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The less complex temporal patterns 
of resting‑state EEG activity, the lower 

the visual temporal order threshold
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Speech understanding, watching a  movie, listening to music etc., requires perception of the temporal order of at least two 
incoming events. A  history of performing these tasks may be reflected in spontaneous brain activity. Here, we examined the 
relationship between the complexity (temporal dynamics) of resting‑state EEG (rsEEG) signal, assessed using the multivariate 
MultiScale Entropy (mMSE) algorithm, and the perception of event ordering, indexed by a visual temporal order threshold (TOT), 
i.e., the minimum duration necessary to correctly identify the before‑after relation between two stimuli. Healthy adolescents and 
young adults performed a psychophysical task measuring the TOT and underwent an eyes‑closed rsEEG study. The features of 
mMSE vectors, namely the area under curve (AUC) that represents total signal complexity, as well as the MaxSlope and the AvgEnt, 
corresponding to the entropy at fine‑ and coarse‑grained timescales, respectively, were obtained for the central (midline), anterior, 
middle and posterior channel sets. The greater the AUC and AvgEnt values in the central, left and right posterior areas, and the 
higher AUC in the right middle region, the higher the TOT. The most significant relationships were found for the midline electrodes 
(Fz, Cz, Pz, Oz). There were no significant correlations between the MaxSlope values and the TOT. To the best of our knowledge, 
this is the first study demonstrating that spontaneous EEG signal complexity is associated with the temporal order perception of 
two stimuli presented in rapid succession. Our findings may indicate that low total and coarse entropy levels of rsEEG signal are 
beneficial for visual temporal order judgments.
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INTRODUCTION

The identification of temporal order (TO) of two 
sensory events that are separated by the millisecond 
intervals, is considered essential for cognitive process‑
ing (Fraisse, 1984; Pöppel, 1994; Mauk and Buonomano, 
2004; Szelag et al., 2004; Pöppel et al., 2011). More ac‑
curate TO judgments are associated with better perfor‑
mance in tasks measuring fluid intelligence (Helmbold 
et al., 2007; Rammsayer and Brandler, 2007; Ulbrich et al., 

2009; Der and Deary, 2017; Pahud et al., 2018), attention 
(Szymaszek et al., 2009; Ulbrich et al., 2009) and working 
memory (Ulbrich et al., 2009; Thomas et al., 2015; Jablon‑
ska et al., 2020). Deficits in TO perception were found 
in elderly people (Fitzgibbons and Gordon‑Salant, 2004; 
Kolodziejczyk and Szelag, 2008; Szymaszek et al., 2009), 
language‑disordered populations (Tallal et al., 1996; von 
Steinbüchel et al., 1999; Rey et al., 2002; Fink et al., 2006a; 
Szelag et al., 2014) and patients with visuospatial neglect 
(Eramudugolla et al., 2007; Sinnett et al., 2007).
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An ability to determine TO is usually assessed in lab‑
oratory conditions using the temporal order threshold 
(TOT), which is defined as the minimal inter‑stimulus 
interval (ISI) between two consecutive sensory events 
necessary to identify their before‑after relation (Wit‑
tmann and Szelag, 2003; Fink et al., 2006b; Szymaszek 
et al., 2009; Ulbrich et al., 2009; Szelag et al., 2018; 
Jablonska et al., 2020; Lewandowska et al., 2022). The 
TOT values in healthy young adults are between 20 
and 60 msec, regardless of the sensory modality (Hirsh 
and Sherrick, 1961; Swisher and Hirsh, 1972; Kanabus 
et al., 2002; Yamamoto and Kitazawa, 2015), suggesting 
a  central mechanism for the perception of a  stimulus 
sequence. Nevertheless, the TO of two visual stimuli, 
with a  gap of less than 20 msec between their onsets, 
can be processed (subconsciously) and used to optimize 
task performance (Chassignolle et al., 2021).

Physiological evidence supports the critical ISI of 
tens of milliseconds as corresponding to the TOT (Jo‑
liot et al., 1994; Kujala et al., 2001). Joliot et al. (1994) 
found a single 40‑Hz brain response to a click pair with 
an ISI<15 msec, but 2 separate 40‑Hz waves at longer 
ISIs. The appearance of the second neuronal oscillation 
coincided with the perception of both clicks within 
a pair. This evidence indicates that the first stimulus in 
a pair initiates a neuronal oscillation with a period of 
approximately 40 msec and when the second stimulus 
is processed within the same period of such an oscilla‑
tion (e.g., an ISI<40 msec), the 2 events are treated as 
co‑temporal and the TO cannot be determined.

TO judgments involve the temporoparietal junction 
(TPJ) (Eramudugolla et al., 2007: Sinnett et al., 2007; Da‑
vis et al., 2009; Woo et al., 2009; Bernasconi et al., 2010a, 
2010b; Lewandowska et al., 2010; Wiener et al., 2010; 
Bernasconi et al., 2011; Adhikari et al., 2013; Takahashi 
et al., 2013; Binder, 2015; Oron et al., 2015; Lewandows‑
ka et al., 2022), a functionally heterogenic region locat‑
ed in the lateral parietal lobe at the junction with the 
posterior part of the superior temporal gyrus (includ‑
ing portions of the angular gyrus and the supramargin‑
al gyrus) (Bukowski and Lamm, 2017). TO detection has 
been less precise after damage to either the left (Szelag 
et al., 2014; Oron et al., 2015) or right TPJ (Eramudugol‑
la et al., 2007; Sinnett et al., 2007).

