and serotonin. Decynium‑22 (D22) inhibits an 
alternative neurotransmitter removal pathway, namely uptake‑2. Uptake‑2 includes plasma membrane monoamine transporter (PMAT) 
and organic cation transporters that have a low affinity, but high capacity for uptake of various monoamines such as norepinephrine, 
dopamine, and serotonin. This study was done to assess the effect of uptake‑2 inhibition on morphine‑induced conditioned place 
preference (CPP) and analgesia. In this study, the effects of morphine and/or D22 on CPP were evaluated following intraperitoneal 
injection in mice. Afterward, changes in motor activity were evaluated by the open field test. Using the tail‑flick model, the effects 
of D22 and/or morphine were evaluated on the pain threshold. The results showed that 20  mg/kg of morphine induced a  place 
preference response. D22, at the dose of 0.03 mg/kg, caused place avoidance, while at the dose of 0.3 mg/kg, it produced a notable 
place preference response. Co‑administration of D22 and morphine showed that morphine reversed the CPP aversion induced by D22 
at the lowest dose. Motor activity did not alter. In the tail‑flick test, morphine, at the dose of 3 mg/kg but not 1 mg/kg, increased the pain 
threshold. D22 induced significant analgesic responses. Co‑administration of D22 and morphine caused considerable analgesic effects. 
The findings revealed that D22 induced both conditioned aversion and preference depending on the dose while morphine induced CPP. 
Both drugs produced analgesia. 
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INTRODUCTION

Opioid addiction is an important global pub‑
lic health issue classified as a  chronic and relapsing 
brain disease (Alavi et al., 2016). Morphine is one of 
the most efficient analgesics with a high abuse inci‑
dence (Lupina et al., 2020). Many studies have been 
devoted to finding efficient interventions to reduce 
physical and psychological dependence following opi‑
oid administration while maintaining their analgesic 
effects (Bu et al., 2015; Kourosh‑Arami et al., 2020).

It was reported that various neurotransmitters 
such as dopamine, serotonin, and norepinephrine 
play essential roles in the rewarding response of 

psychoactive compounds (Takamatsu et al., 2011) 
and opioids (Pourtaqi et al., 2017). Norepinephrine 
transporter (NET), serotonin transporter (SERT), 
and dopamine transporter (DAT) are considered as 
uptake‑1 that show high selectivity but low capaci‑
ty for neurotransmitters clearance. Administration 
of morphine is reported with functional interactions 
between dopaminergic, adrenergic, and serotonergic 
systems (Sierra et al., 2020). Monoamine transport‑
ers are markedly involved in the pharmacological ef‑
fects of morphine. In accordance, fluoxetine, a SERT 
blocker, increased morphine‑induced analgesia and 
suppressed its anti‑nociceptive tolerance and physi‑
cal dependence (Alboghobeish et al., 2019). Similarly, 
venlafaxine, a  SERT/NET inhibitor, prevented mor‑
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phine‑induced conditioned place preference (CPP) 
(Lu et al., 2001).

Uptake‑2 is described as a low affinity but high ca‑
pacity non‑selective transport system of monoamine 
clearance (Koepsell, 2020). This process consists of 
different organic cation transporters such as plasma 
membrane monoamine transporter (PMAT) and organ‑
ic cation transporters  (OCT1, OCT2, and OCT3) (Fras‑
er‑Spears et al., 2019). These transporters are densely 
expressed in the brain, especially in the striatum and 
nucleus accumbens, which are associated with the re‑
warding effects of morphine (Sweet, 2021). PMAT and 
organic cation transporters (OCTs) are also expressed 
outside the brain and transport endogenous mono‑
amines, including dopamine, serotonin, and norepi‑
nephrine (Koepsell, 2013). Furthermore, many psycho‑
active substances including morphine act as substrates 
for OCTs and PMAT (Tzvetkov et al., 2013; Bönisch, 
2021; Maier et al., 2021).

Decynium‑22, (D22, 1‑ethyl‑2‑[(1‑ethyl‑2(1H)‑quin‑
olinylidene) methyl] quinolinium iodide), is a  cat‑
ion derivative of quinoline that inhibits OCTs and 
PMAT transporters. Recently, it was shown that D22 
inhibits the development of CPP by amphetamine, 
as a  well‑known drug with significant abuse liability 

(Clauss et al., 2021).
Since the relationship between OCTs and PMAT 

transporters and the rewarding effects of morphine 
has not been investigated yet, we tested the effect of 
uptake‑2 inhibition by D22 on pain and reward and as‑
sessed its possible interaction with the rewarding and 
analgesic effects of morphine.

