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Study on the role of immune‑related genes 
after intracranial subarachnoid hemorrhage

Qiaoying Li, Zhong Ren, Dan Fan, Yidan Zhang*

Department of Neurology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China,  
* Email: yidanzhang5656@163.com

We aimed to screen the feature genes related to subarachnoid hemorrhage (SAH). The datasets (GSE73378 and GSE36791) were 
downloaded from National Center for Biotechnology Information database. Limma package in R was used to screen the differentially 
expressed genes (DEGs). Single sample gene set enrichment analysis algorithm was used to evaluate the type of immune infiltration. 
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to analyze function of DEGs. The 
support vector machine (SVM) was used to constructed classifier, which was evaluated using receiver operating characteristic curves. 
The E‑TABM‑421 was used to verify the DEGs related to immunity and the classifier. Seven types of immune cells with significant 
differences were screened, such as activated CD8 T cell and center memory CD4 T cell. We then obtained 408 DEGs related to immune 
cell. Subsequently, 10 overlapped KEGG pathways related to the DEGs were obtained, such as hematopoietic cell lineage, NOD‑like 
receptor signaling pathway and T cell receptor signaling pathway. Finally, 9 DEGs related to immune cells (CCL5, CD27, CD3D, CREB5, FYN, 
ITPR3, TAB1, NCR3 and S1PR5) were screened to constructed SVM classifier. The area under the curve was 0.865 in training dataset and 
the AUC was 0.75 in the validation set. A SVM classifier based on the 9 DEGs (CCL5, CD27, CD3D, CREB5, FYN, ITPR3, TAB1, NCR3 and S1PR5) 
related to immune cells might effectively identify SAH patients or healthy people.
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INTRODUCTION

Intracranial aneurysms (IAs) are one of the common 
neurological diseases, with an incidence of about 5% 
in the general population (Carpenter et al., 2016). IAs 
mostly occurred in abnormal bulging on the walls of 
intracranial arteries, which are the first cause of sub‑
arachnoid hemorrhage (SAH). Although SAH occurred 
at a rate of approximately 1% per year, the consequenc‑
es are very serious with high rates of mortality (up 
to 50%) and disability (about 30%) (Nieuwkamp et al., 
2009; Chalouhi et al., 2012). Therefore, it is very im‑
portant to improve the prognosis of SAH patients. It is 
of great significance to identify the characteristic fac‑
tors expressed in the blood of SAH patients and give 
early and active control to reduce the mortality and 
disability rate of patients. 

Immunity plays an important role in the occurrence 
and development of SAH. Previous studies have report‑
ed that immunity plays a  role in persistent damage 
such as cerebral vasospasm after SAH (Mohme et al., 
2020; Li et al., 2020). SAH induces peripheral activation 
of innate immune cells and early brain infiltration. Pre‑
vious evidence indicated that inflammation is induced 
following SAH, and immune cells represent a potential 
therapeutic target, which could help SAH patients in 
need of new therapies (Gris et al., 2019). For example, 
Roa et al. (2020) indicated that CD8 and CD161 com‑
bined with lymphocytes might be associated with in‑
flammatory response after SAH. Besides, the immune 
repertoire of T cell receptor (TCR) might help study 
the mechanism of T cell immunology. Kim et al. (2020) 
found TCRB and CDR3 repertoires might be regarded 
as key biomarkers to distinguish SAH patients. More‑
over, Zhou et al. (2017) reported that the changes in im‑
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mune cell subgroups, such as NK, NKT, CD3+, CD4+ and 
CD8+ were related to clinical prognosis of SAH patients. 
These factors might be novel biomarkers to evaluate 
the diagnosis of SAH patients. 

Therefore, in our study, we combined SAH with 
immune cells by integrating multiple SAH expression 
profile data. We first screen the SAH‑related genes. 
Then, based on the single sample gene set enrich‑
ment analysis (ssGSEA) algorithm, we evaluated the 
immune characteristics of the samples, and compared 
with the differences of various immune cells in differ‑
ent classification groups. Moreover, we focused on the 
different immune cell types. Then, the relevant genes 
are obtained through correlation analysis with these 
immune cell types, and finally the hub genes related 
to the SAH were screened through the optimization 
algorithm.