Magnetoencephalography (MEG) and functional 
magnetic resonance imaging (fMRI) studies indicate 
that TO processing involves both TPJs (Davis et al., 
2009, Bernasconi et al., 2010a, 2010b, 2011, Lewand‑
owska et al., 2010), but the left one is more activated 
by accurate TO judgments (Bernasconi et al., 2010a, 
2010b, 2011).

The moment‑to‑moment variability (complexity, 
temporal dynamics) of resting‑state neuronal activity 
represents the brain’s capacity to process information 

(Garrett et al., 2013; McDonough and Nashiro, 2014; 
Waschke et al., 2021) and is associated with fluid intel‑
ligence (Saxe et al., 2018; Dreszer et al., 2020; Thiele et 
al., 2023) and creativity (Kaur et al., 2021). It has been 
argued that neural complexity represents transitions 
or an exploration of alternative microstates (Honey et 
al., 2007, 2009; McIntosh et al., 2010; Deco et al., 2011), 
an optimal noise level in a system that facilitates neu‑
ronal firing (Faisal et al., 2008), a  balance between 
functional integration and segregation processes (To‑
noni et al., 1994) and a  degree of randomness in the 
signal which regulates neuronal synchrony (Ghanbari 
et al., 2015). The theories of microstates and facilita‑
tion of neuronal firing predict a positive relationship 
between neural complexity and functional connectiv‑
ity (the temporal coincidence of neurophysiological 
events) whereas the theory of neuronal synchrony 
postulates an inverse relationship (i.e., greater neural 
complexity is associated with weaker functional con‑
nectivity) (McDonough and Nashiro, 2014). Electroen‑
cephalography (EEG) or MEG techniques with a  high 
temporal resolution appear to be most suitable for 
capturing rapidly changing resting‑state spatiotem‑
poral patterns.

In the current work we used the multivariate Mul‑
tiScale Entropy (mMSE) algorithm (Ahmed and Mandic, 
2011, 2012; Ahmed et al., 2012b, 2012a; Looney et al., 
2018), an extension of Sample Entropy (SampEn) mea‑
sure (Richman and Moorman, 2000; Grundy et al., 2017), 
to capture repetitive patterns in a  resting‑ state EEG 
(rsEEG) signal. In contrast to univariate MultiScale En‑
tropy (MSE, Costa et al., 2002), mMSE is suitable for the 
analysis of multivariate signals, such as EEG, and allows 
for the examination of their variability across time 
(scales) and space (electrodes) (Looney et al., 2018). 
This algorithm was developed to investigate the entro‑
py at fine (short) and coarse (long) timescales (Costa 
et al., 2002; Ahmed and Mandic, 2011). The interaction 
between these scales in the brain may represent infor‑
mation exchange in locally and globally distributed 
neuronal assemblies. Specifically, fine scales are linked 
with short‑distance connections in the brain whereas 
coarse scales represent long‑range interactions be‑
tween regions/networks (Vakorin, 2011; McIntosh et 
al., 2014; Wang et al., 2018).

In the present study, we hypothesized that the visu‑
al TOT, as an index of temporal resolution, would be as‑
sociated with the temporal dynamics of rsEEG activity. 
This relationship could be either negative or positive. 
As already stated, accurate TO identification is linked 
to efficient information processing and fluid intelli‑
gence (e.g., Szymaszek et al., 2009; Ulbrich et al., 2009; 
Pahud et al., 2018). Well‑functioning biological systems 
are thought to produce complex signals (with a broad 
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range of dynamic variability), which enable adaptation 
to a  constantly changing environment (Costa et al., 
2002). In support of this view, brain entropy has been 
associated with intelligence (Saxe et al., 2018; Dreszer 
et al., 2020) and reduced neural complexity levels have 
been found in a variety of central nervous system (CNS) 
disorders including Alzheimer’s disease (Mizuno et al., 
2010; Li et al., 2018), autism (Catarino et al., 2011), de‑
pression (Zhang et al., 2015) and ADHD (Sokunbi et al., 
2013; Gu et al., 2022). In light of this evidence, we may 
expect low TOT values to be associated with high rsEEG 
entropy levels.

However, it is worth noting that the relationships 
between resting‑state neural complexity and intel‑
ligence vary across different regions and timescales 
(Dreszer et al., 2020; Thiele et al., 2023) and CNS dis‑
orders could be characterized by increased brain 
complexity compared to healthy controls (Bosl et al., 
2017; Ho et al., 2017; Zhang et al., 2021). Therefore, 
an inverse relationship between TOT and rsEEG en‑
tropy is also possible. According to Ghanbari et al. 
(2015), more regular and predictable signals are low 
in complexity, which increases information process‑
ing across distributed regions. Consistent with this 
theory, low neural complexity could be beneficial for 
TO perception.

We also hypothesized that TO identification would 
involve the neuronal mechanism ensuring the time 
frames for general cognitive functioning and behav‑
ior (Pöppel et al., 2011) and, as so, would be associated 
with global information processing in the resting brain 
(Bullmore and Sporns, 2009; Power et al., 2011). Neural 
complexity at coarse timescales reflects long‑range in‑
teractions between regions/networks (Courtiol et al., 
2016) and refers to a  relatively stable brain state and 
the transitions between these states. Considering the 
above‑mentioned theories linking neural complexity 
to the range of microstates (Honey at al., 2007; McIn‑
tosh et al., 2010) and regulation of neural synchrony 
(Ghanbari et al., 2015) it is difficult to predict whether 
high or low degrees of coarse rsEEG complexity would 
facilitate information processing, and, therefore, be 
associated with low TOT values.