METHODS

Animals

Since the goal of the present study was to assess the 
potential interaction between decynium‑22 (D22, Sig‑
ma‑Aldrich, Germany) and morphine (Daroupakhsh, 
Iran), but not the effect of sex on the putative interac‑
tion of these drugs, only male mice were used to avoid 
complexities involved with estrous in females. D22 is 
a potent inhibitor of PMAT and OCT 1, 2, and 3. D22 
powder was dissolved in 1 ml Tween‑80, 1 ml dimeth‑
yl sulfoxide (DMSO), and 8 ml sterile saline 0.9%. Mor‑
phine was dissolved in sterile saline 0.9%. Male albino 
mice (25–33  g) were housed under temperature‑con‑
trolled (23±2°C) conditions with 12  h day/night cycle. 
Seven mice were involved in each experiment group. 
Mice were allowed unlimited access to food and water 
except during the tests. The experimental procedure 
was performed according to the Ethics and Animal Care 

Committee of Mashhad University of Medical Sciences 
protocol (No. 951589).

Experimental procedure

CPP procedure

Based on our previous studies, the CPP paradigm 
was performed over seven consecutive  days con‑
sisted of pre‑conditioning (two  days), conditioning 
(four  days), and post‑conditioning (one day) phases 
(Alavi et al., 2016; Etemad et al., 2020). For all of the 
experiments, the animals were tested at the same time 
each day. The CPP apparatus included 2 equal‑sized 
chambers (15  cm × 15  cm × 15  cm) being connected 
by a  movable guillotine door (7  cm × 15  cm × 15  cm). 
The light intensity in the center of each chamber was 
30  lux. Place conditioning was performed by an unbi‑
ased protocol. The walls and floors of the chambers 
differed in color and netted shape (black and white 
lines with fine floor vs. white wall and coarse floor). 
When the guillotine door was opened, mice were al‑
lowed to explore freely and when closed, it restricted 
the movement in one compartment. The activity of the 
mice in each compartment was recorded by a camera 
installed above the chambers.

Phase 1: pre‑conditioning

In this two‑day phase (D1‑D2), each animal was 
placed separately in the central part to move between 
the chambers freely. Then, the time spent by the mice 
in each chamber on the second day was measured for 
15  min. According to the CPP setup, the mice did not 
have any preference for either of the chambers. 

Phase 2: conditioning

The second phase contained a  four‑day schedule 
(D3‑D6). These 45‑min  sessions were conducted twice 
each day with 6‑h interval saline pairing (black with 
white lines) chamber and drug pairing (white) cham‑
ber. The control group of animals received vehicle in‑
stead of the drug in all sessions.

Phase 3: post‑conditioning

On the test day (D7), the movable door was re‑
moved and the animals explored both chambers for 
15  min. On this day, mice did not receive any treat‑
ment. Similar to the pre‑conditioning phase, the total 
time spent in the chambers was recorded. The change 
of preference, as the difference between the explora‑
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tion time in the post‑conditioning phase and pre‑con‑
ditioning phase in the drug‑paired chamber, was cal‑
culated (Fig. 1). 

Induction of CPP by morphine and D22

Firstly, we measured the effects of 10 and 20 mg/kg 
of morphine sulfate (intraperitoneal; i.p.) on place 
preference. The mice were treated with morphine and 
saline on alternate sessions. During the mornings of 
D3 and D5 and afternoons of D4 and D6, morphine was 
administered and the animals were placed for 45 min 
in the white chamber. In the afternoons of D3 and D5 
and mornings of D4 and D6, saline 0.9% (10  ml/kg, 
i.p.) was injected, and mice were placed in the cham‑
ber with black and white lines for 45 min. The control 
group received only saline injections in morning and 
afternoon intervals. We used this method according 
to the previous studies (Rivera et al., 2019; Brice‑Tutt 
et al., 2020, Nwaneshiudu et al., 2020).