METHODS

Experimental data and sources 

The datasets were searched from National Center 
for Biotechnology Information database Gene Expres‑
sion Omnibus (GEO) using the key words of subarach‑
noid hemorrhage and Homo sapiens (Barrett et al., 
2007). The dataset selection criteria were as follows: 
1.  Blood tissue samples; 2. Different types of samples 
with diseases and controls; 3. The total number of 
samples is not less than 50. Subsequently, 2 datasets 
(GSE73378 (van‘t Hof et al., 2015) and GSE36791 (Pera et 
al., 2013)) were obtained from the platform GPL10558 
Illumina HumanHT‑12 V4.0 expression bead chip that 
meet these requirements. GSE73378 contained a  total 
of 226 human blood samples, in which we selected 210 
samples including 103 SAH patient samples and 107 
control samples. And, GSE36791 contained 61 human 
blood samples which included 43 patient samples and 
18 control samples.

Screening of differentially expressed genes 

GSE73378 and GSE36791 datasets were obtained from 
different batches of gene expression level data. The 
sva package in R3.6.1 (Leek et al., 2012) (version 3.38.0, 
http://www.bioconductor.org/packages/release/bioc/
html/sva.html) was performed to remove the batch 
effect on the two datasets. And then we obtained the 
combined expression level data. After that, the limma 
package in R3.6.1 (Ritchie et al., 2015) (version 3.34.7, 
https://bioconductor.org/packages/release/bioc/
html/limma.html) was used to screen the DERs between 

the SAH patient samples and the controls with the cut‑
off of FDR<0.05 and |log2FC|>0.263.

Screening of DERs related to immune cells

The microenvironment is mainly composed of re‑
lated fibroblasts, immune cells, extracellular matrix, 
various growth factors, inflammatory factors, and 
special physical and chemical characteristics. The mi‑
croenvironment significantly affects the diagnosis of 
diseases, survival outcomes and clinical treatment sen‑
sitivity. Cells in the microenvironment could be clus‑
tered into different categories, and there are complex 
and significant interactions between each type of cell 
and other cells, and there are some robust cell infiltra‑
tion patterns. To evaluate the immune cells type of the 
combined samples, we downloaded the immunologic 
signature gene sets from Gene Set Enrichment Analy‑
sis (GSEA) (Subramanian et al., 2005) (http://software.
broadinstitute.org/gsea/index.jsp). Then, the gene set 
variation analysis for microarray and RNA‑Seq data 
(GSVA) in R3.6.1 (version 1.36.3, http://www.biocon‑
ductor.org/packages/release/bioc/html/GSVA.html) 
was used to evaluate the immune infiltration type of 
the combined samples. GSVA is called gene set varia‑
tion analysis, which is a non‑parametric unsupervised 
analysis method, which mainly converts the expression 
matrix of genes between different samples into the ex‑
pression matrix of gene sets between samples. GSVA is 
used to evaluate whether different immune infiltra‑
tions are enriched in different samples, using each im‑
mune infiltrating cell type as background data. Then 
we compare the differences in the proportion of indi‑
vidual immune cells between SAH disease and normal 
control samples.

Screening of DEGs related to immune cells

There were significantly different immune cell 
types between the screened DEGs and the SAH and the 
control samples that were evaluated based on ssGSEA 
method. The cor function in R3.6.1 (http://77.66.12.57/
R‑help/cor.test.html) was used to calculated Pearson 
correlation coefficient (PCC) of immune cell types. 
Subsequently, we only retained the DEGs with the cut‑
off of P<0.05 as the DEGs significantly associated with 
immune cells. After that, the analysis of the Gene On‑
tology (Eguía‑Aguilar et al., 2014; Ritchie et al., 2015) 
biological process, and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment annota‑
tion, based on the Database for Annotation, Visual‑
ization and Integrated Discovery (DAVID) (version 6.8, 
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https://david.ncifcrf.gov/) (Huang et al., 2009a,b), was 
performed on the intersecting DEGs with P<0.05 as the 
threshold.

Construction of interaction network 
and analysis of topology 

We searched the interaction relationship between 
the DEGs related to immune cells and its product pro‑
tein using the STRING (Szklarczyk et al., 2017) (version 
11.0, http://string‑db.org/) database. Subsequently, we 
constructed the interaction network that was visualized 
through Cytoscape (Shannon et al., 2003) (version 3.6.1, 
http://www.cytoscape.org/). Besides, the KEGG enrich‑
ment annotation analysis based on DAVID (Huang et al., 
2009a,b) was performed for the DEGs that constructed 
interaction network. After that, we searched the KEGG 
pathway using the keyword of subarachnoid hemor‑
rhage from Comparative Toxicogenomics Database 
2019 update (Davis et al., 2019) (http://ctd.mdibl.org/). 
Then, we compared these KEGG pathways with the 
KEGG pathways significant related to the genes in in‑
teraction network. Finally, we obtained the important 
overlapping pathways.