TO processing involves bilateral activation of the 
TPJ (Davis et al., 2009; Bernasconi et al., 2010b), and, 
the left TPJ’s activity is particularly related to the accu‑
racy of TO judgments (Bernasconi et al., 2010a; Lewand‑
owska et al., 2022). Therefore, we assumed that the vi‑
sual TOT would be associated with the rsEEG entropy 
measures obtained from the electrodes placed over the 
left temporo‑parieto‑occipital cortex. Considering the 
involvement of attention/working memory in TO judg‑
ments and the possibility of using a  holistic strategy 
in this task (i.e., integrating 2 single stimuli into one 

percept, McFarland et al., 1998, Szelag et al., 2018), TOT 
may be also related to rsEEG complexity calculated for 
channel sets placed in other locations on the scalp such 
as the central or frontal areas.

METHODS

Subjects

Seventy one high school students, recruited in the 
area of Toruń, Poland (37 women and 34 men; mean 
age=17.48±0.95  years, age range: 16‑19  years) com‑
prised the final study sample after excluding 6 subjects 
due to either excessive movement during the EEG data 
acquisition or abnormally high (>150 msec) TOT values. 
All participants attended school regularly, were in good 
health, reported no history of neurological/psychiatric 
disorders and declared themselves not to be taking any 
medicines affecting the CNS. All the participants were 
all right‑handed and had a normal or corrected‑to‑nor‑
mal vision.

The study was approved by the Bioethics Commit‑
tee of the Nicolaus Copernicus University in Toruń, 
operating at Collegium Medicum in Bydgoszcz, Poland 
(permission no. KB 196/2016) and was conducted in ac‑
cordance with the Declaration of Helsinki. All subjects, 
prior to participation in the study, gave written in‑
formed consent to take part. Minors provided addition‑
al consents from their parents/caregivers. Moreover, 
all the participants received monetary remuneration 
for their time and effort.

Each subject underwent a  psychophysical TOT as‑
sessment and took part in an rsEEG study. These proce‑
dures were administered within two separate sessions 
in one day and their order was counterbalanced across 
the participants.

Psychophysical visual TO judgment task

TOT evaluation was conducted individually in an 
acoustically shielded chamber. The stimuli were pairs 
of 40‑msec light flashes emitted by diodes mounted to 
the wall in front of the subjects in 2 different locations 
on a horizontal line. The diodes were placed 41 cm and 
40  cm away from the fixation point (a diode) on its 
left and right sides, respectively. A  subject was seat‑
ed at a table that was 75 cm high on a chair that was 
47 cm high, at a distance of 161 cm from the fixation 
point and was asked to keep the head on a  chin rest 
during the entire procedure. The viewing angle of the 
stimulation was 29.27°. The procedure was controlled 
using a  Raspberry Pi 3 Model B SBC (Bulk) equipped 
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with an Arduino Genuine Zero microcontroller. The 
stimuli were generated by an LED Maxim Integrat‑
ed MAX16822BEVKIT+ controller and presented via 
a white LED CREE diodes with a maximum luminance 
of 350 lm.

Two response pads were connected to the computer 
using optical fibers to ensure the least possible delay in 
signal transmission. A subject held one response pad in 
each hand and was requested to press, using the thumb, 
as quickly as possible, the right or the left key, depend‑
ing on which side the first diode in the pair appeared.

The task consisted of 100 consecutive stimulus 
pairs, separated by an inter‑trial interval of 3 sec. The 
main task was preceded by 10 practice trials. TOT was 
determined individually in each subject. As with previ‑
ous studies (Szymaszek et al., 2009; Ulbrich et al., 2009; 
Jablonska et al., 2020), TOT was defined as the ISI for 
which a  75% correctness level was achieved. The TOT 
values were obtained based on post hoc estimation of 
the psychometric curve from all the available trials 
made during the task. The data were fitted using the 
Psignifit 4 toolbox implemented in Matlab (Schütt et 
al., 2016). The psychometric curves, determined indi‑
vidually for each subject, are shown in Fig.  S1 in the 
Supplementary Materials.

EEG data acquisition and pre‑processing

For each subject, a  10  min rsEEG signal with eyes 
closed was obtained from 64 electrodes placed on the 
scalp according to the 10‑10 system using the Brain 
Products BrainAmp EEG system. A reference electrode 
was positioned at FCz and the sampling rate was set at 
1000 Hz. The impedance was kept below 10 kΩ during 
the entire data registration process.

Subjects were seated in an upright relaxed position. 
Prior to EEG data recording, they were asked to refrain 
from any movements and “not to think about anything 
specific and let the thoughts run freely”. The EEG sig‑
nal was pre‑processed using EEGLAB ver.2020 (Delorme 
and Makeig, 2004) for Matlab (Mathworks Inc.). The 
signal was filtered (bandpass: 1‑40 Hz) and down‑sam‑
pled to 256 Hz. High amplitude artifacts were removed 
from the signal using the trimOutlier function, and the 
remaining data was re‑referenced to the average (com‑
mon) reference. Next, the EEG data was decomposed 
using the Infomax Independent Component Analysis 
(ICA) algorithm (Bell and Sejnowski, 1995). The com‑
ponents classified as artifacts by the two toolboxes: 
Mara (Winkler et al., 2011, 2014) and Adjust (Mognon 
et al., 2011) were rejected (M=40.74±7.66 across sub‑
jects). The signal was then visually inspected and any 
remaining artifacts were removed manually.

A maximum number of 40‑sec uncut fragments of 
EEG signal was extracted from each individual dataset. 
In each participant, the first fragment, obtained after 
approximately 2 min of data acquisition, was analyzed 
to provide signal samples that represent the moments 
of a relatively similar state of mind in the whole study 
group. It seems reasonable to believe that after 2 min 
of participating in the rsEEG study, the subjects would 
manage to settle in a resting state, be calm, relaxed, but 
not yet bored, tired, or drowsy.