We also measured the effects of D22 (0.03, 0.1, and 
0.3  mg/kg, i.p.) and D22 vehicle on place preference 
with a similar to the above‑explained protocol for the 
morphine‑induced CPP. The doses for D22 were chosen 
according to the previous studies (Horton et al., 2013; 
Marcinkiewcz et al., 2015).

The mice of three groups received D22 (0.03, 0.1, 
and 0.3 mg/kg, i.p.) 30 min before morphine injection 
(10 mg/kg, i.p.) in the conditioning phase. The control 
group received D22 vehicle (instead of D22) 30 min be‑
fore morphine administration.

Motor activity procedure

The motor activity of each mouse was recorded 
immediately after the CPP test by the open field ex‑
periment. The field size was (45  cm × 45  cm × 45  cm) 
made of black Plexiglas. Motor activity was measured 
using a  camera and related software (MazeRouter, 
Iran). Measurement of motor activity helps to justify 
non‑specific mechanisms interacting with the CPP test 
(Alavi et al., 2016). 

28 Acta Neurobiol Exp 2024, 84: 26–34

Fig. 1. The schematic of CPP procedure. CPP consisted of three phases: pre‑conditioning (days 1‑2), conditioning (days 3‑6), and post‑conditioning (day 7).
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Tail‑flick test

The tail‑flick model is a test of acute pain in which 
intense heat is exposed to the tail of a  mouse or rat 
(Hasanein et al., 2009; Katyal et al., 2012). In this test, 
radiant heat is directed to the dorsal surface of the tail 
with a cut‑off time of 10  seconds. By using a  tail‑flick 
apparatus, the latency time of the tail‑flick responses 
before (0) and at 15, 30, 45, and 60 min after drug ad‑
ministrations were recorded.

Statistical analysis

All data were expressed as mean ± SEM. One‑way 
ANOVA was applied for the comparison of the means 
of morphine groups on CPP. The results of D22/D22 
morphine‑induced CPP and tail‑flick latencies were an‑
alyzed using two‑way ANOVA. Following a  significant 
F‑value, post hoc analysis (Tukey) was executed. P<0.05 
was considered statistically significant.

RESULTS

Effects of morphine on CPP

A one‑way ANOVA revealed a  significant differ‑
ence between groups on morphine induced preference 
(F2,21=8.923, P=0.0016). Fig.  2A presents CPP following 
morphine treatment. Injection of 20  mg/kg morphine 
in the conditioning phase caused a  significant prefer‑
ence (P<0.01) compared to the animals that received 
saline, although 10  mg/kg morphine‑treated mice did 
not show considerable preference compared with the 
control group (Fig. 2A). Fig. 2B shows that, in compar‑
ison with the control group, morphine treatments did 
not alter locomotor activity in the conditioning phase, 
significantly.

Effects of D22 and D22/morphine on CPP

We analyzed the effect of D22 (0.03, 0.1, and 
0.3  mg/kg), per se, or in combination with morphine 
on preference by two‑way ANOVA test (dose effect: 
F3,48=70.35, P<0.0001; treatment effect: F1,48=17.31, 
P<0.0001; interaction effect: F3,48=32.86, P<0.0001; 
Fig.  3A). Subsequent analysis indicated that admin‑
istration of 0.03  mg/kg of D22 decreased preference 
(caused aversion) in the conditioning phase (P<0.001, 
Fig. 3A1) compared to vehicle group. Administration of 
D22 at the dose of 0.1 mg/kg did not change CPP, while 
D22 at the dose of 0.3 mg/kg, in contrast to the lowest 

dose, increased CPP (P<0.001, Fig. 3A1) in comparison to 
vehicle‑treated animals.

As shown in Fig.  3A2, administration of morphine 
(10 mg/kg) did not induce significant CPP in combina‑
tion with the aforementioned doses of D22 compared to 
animals who received only morphine (vehicle group).

Further analysis with Tukey’s post hoc test showed 
that administration of 0.03  mg/kg of D22 and the in‑
effective dose of morphine on CPP (10  mg/kg) en‑
hanced preference (P<0.001, Fig.  3A) in comparison 
with 0.03 mg/kg of D22, per se. However, administration 
of morphine (10  mg/kg) with D22, at the doses of 0.1 
and 0.3 mg/kg, did not change the effect of D22 on CPP 
(Fig. 3A). 