Screening and validation of important biomarkers 

Least absolute shrinkage and selection opera‑
tor (LASSO) and recursive feature elimination (RFE) 
were used to screen the feature genes based on the 
genes involving the important KEGG pathways. Then, 
the lars package in R3.6.1 (Usai et al., 2012) (version 
1.2, https://cran.r‑project.org/web/packages/lars/
index.html) was used to perform regression analysis 
on the target genes to screen the feature genes. After 
that, RFE method of caret package in R3.6.1 (Deist et 
al., 2018) (version 6.0‑76, https://cran.r‑project.org/
web/packages/caret) was used to select the optimized 
feature gene combinations. Then, we selected the over‑
lapping genes as the final feature gene combinations 
through comparing the results of LASSO and RFE. 

To verify the optimized feature genes, we first ex‑
tract the expression levels of the optimized feature 
genes from the combined data set and display their 
expression levels in different groups. Besides, the 
E‑TABM‑421 gene expression profile data was download‑
ed from EBI ArrayExpress (https://www.ebi.ac.uk/), 
which contained eight samples including four control 
samples and two SAH samples. After that, we extracted 
the expression levels of corresponding genes were also 
extracted from E‑TABM‑421, and their expression lev‑
els in different groups were compared and displayed. 

In addition, the support vector machine (SVM) meth‑
od in R3.6.1 e1071 (Wang and Liu, 2015) (version 1.6‑8, 
https://cran.r‑project.org/web/packages/e1071) was 
used to construct disease diagnosis classifier. Then, we 
evaluated the effectiveness of the model in the com‑
bined dataset and E‑TABM‑421 validation set. The pROC 
in R 3.6.1 (Robin et al., 2011) (version 1.12.1, https://
cran.r‑project.org/web/packages/pROC/index.html) 
was used to calculated the sensitivity (Sen) and spec‑
ificity (Spe) of ROC.

This study was carried out as shown in Fig. 1.

RESULTS

Screening of DEGs

As shown in Fig.  1A, a  total of 530 DEGs were 
screened between the control and SAH group. Besides, 
as shown in Fig. 1B, the heatmap indicated that differ‑
ent types of samples could be separated on the basis of 
the expression values of the screened DEGs. Moreover, 
the colors of the heatmap were distinct, indicating that 
the screened DEGs in each group were characteristic of 
expression.

Screening of DEGs related to immune cells 
and analysis of GO and KEGG pathways

A total of 28 immune cell types ratio were obtained. 
After that, we obtained 7 types of immune cells with 
significant differences between the proportions of var‑
ious immune cells in the SAH and CTRL groups, includ‑
ing activated CD8 T cell, effector memory CD38 T cell, 
center memory CD4 T cell, T follicular helper cell, type 
2 T helper cell, monocyte, and neutrophil (Fig. 2).

Moreover, 7 differentially expressed immune cells 
were obtained by ssGSEA. Subsequently, a  total of 408 
DEGs related to immune cells were obtained with the 
cutoff of P<0.05 and PCC > 0.4. Besides, we obtained 28 
GO BPs (such as immune response, cell surface receptor 
signaling pathway, inflammatory response and positive 
regulation of B cell proliferation) and 8 KEGG signaling 
pathways (such as hematopoietic cell lineage and pri‑
mary immunodeficiency), which were shown in Fig. 3A 
and Fig. 3B. 