MMSE analysis

The rsEEG signal was analyzed using the mMSE algo‑
rithm (Ahmed and Mandic, 2011; Ahmed et al., 2012a), 
which estimates sample entropy at various timescales 
and electrode sets. mMSE is the extension of MSE based 
on the SampEn algorithm (Richman and Moorman, 
2000) that uses a  coarse‑graining procedure (Costa et 
al., 2002, 2005) to evaluate biological signals’ variabil‑
ity across timescales. SampEn provides reproducible 
patterns of signal over time. The temporal graining 
procedure in the frequency domain acts as a  low‑pass 
filter and mitigates linear effects between successive 
samples in a  signal (Costa et al., 2002). In contrast to 
the univariate MSE that only allows the determination 
of temporal complexity profiles, mMSE measures sig‑
nal complexity in the spatiotemporal domain (refer to 
Dreszer et al., 2020, for a  detailed explanation of this 
algorithm).

We obtained the mMSE vectors in each participant 
for the following channel sets (Fig. 1): central (midline, 
CE: Fz, Cz, Pz and Oz), left anterior (LA: Fp1, F3, Fc5 and 
F7), right anterior (RA: Fp2, F4, Fc6 and F8), left middle 
(LM: T7, C3, Cp1 and Cp3), right middle (RM: T8, C4, Cp2 
and Cp4), left posterior (LP: P3, P7, PO3 and O1) and 
right posterior (RP: P4, P8, PO4 and O2). In all of these 
cases, the mMSE vectors were stable and character‑
ized by a  skewed inverted‑U shape across time scales 
(Fig. 2), which had also been observed in previous stud‑
ies (Costa et al., 2002, 2005; McDonough and Nashiro, 
2014; McIntosh et al., 2014; Ahammed and Ahmed, 
2020; Dreszer et al., 2020; Omidvarnia et al., 2021; Gu 
et al., 2022). Such an mMSE vector shape is considered 
as representing more random signals at fine scales and 
a  highly stable activity at coarse scales (Costa et al., 
2005; McIntosh, 2018).

Three features of the mMSE vectors were analyzed: 
the area under curve (AUC), the MaxSlope and the Av‑
gEnt. AUC is obtained from a  trapezoidal approxima‑
tion of the area delimited by the mMSE vector and is 
considered to reflect the total EEG complexity. Max‑
Slope is the maximum pairwise difference between the 
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first four timescales of the mMSE vector divided by the 
indices’ difference. MaxSlope represents the maximum 
complexity change of the EEG signal at high‑frequency 
fine scales. AvgEnt is defined as the average value of 
the last 4 elements (9:12 temporal scales) of the mMSE 
vector, and it is regarded as reflecting the baseline en‑
tropy of the EEG signal at low‑frequency coarse scales. 
The scripts used to determine all these features can 
be found at https://github.com/IS‑ UMK/complexity/
tree/master/MMSE_features.

Statistical analysis

Considering previous studies indicate that men 
outperform women in TO judgment tasks (Lotze et 
al., 1999; Wittmann and Szelag, 2003; Fink et al., 2005; 
Szymaszek et al., 2006; Ulbrich et al., 2009) and young 
adults are more accurate than children and adolescents 
in TO identification (Berwanger and Wittmann, 2004; 
Edmonds et al., 2008), we first checked whether gender 
and age of our subjects affect TOT. Distribution of the 
TOT values and age in our study did not show signifi‑
cant deviations from normality (the Shapiro‑Wilk test); 
therefore, we used the independent samples t‑test to 
compare the TOT between men and women and the 

Pearson’s correlations to examine the relationship be‑
tween TOT and age.

We are also aware of gender differences in rest‑
ing‑state neural complexity (Luders et al., 2004; Prav‑
itha et al., 2005; Fernández et al., 2012; Ahmadi et al., 
2013; Kumral et al., 2020; Wang, 2021). Therefore, in 
the current study, we tested whether men and women 
are different in terms of AUC, MaxSlope and AvgEnt 
values.

Since the distributions of these entropy parameters 
did not show significant deviations from normality, 
ANOVA with “Area” (CE, LA, RA, LM, RM, LP and RP) as 
a  repeated measure and “Gender,” as a  between‑sub‑
ject factor, was performed separately for each mMSE 
feature. The results were adjusted using the Green‑
house‑Geisser Correction.

Age‑related differences in neural complexity at 
rest (McIntosh et al., 2008; Miskovic et al., 2016; Jia et 
al., 2023) led us to verify whether in the current study 
age affects the features of mMSE vectors, calculated 
for particular channel sets. Finally, the Pearson cor‑
relations of the TOT with the AUC, AvgEnt and Max‑
Slope were calculated separately for each electrode set 
(area). The P values were adjusted for multiple testing 
through the use of false discovery rate (FDR, Benjamini 
and Hochberg, 1995).

All statistical analyses were performed using the R 
package (R Core Team 2020). 
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Fig.  1. Channel sets locations. CE – central, LA – left anterior, LM – left 
middle, LP – left posterior, RA – right anterior, RM – right middle, RP – right 
posterior.