29Acta Neurobiol Exp 2024, 84: 26–34

Fig.  2. (A) The effect of intraperitoneal injection of morphine (10 and 
20  mg/kg) on place preference. Change of preference: the difference 
between the times that animals spent on pre‑and post‑conditioning sessions 
in the drug‑paired chamber. (B) The effect of morphine on motor activity 
immediately after the post‑conditioning session. Data are means ± SEM of 
seven mice per group. **P<0.01 compared with the saline‑treated group. 
NS: normal saline.
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The open field results showed that D22 did not alter 
the locomotor activity of the animals implying that the 
effects of D22 on CPP were independent of possible lo‑
comotor activity alteration (Fig. 3B). 

Effects of morphine, D22, and D22 plus morphine 
on pain threshold

The effect of morphine (1 and 3 mg/kg) on the pain 
threshold in the tail‑flick test is presented in Fig. 4A. 

Analysis of data with two‑way ANOVA showed that 
there is a  significant difference between morphine 
groups on pain threshold (treatment effect: F2,90=323.5, 
P<0.0001; time effect: F4,90=74.61, P<0.0001; interaction 
effect: F8,90=66.98, P<0.0001; Fig. 4A). Morphine, at the 
dose of 3  mg/kg, caused a  significant (P<0.001) an‑
algesic effect after 30, 45, and 60  min in comparison 
with the saline group. The lower dose of morphine 
(1 mg/kg) did not induce analgesia (Fig. 4A). 

Analysis of data with two‑way ANOVA revealed that 
there is a  significant difference between D22 groups 
on pain threshold (treatment effect: F3,120=92.06, 
P<0.0001; time effect: F4,120=59.18, P<0.0001; interac‑
tion effect: F12,120=16.81, P<0.0001; Fig. 4B). As shown in 
Fig. 4B, D22 at the dose of 0.1 mg/kg at 15, 30, 45, and 
60 min after injection showed a notable analgesic ef‑
fect (P<0.001) in comparison to vehicle. Similarly, D22 
at the dose of 0.3 mg/kg at all  times, except 45 min, 
significantly enhanced the pain threshold (P<0.001). 
This implies that D22 induced a significant anti‑noci‑
ceptive effect. 

Two‑way ANOVA indicated that there is signifi‑
cant difference between D22/morphine groups on 
pain threshold (treatment effect: F3,120=92.69, P<0.0001; 
time effect: F4,120=17.42, P<0.0001; interaction effect: 
F12,120=13.38, P<0.0001; Fig.  4C). Animals that received 
0.03 of D22 plus morphine (1  mg/kg) had significant 
decrease in pain thresholds at 45 and 60  min after 
injection than their respective D22‑treated control 
animals (P<0.05 and P<0.001). Mice who treated with 
0.1  mg/kg of D22 plus morphine (1  mg/kg) showed 
significant increase in nociceptive threshold at 15 and 
30  min after administration (P<0.001 and P<0.05 re‑
spectively). The higher dose of D22 (0.3  mg/kg) plus 
morphine (1  mg/kg) caused an analgesic effect after 
15, 30, 45 and 60  min of injection compared with the 
control group (15 and 60  min: P<0.05, 30 and 45 min: 
P<0.001, Fig. 4C). 

DISCUSSION

The present study demonstrated that D22, as a po‑
tent uptake‑2 inhibitor, induced both aversion and 
place preference at low and high doses, respectively. 
D22 also induced significant analgesia in the tail‑flick 
test. There was not an important interaction between 
D22 and morphine in the modulation of pain and CPP. 

CPP is a  well‑known animal model for the evalu‑
ation of reward‑related behaviors (Gibula‑Bruzda et 
al., 2015; Qian et al., 2020). Many drugs with addictive 
properties, including amphetamines, cocaine, heroin, 
and morphine induce significant CPP (Park et al., 2014; 
Mori et al., 2016). In agreement with the literature 
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Fig.  3. (A1) The effects of D22 (0.03, 0.1, and 0.3  mg/kg, i.p.) with saline 
(10  ml/kg, i.p.) or (A2) morphine (10  mg/kg, i.p.) on CPP. Change of 
preference: the difference between the times that animals spent on pre‑ 
and post‑conditioning sessions in the drug‑paired chamber. (B1) The effect 
of D22 with saline (10 ml/kg, i.p.) or (B2) morphine (10 mg/kg, i.p.) on the 
motor activity immediately after the post‑conditioning session. Data are 
means ± SEM of seven mice per group. ***P<0.001 compared with the 
vehicle‑treated group and ###P<0.001 compared with the respective group 
in the D22/saline‑treated group.
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(Ribeiro Do Couto et al., 2003) and our previous study 
(Etemad et al., 2020), morphine promoted condititiong 
in the CPP task at the dose of 20, but not 10  mg/kg, 
in mice. This effect of morphine was without signifi‑
cant alteration in motor activity. This finding implies 
that morphine elicited reward‑related behaviors with 
no significant change in locomotion as a confounding 
parameter.

D22 has been reported to inhibit uptake‑2, which 
is involved in the termination of dopamine, serotonin, 

and norepinephrine biological activities. In the pres‑
ent study, the dual and paradoxical effects of D22 on 
CPP may be attributed to its effects on dopamine. 
Many studies are showing that dopamine activity, de‑
pending on various factors, may promote preference 
or aversion. As an example, dopamine activity was re‑
ported to be involved in aversive learning (Sellings et 
al., 2008; Weitemier et al., 2009). On the other hand, 
nicotine (Risinger et al., 1995), amphetamine (Fudala 
et al., 1990; Wang et al., 2010), caffeine (Brockwell et 
al., 1991), and cocaine (Mayer et al., 1993) have been 
reported with both aversive and rewarding effects. In‑
terestingly, aversive and rewarding doses of nicotine 
were reported to produce completely different cellu‑
lar firing patterns in the nucleus accumbens (Sun et 
al., 2014). As another hypothesis, the balance between 
dopamine and serotonin has been reported as a  key 
factor in the expression of learned behavior, including 
preference or aversion (Weitemier and Murphy, 2009). 
As mentioned, D22 also enhances serotonin activity via 
blockade of uptake‑2 and provokes significant antide‑
pressant‑like effects. So, its potential use as antide‑
pressant medication, similar to selective serotonin re‑
uptake inhibitors (SSRIs), has been evaluated and doc‑
umented (Horton et al., 2013; Jin et al., 2019). Previous 
studies imply that SSRIs can induce CPP (Subhan et al., 
2000). So, we suggest that D22‑induced aversion, at the 
lowest dose, and induction of CPP, at the highest dose, 
were mediated by the complex interaction of D22 with 
dopamine and serotonin. In addition, D22, induced 
analgesia dose‑dependently. Similarly, the analgesic 
effect of tricyclic antidepressants has been reported 
(Spiegel et al., 1983; Rojas‑Corrales et al., 2003). These 
drugs block neuronal norepinephrine and serotonin re‑
uptake and finally enhance their concentrations in the 
synapses. Interestingly, the pharmacological depletion 
of monoamines in the nervous system abolished the 
analgesic effect of tricyclic antidepressants. So, it may 
be suggested that D22, via inhibition of uptake‑2, in‑
duced similar monoamine‑dependent analgesia. 

In addition to uptake‑1, uptake‑2 has been recog‑
nized as an important system for the termination of 
neurotransmitter functions in the nervous system 
(Koepsell, 2013). Accordingly, this system has been pro‑
posed as an important target for the treatment of var‑
ious neurological disorders. Uptake‑2 includes a group 
of broadly‑specific organic cation transporters, such as 
the organic cation transporter (OCT) family and plas‑
ma membrane monoamine transporter (PMAT) (Fras‑
er‑Spears et al., 2019). This system includes uptake of 
serotonin, dopamine, and norepinephrine as the main 
brain monoamines (Koepsell, 2013). OCTs and PMAT 
are located on the neurons of the hippocampus, occip‑
ital cortex, nucleus accumbens, and caudate nucleus 
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Fig. 4. (A) The effect of injection of morphine (1 and 3 mg/kg) on time‑course 
of thermal‑induced pain in the tail‑flick test. *P<0.05 and ***P<0.001 
compared with the saline‑treated group. (B) The effect of different doses of 
D22 (0.03, 0.1, and 0.3 mg/kg, i.p.) on time‑course of thermal‑induced pain 
in the tail‑flick test. ***P<0.001 compared with the vehicle‑treated group. 
(C) Co‑administration of different doses of D22 (0.03, 0.1, and 0.3 mg/kg, 
i.p.) with ineffective dose of morphine on pain (1 mg/kg) on time‑course 
of thermal‑induced nociception in tail‑flick test at 0, 15, 30, 45, and 60 min 
after morphine administration. Data are means ± SEM of seven mice per 
group. *P<0.05 and ***P<0.001 compared with the baseline time.
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that are considered as key brain regions in the mod‑
ulation of reward‑related behaviors (Koepsell, 2020). 