Fig.  2. The skewed inverted‑U shapes of the mMSE vectors for each 
channel set in the whole sample. The x‑axis represents timescales and the 
y‑axis shows the average of the mMSE values across the subjects. Error 
bars represent standard deviations. The mMSE vectors were calculated 
using the following parameters for all electrode sets: m=2, r=0.15, p=4, 
ε=12, where m is the embedding coefficient, r is the similarity threshold, p 
is the number of electrodes in a given electrode set, and ε is the timescale. 
The time delay τk was set to 1 for k=1,2,…,p. CE – central, LA – left anterior, 
LM – left middle, LP – left posterior, RA – right anterior, RM – right middle, 
RP – right posterior.

https://github.com/IS-UMK/complexity/tree/master/MMSE_features
https://github.com/IS-UMK/complexity/tree/master/MMSE_features
https://github.com/IS-UMK/complexity/tree/master/MMSE_features
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RESULTS

Behavioral results

The mean TOT was 41.35±13.66 msec and TOT val‑
ues were between 15.88 and 77.66 msec. The skewness 
and kurtosis of TOT was 0.589 and ‑0.017, respective‑
ly. No significant (t69=0.926, P=0.358) differences in the 
TOT were found between men (mean TOT=39.79 msec, 
SD=14.74 msec, the TOT range: 15.88‑77.66 msec) and 
women (mean TOT=42.8 msec, SD=12.63 msec, the TOT 
range: 20.8‑71.19 msec). TOT not significantly correlat‑
ed with age (r=‑0.153, P=0.202).

MMSE results

Descriptive statistics for the mMSE features in 
particular regions are shown in Table  1. The main 
effect of “Area” was significant in the case of AUC 
(F4.293, 296.244=236.228, P<0.001, η²p=0.774), MaxSlope 
(F4.597,317.210=196.087, P<0.001, η²p=0.740) and AvgEnt 
(F4.323,298.271=242.774, P<0.001, η²p=0.779). The results 
of post‑hoc comparisons of the AUC, MaxSlope and Av‑
gEnt between particular channel sets are shown in Tab. 
S1 in the Supplementary Materials.

Considering the AUC, neither a main effect of “Gen‑
der” (F1,69=0.65, P=0.423, η²p=0.009) nor an “Area” × 
“Gender” interaction (F4.293,296.244=0.649, P=0.639, 
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Table  1. Descriptive statistics (mean, standard deviation, skewness and kurtosis) for three features (AUC, MaxSlope and AvgEnt), derived from the 
multivariate MultiScale Entropy (mMSE) vectors, calculated for the central (CE), left anterior (LA), left middle (LM), left posterior (LP), right anterior (RA), 
right middle (RM) and right posterior (RP) channel sets.

Variable M SD Skewness Kurtosis

AUC

CE 23.29 2.27 ‑0.450 0.530

LA 17.96 2.99 ‑0.325 0.014

LM 22.20 2.02 ‑0.276 5.414

LP 18.63 2.41 ‑0.419 ‑0.025

RA 17.94 2.33 ‑0.074 0.826

RM 23.72 2.35 ‑1.232 3.195

RP 17.38 2.89 ‑0.237 0.642

MaxSlope

CE 0.40 0.06 ‑0.098 ‑0.589

LA 0.31 0.07 ‑0.383 ‑0.212

LM 0.39 0.04 ‑1.134 2.561

LP 0.33 0.05 ‑0.392 ‑0.120

RA 0.31 0.05 ‑0.243 0.519

RM 0.42 0.05 ‑0.810 1.041

RP 0.30 0.06 ‑0.260 ‑0.023

AvgEnt

CE 2.29 0.22 ‑0.256 0.512

LA 1.73 0.28 ‑0.335 0.295

LM 2.13 0.21 ‑0.660 3.292

LP 1.78 0.24 ‑0.438 ‑0.381

RA 1.74 0.24 0.159 1.154

RM 2.28 0.24 ‑0.713 2.164

RP 1.65 0.27 ‑0.059 0.586
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η²p=0.009) was significant. For the MaxSlope, a  main 
effect of “Gender” (F1,69=0.766, P=0.385, η²p=0.011) and 
an “Area” × “Gender” interaction (F4.597,317.210=0.596, 
P=0.689, η²p=0.009) were both not meaningful, as were 
the effects for the AvgEnt (the main effect of “Gender”: 
F1,69=0.276, P=0.601, η²p=0.004 and “Area” × “Gender” in‑
teraction: F4.323,298.271=0.557, P=0.708, η²p=0.008). None 
of these features of mMSE vectors significantly correlat‑
ed with age (Tab. S2 in the Supplementary Materials).

Because we did not find any meaningful gender‑re‑
lated differences in TOT, AUC, MaxSlope and AvgEnt 
values, a correlation analysis between the TOT and the 
features of mMSE vectors was performed on the whole 
sample (n=71). There were no significant correlations 
of age with TOT, AUC, MaxSlope and AvgEnt, therefore, 
the relationship between the TOT and the rsEEG entro‑

py measures was tested without controlling for the age 
factor.

The greater were the AUC values in the CE, LP, RP and 
RM regions as well as the greater was the AvgEnt values 
in the CE, LP and RP areas, the higher was the visu‑
al TOT. The most robust associations (r=0.366, P=0.018, 
and r=0.397, P=0.013 for AUC and AvgEnt, respectively, 
with FDR correction for multiple comparisons, P<0.05) 
were found for the midline channel set (Fz, Cz, Pz, and 
Oz). There were no significant correlations between the 
TOT and the MaxSlope parameters. Table 2 contains the 
outcomes of Pearson’s correlation analysis between 
the TOT and the AUC, MaxSlope and AvgEnt features of 
mMSE vectors. The scatter plots illustrating the rela‑
tionships between the TOT and the mMSE parameters 
are shown in Figs 3‑5.
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Table 2. The results of correlation analysis between the visual temporal order threshold (TOT) and the three features (AUC, MaxSlope and AvgEnt), derived 
from the multivariate MultiScale Entropy (mMSE) vectors, calculated for the central (CE), left anterior (LA), left middle (LM), left posterior (LP), right anterior 
(RA), right middle (RM) and right posterior (RP) channel sets. 