D22 is an inhibitor of OCT3, OCT2, OCT1, and PMAT 
(Koepsell et al., 2007; Koepsell, 2021). Recently, Clauss 
and co‑workers (2021) reported that D22 at the dose 
of 0.1  mg/kg blocked amphetamine‑induced CPP in 
wild‑type mice. CPP for amphetamine did not devel‑
op in male OCT3 knockout mice, and D22 was without 
effect. While PMAT knockout mice developed CPP for 
amphetamine, it was not suppressed by D22 in female 
PMAT knockout animals. Thus, OCT3 and PMAT may 
play an important, sex‑dependent role in the ability 
of D22 to inhibit amphetamine CPP in intact animals.

Dopaminergic pathways have been suggested as 
key mechanisms in the induction of opioid reward‑re‑
lated behaviors (Kalivas et al., 1991). However, the 
key role of dopamine in reward has been questioned 
(Hnasko et al., 2005). Serotonin, norepinephrine, 
gamma‑aminobutyric acid, adenosine, and cholecys‑
tokinin are involved in morphine‑induced tolerance 
and dependence, as well (Bhargava et al., 1994). In 
accordance, morphine has been reported to increase 
serotonin release from the raphe  nucleus (Tao et 
al., 1995). Considering the interaction of the opioid 
system with various neurotransmitters, including 
monoamines, we hypothesized that D22, as a  po‑
tent uptake‑2 inhibitor, may interfere with the main 
pharmacological effects of morphine: analgesia and 
reward. As mentioned, morphine induced analgesia 
and CPP, at the doses of 3 and 20 mg/kg, respectively. 
We evaluated the effect of D22, at different doses, on 
ineffective doses of morphine on tail‑flick (1 mg/kg) 
and CPP (10  mg/kg); no significant interaction was 
found between D22 and morphine in either experi‑
ment. However, D22, at the dose of 0.03 mg/kg, as the 
lowest dose, did not exhibit aversion when combined 
with the ineffective dose of morphine. We did not see 
such interaction at the higher doses or in the tail‑flick 
test and cannot provide supporting evidence for such 
finding, but it means that a potential interaction be‑
tween these drugs may exist.

The interaction of D22, at the lowest dose, with 
morphine, may be explained by previous studies show‑
ing that failure of OCT1 increases the pharmacological 
effects of morphine as it has been reported as a  sub‑
strate for OCT1 (Tzvetkov et al., 2013; Zhu et al., 2018). 
In accordance, it was reported that humans carrying 
loss‑of‑function OCT1 polymorphisms had higher plas‑
ma levels of morphine as much as 56% after codeine 
administration in comparison with non‑carrier con‑
trols (Tzvetkov et al., 2013). Similarly, lower morphine 
clearance, higher incidence of respiratory depression, 
and postoperative nausea and vomiting during and af‑
ter surgeries have been attributed to OCT1 polymor‑

phisms in Caucasian children (Balyan et al., 2017). In 
contrast, a  recent study showed that OCT1 polymor‑
phisms did not change morphine and its major metab‑
olites levels in adult surgical patients (Kuhlmann et al., 
2022). These findings suggest that a potential interac‑
tion between morphine and uptake‑2 exists that needs 
further investigations to uncover its significance in 
clinical practice.

CONCLUSION

The present study demonstrated that D22 induced 
variable results in the CPP test, but morphine induced 
significant CPP. Moreover, morphine turned the aver‑
sive effect of D22 into a  rewarding effect in the CPP 
task. Both drugs induced significant analgesic effects. 
Co‑administration of highest dose of D22 and morphine 
showed significant interaction in pain modulation.
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