r P value (uncorrected) P value (FDR corrected)

AUC

CE 0.366 0.002** 0.018*

LA 0.098 0.415 0.436

LM 0.233 0.05* 0.081

LP 0.317 0.007** 0.034*

RA 0.226 0.058 0.086

RM 0.304 0.01** 0.035*

RP 0.294 0.013* 0.039*

MaxSlope

CE 0.244 0.04* 0.077

LA 0.08 0.509 0.509

LM 0.223 0.062 0.086

LP 0.262 0.027* 0.057

RA 0.192 0.108 0.133

RM 0.269 0.023* 0.054

RP 0.234 0.049* 0.081

AvgEnt

CE 0.397 0.001** 0.013*

LA 0.106 0.38 0.42

LM 0.143 0.235 0.274

LP 0.313 0.008** 0.034*

RA 0.193 0.107 0.133

RM 0.271 0.022* 0.054

RP 0.312 0.008** 0.034*

The “**” symbol represents P<0.01, whereas the “*” symbol indicates P<0.05. The r represents the Pearson’s correlation coefficients and FDR – False Discovery Rate.
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Fig. 3. The scatterplots demonstrating the Pearson’s correlations between the visual temporal order threshold (TOT) and the AUC feature of multivariate 
MultiScale Entropy (mMSE) vectors determined based on resting‑state EEG signal separately for the electrode sets corresponding to the following seven 
scalp regions: central (midline, CE), left anterior (LA), left middle (LM), left posterior (LP), right anterior (RA), right middle (RM) and right posterior (RP). X axis 
represents the TOTs and Y represents the AUC feature. In the case of significant (P<0.05) associations between the TOT and the AUC values, the trend lines 
are shown in the scatterplots.
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Fig.  4. The scatterplots demonstrating the Pearson’s correlations between the visual temporal order threshold (TOT) and the MaxSlope feature of 
multivariate MultiScale Entropy (mMSE) vectors determined based on resting‑state EEG signal separately for the electrode sets corresponding to the 
following seven scalp regions: central (midline, CE), left anterior (LA), left middle (LM), left posterior (LP), right anterior (RA), right middle (RM) and right 
posterior (RP). X axis represents the TOTs and Y represents the AUC feature. In the case of significant (P<0.05) associations between the TOT and the AUC 
values, the trend lines are shown in the scatterplots.
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Fig. 5. The scatterplots demonstrating the Pearson’s correlations between the visual temporal order threshold (TOT) and the AvgEnt feature of multivariate 
MultiScale Entropy (mMSE) vectors determined based on resting‑state EEG signal separately for the electrode sets corresponding to the following seven 
scalp regions: central (midline, CE), left anterior (LA), left middle (LM), left posterior (LP), right anterior (RA), right middle (RM) and right posterior (RP). X axis 
represents the TOTs and Y represents the AUC feature. In the case of significant (P<0.05) associations between the TOT and the AUC values, the trend lines 
are shown in the scatterplots.
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DISCUSSION

To the best of our knowledge this is the first study 
demonstrating the relationship between visual TOT, 
and rsEEG complexity as assessed using the mMSE al‑
gorithm. Although this method has been rarely used to 
quantify neural complexity (Azami et al., 2017, 2019; 
Ahammed and Ahmed, 2020; Dreszer et al., 2020), it ap‑
pears to be a  promising tool to investigate individual 
differences in cognition. MMSE is suited for analyzing 
the signals registered from many channels and allows 
entropy to be determined at fine and coarse timescales 
(Ahmed and Mandic, 2011, 2012). In light of the pro‑
posed theories elucidating functional significance of 
neural complexity (McIntosh et al., 2014), including 
these scales to data analysis might provide information 
about short‑ and long‑range interactions between neu‑
ronal assemblies.

The less complex the pattern of rsEEG activity, the 
lower the visual TOT In this study it was reasonable to 
assume high rsEEG entropy to be associated with low 
TOT values. Firstly, because increased neural com‑
plexity may indicate greater transition/exploration 
between different states of networks, thereby, greater 
functional connectivity/information processing (Hon‑
ey et al., 2007, 2009; McIntosh et al., 2010; McDonough 
and Nashiro, 2014; Wang et al., 2018); secondly, fluid in‑
telligence, defined as an ability to solve novel problems 
and adapt to environmental demands (Cattell, 1963), 
is positively related to resting‑state brain complexity 
(Saxe et al., 2018; Dreszer et al., 2020) and negatively 
to TOT (Rammsayer and Brandler, 2007; Ulbrich et al., 
2009). However, contradictory to above assumption, 
we found low visual TOT values linked with reduced 
total and coarse rsEEG entropy levels obtained from 
the central, posterior and the right middle electrode 
sets. Therefore, decreased rsEEG complexity of the re‑
gions/networks contributing to these channels, might 
be beneficial for TO judgments. Considering greater 
neural complexity to be associated with greater func‑
tional connectivity (McIntosh et al., 2010), the current 
results are consistent with our previous fMRI study 
demonstrating a  positive relationship of the left TPJ’s 
functional couplings at rest with visual TOT (Lewand‑
owska et al., 2022). Furthermore, other authors found 
efficient perceptual/procedural learning to be associ‑
ated with decreased number of resting‑state interac‑
tions in the sensorimotor network (Vahdat et al., 2011, 
2014; Mary et al., 2017; Van Dyck et al., 2021).

An alternative explanation of the positive relation‑
ship between rsEEG entropy and TOT comes from the 
theory suggesting that low degrees of temporal vari‑
ability in a system (predictable and regular signals) en‑
sure an environment that facilitates the probability of 

synchrony between areas (Ghanbari et al., 2015). RsEEG 
signal with a low entropy level (increased information 
exchanged across regions at rest), associated with low 
TOT values may suggest better regulation of the CNS, 
thus, the system exhibits optimal functioning when TO 
is assessed correctly at shorter ISIs.

In line with our predictions, the visual TOT was pos‑
itively associated with the AvgEnt reflecting entropy at 
coarse scales. Considering the theory that links coarse 
neural complexity with long‑distance connections (Va‑
korin, 2011; McIntosh et al., 2014; Wang et al., 2018), 
a  positive relationship between temporal variability 
of rsEEG signal and visual TOT might indicate that de‑
creased global information processing at rest provides 
a favorable environment for TO perception. Therefore, 
TOT could be considered an index of a  mechanism 
providing the time frames for cognition and behavior 
which are underpinned by large‑scale functional net‑
works. It is also worth noting that low complexity at 
coarse scales is associated with great white matter in‑
tegrity (McDonough and Siegel, 2018). Therefore, our 
results might suggest that maintaining a high level of 
structural interconnections across distributed neuro‑
nal populations promotes the TO identification.

We did not find any significant correlations between 
visual TOTs and the measure of fine complexity which 
is thought to represent local information processing 
and within‑hemispheric functional connections (McIn‑
tosh et al., 2014). Thus, our outcomes may indicate that 
the interconnectivity among local neural populations 
is unrelated to the accuracy of TO judgments.

In the section below, we discussed the relationship 
between rsEEG entropy and TOT, referring to the pro‑
cesses that might be involved in the TO judgments.

RsEEG complexity is positively associated with vi‑
sual TOT, serving as an index of cognitive processing, 
temporal resolution or feature‑specific discrimination.

The identification of TO of two rapidly incoming 
events definitely requires cognitive effort, attention 
and working memory (Fink et al., 2006b; Szymaszek 
et al., 2009; Ulbrich et al., 2009). Since the subjects are 
able to focus attention more efficiently on the stimu‑
li presented in rapid succession, they can also report 
the TO of the light flashes at shorter ISIs. Taking into 
account that lower resting‑state brain entropy is asso‑
ciated with higher task‑related information process‑
ing (Lin et al., 2022), reduced rsEEG complexity levels 
linked with lower TOT values may reflect higher acti‑
vations of the regions subserving attention and cogni‑
tive effort during the TO judgment task. In support of 
this notion, we found the most robust relationships of 
the TOT with the total and coarse rsEEG entropy mea‑
sures for the midline electrodes which receive contri‑
butions from the areas/networks involved in atten‑
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tion and working memory (Polich, 2007; Giacometti et 
al., 2014; Sabeti et al., 2015; Łaszewska et al., 2018). 
Furthermore, in our study, the TOT was significantly 
associated with the rsEEG entropy, determined for the 
channels placed over the posterior and right middle 
regions that are likely to be engaged in attentional 
processing (Corbetta and Shulman, 2002; Behrmann 
et al., 2004). However, since these electrodes do not 
receive only temporal or parietal contributions, the 
above conclusions should be taken with caution.

Consistent with previous studies (Hirsh and Sher‑
rick, 1961; Lotze et al., 1999; Wittmann, 1999; Kanab‑
us et al., 2002; Fink et al., 2006b; Ulbrich et al., 2009; 
Chassignolle et al., 2021) we found an average visual 
TOT of approximately 40 msec and some individual 
temporal threshold values of ≤20 msec. According to 
the hypothesis of a  central timing mechanism (Joliot 
et al., 1994; Pöppel, 1994, 1997) the TO of two senso‑
ry events can be determined when they are separat‑
ed by more than 30 msec. For lower TOT values, the 
feature‑specific discrimination mechanisms allowing 
for the integration of two successive stimuli into one 
percept, are likely to be involved. In other words, the 
ability to judge TO depends on whether a task requires 
actual identification of the individual events of the 
sequence or whether the task could be performed by 
discrimination of a  global pattern. In our study, two 
light flashes appearing rapidly at different positions 
might have produced the impression of apparent mo‑
tion, which activates neurons in motion‑sensitive ar‑
eas (Craig and Busey, 2003; Seiffert, 2003). In that case, 
a TO judgment task becomes “atemporal” since the TO 
of two stimuli is extracted from the motion percept. 
Similar feature‑specific discrimination mechanisms 
have been described in the context of TO perception of 
tactile or auditory events. Specifically, judging which 
of two sites on a  hand was stimulated first may rely 
on the direction of motion across fingers (Craig and 
Busey, 2003) whereas the before‑after relation between 
two tones differing in pitch can be determined by in‑
tegrating them into a single sound of rising or falling 
frequency (Micheyl et al., 2007; Szelag et al., 2018). 
Therefore, TO judgment tasks should be considered 
not only as involving a central timing mechanism but 
also different perceptual strategies.

When two distinct sensory events could be per‑
ceived (ISI≥30 msec), the TOT is more likely to be con‑
sidered an index of temporal information processing, 
i.e., first the identification of incoming stimuli within 
a  sequence and, then, the TO perception. Therefore, 
the positive relationship between TOT and rsEEG en‑
tropy may indicate that the more complex the spatio‑
temporal patterns at rest, the higher contribution of 
“pure” timing to the TO judgment task. In other words, 

high rsEEG complexity levels may reflect a greater ca‑
pacity, preparation or readiness of the brain to identify 
the TO relying on a  timing mechanism. In support of 
this view, we found higher TOT values to be associat‑
ed with greater complexity of rsEEG signal from the 
right and left posterior electrode sets which cover the 
TPJ, considered a  neural substrate for TO perception 
(Davis et al., 2009; Bernasconi et al., 2010b). However, 
the channels located in the these areas not necessarily 
receive signals from the TPJ, and definitely not only 
from this region.

Conversely, stimulus‑specific perceptual mecha‑
nisms could be engaged to a  great extent in the case 
of an ISI<30 msec. “Sensing” the motion while judging 
the TO requires an adaptation to process non‑ tempo‑
ral features of visual stimuli which activates the mo‑
tion‑sensitive regions. In line with this conclusion, we 
found TOT correlated positively with rsEEG entropy for 
the channel sets placed over the temporal, parietal and 
occipital cortices which are involved in motion percep‑
tion (Seiffert, 2003; Noguchi et al., 2005). Therefore, 
lower rsEEG complexity in the right middle and both 
posterior channel sets associated with lower visual 
TOTs in our study, may indicate using a global strategy 
to cope with brief ISIs. In other words, reduced rsEEG 
entropy levels may facilitate adaptation of the (brain) 
system to process non‑temporal properties of visual 
stimuli in TO judgment tasks.

The study limitations and future directions

The current study has several limitations which 
should be kept in mind while interpreting the out‑
comes. The mMSE algorithm used here to determine 
rsEEG complexity, has some constraints that were dis‑
cussed in details in our previous work (Dreszer et al., 
2020, Section 4.3.). A  sample size could be larger, es‑
pecially since individual differences were examined. 
We calculated only correlations between the TOT and 
the rsEEG signal entropy, which does not imply any 
causal relationship between these variables. Linking 
brain signal complexity at fine or coarse scales to lo‑
cal or global information processing, respectively, is 
questionable (Kosciessa et al., 2020; Omidvarnia et al., 
2021).

Future studies should examine whether rsEEG signal 
complexity is also related to TOTs measured for oth‑
er sensory modalities (auditory and tactile). Since the 
mMSE algorithm is not commonly used to investigate 
EEG activity dynamics, the reliability of this method 
should be checked. It would be also advisable to consid‑
er brain anatomy while interpreting neural complexity 
outcomes especially information about white matter 
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microstructure (McDonough and Siegel, 2018). A source 
analysis of EEG activity would provide brain locations 
of the signals for which the mMSE features have been 
determined.

CONCLUSIONS

The current study is the first to demonstrate that 
perceiving the TO of two events, presented in rapid 
succession, is associated with the temporal dynamics 
of spontaneous EEG activity. The lower total and coarse 
entropy levels of rsEEG signal obtained from the mid‑
line, right middle, right and left posterior electrode 
sets, the lower the visual TOT, assessed in the psycho‑
physical experiment. This relationship between rsEEG 
complexity and TOT might suggest reduced temporal 
variability of spontaneous brain signal to facilitate TO 
identification. Considering the coarse timescales as re‑
flecting long‑distance interactions across distributed 
neural assemblies, our findings might support the role 
of large‑scale connections in the TO perception. Fur‑
ther studies are needed to clarify these issues.
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SUPPLEMENTARY MATERIALS
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Fig.  S1. Individual psychometric curves calculated from all trials of the visual Temporal 
Order judgment task in each subject. Since the overall correctness in the TOJ task converged 
to 71%, the threshold parameter of the function was set to 0.71. It is worth noting that the 
value of threshold of the psychometric is not equal to the temporal order threshold (TOT) 
value, defined as the interval for 75% correctness. Dashed line mark extrapolated ranges 
of the psychometric curve.

Table S1. The differences between the following three features derived from the multivariate MultiScale Entropy (mMSE) vectors: AUC, MaxSlope and 
AvgEnt, calculated for central (CE), left anterior (LA), left middle (LM), left posterior (LP), right anterior (RA), right middle (RM) and right posterior (RP) 
channel sets. The down and up arrows indicate the direction of significant (P< 0.05) differences between the areas placed in the columns (I) and rows (J) 
(mean difference, I‑J). A lack of significant differences between particular areas are marked with “–“. CE – central, LA – left anterior, LM – left middle, LP – left 
posterior, RA – right anterior, RM – right middle, RP – right posterior.
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Table S2. The results of correlation analysis between age and the three features (AUC, MaxSlope and AvgEnt), derived from the multivariate MultiScale 
Entropy (mMSE) vectors, calculated for the central (CE), left anterior (LA), left middle (LM), left posterior (LP), right anterior (RA), right middle (RM) and 
right posterior (RP) channel sets. The “**” symbol represents P<0.01, whereas the “*” symbol indicates P<0.05. The r represents the Pearson’s correlation 
coefficients and FDR – False Discovery Rate. 

Variable r P value (uncorrected) P value (FDR corrected)

AUC

CE ‑0.171 0.155 0.686

LA ‑0.064 0.594 0.849

LM ‑0.098 0.418 0.836

LP ‑0.101 0.400 0.836

RA ‑0.047 0.695 0.849

RM ‑0.134 0.266 0.766

RP ‑0.033 0.785 0.863

MaxSlope

CE ‑0.058 0.630 0.849

LA ‑0.039 0.749 0.863

LM ‑0.048 0.693 0.849

LP ‑0.056 0.645 0.849

RA 0.010 0.935 0.979

RM ‑0.074 0.541 0.849

RP ‑0.002 0.985 0.985

AvgEnt

CE ‑0.308 0.01** 0.2

LA ‑0.127 0.291 0.766

LM ‑0.217 0.069 0.505

LP ‑0.170 0.156 0.686 

RA ‑0.121 0.313 0.766 

RM ‑0.253 0.034* 0.369

RP ‑0.086 0.475 0.849
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