Construction of PPI network and analysis of KEGG 
pathways

We obtained 699 pairs of interaction relationships 
with the threshold of interaction score > 0.6. Then, 
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a  PPI network was constructed which included 257 
gene nodes, such as ITGAM, MAPK14, MMP9, GZMB, PRF1 
and HDAC1 (Fig. 4). After that, we obtained a total of 14 
KEGG pathways. Moreover, we obtained 113 KEGG sig‑
naling pathways from CTD database. Subsequently, 10 
overlapped KEGG pathways were obtained, which were 
shown in Table  1. The 10 pathways were hematopoi‑
etic cell lineage (including 11 genes, such as CD2, CD4 
and TGAM), T cell receptor signaling pathway (includ‑
ing 9 genes, such as CD4, CD8A and MAPK14), NOD‑like 
receptor signaling pathway (including 6 genes, such 
as HSP90AB1, CASP5 and CCL5 ), Toll‑like receptor sig‑
naling pathway (including 8 genes, such as CCL5, FOS 
and MAPK14), natural killer cell mediated cytotoxicity 
(including 8 genes, such as GZMB, TNFSF10 and PRF1), 
inflammatory mediator regulation of TRP channels 
(including 7 genes, such as IL1R1, GNAQ and MAPK14), 
TNF signaling pathway (including 7 genes, such as CCL5, 
MAPK14 and MMP9), leukocyte transendothelial migra‑
tion (including 7 genes, such as ITGAM, MAPK14 and 
MMP9), cytokine‑cytokine receptor interaction (includ‑
ing 11 genes, such as IL18RAP, IL1R1, CCL5) and sphin‑

330 Acta Neurobiol Exp 2022, 82: 327–335

Fig. 1. Screening of DEGs. A indicated the test log2FC‑ log10 (FDR) of the volcano map. The blue and pink points represent significantly down‑regulated 
and up‑regulated DEGs, respectively. The black horizontal line represents FDR<0.05, and the two vertical lines represent |log2FC|>0.263; B indicated 
the horizontal heat map based on the DEGs expression. The black and white in the sample strip indicated the disease group and the control group, 
respectively. (DEGs) differentially expressed genes; (FDR) false discovery rate.

Fig. 2. The distribution map of immune cell types with significant differences 
between SAH and CTRL groups. (AH) subarachnoid hemorrhage; (CTRL) 
control.
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golipid signaling pathway (including 7 genes, such as 
PPP2R2B, GNAQ, PTEN), respectively.

Screening and validation of hub genes

A total of 47 DEGs were found that involved in the 
KEGG pathways related to SAH. Then, 17 and 10 op‑
timized DEGs were screened using LASSO and RFE, 
respectively. Subsequently, a  total of 9 overlapped 

genes were obtained after comparing the two DEGs 
combination, including CCL5, CD27, CD3D, CREB5, FYN, 
ITPR3, TAB1, NCR3 and S1PR5, in which, CCL5, FYN, and 
CD3D were the gene nodes with higher connectivity 
(Fig. 5A).

It is in the validation data set E‑TABM‑421 that the 
expression levels of 9 DEGs are consistent with the di‑
rection of expression differences in the combined data 
set. Among them, CD3D, CREB5, TAB1 and S1PR5 have 
significant differences (Fig. 5B).

331Acta Neurobiol Exp 2022, 82: 327–335

Fig. 3. Analysis of GO and KEGG pathways. The bar graphs of DEGs related to immune cells that involved in biological processes and KEGG signaling 
pathway. The horizontal axis represented the number of genes, the vertical axis represented the name of the item, the color represents the significance, 
and the closer the color is to red, the greater the significance. (DEGs) differentially expressed genes; (GO) Gene Ontology; (KEGG) Kyoto Encyclopedia of 
Genes and Genomes; (SAH) subarachnoid hemorrhage; (CTRL) control.
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Based on the 9 optimized DEGs, we constructed 
a  sample risk diagnosis model to identify the disease 
of the sample. We found these DEGs could well help 
for the diagnosis of SAH (AUC: 0.865) (Fig.  5C). After 
that, based on the constructed classification diagno‑

sis model, we used the 9 DEGs expression levels in the 
E‑TABM‑421 data set to verify the diagnostic model. 
The result indicated that the 9 DEGs also could apply 
for identifying disease and evaluate the effect of SAH 
diagnosis (AUC: 0.750) (Fig. 5D).

332 Acta Neurobiol Exp 2022, 82: 327–335

Fig. 4. Construction of PPI network. The change of the color of the node from blue to red indicates the change in the expression of significant difference 
from significantly down to up, and the size of the node indicates the degree of connectivity of the node in the network. (PPI) protein‑protein interaction.

Table 1. 10 overlapped KEGG pathways. 

Term Count PValue Genes

*hsa04640: Hematopoietic cell lineage 11 1.92E‑05 CD2, CD4, ITGAM

*hsa04660: T cell receptor signaling pathway 9 1.58E‑03 CD4, CD8A, MAPK14

*hsa04621: NOD‑like receptor signaling pathway 6 7.61E‑03 HSP90AB1, CASP5, CCL5

*hsa04620: Toll‑like receptor signaling pathway 8 8.80E‑03 CCL5, FOS, MAPK14

*hsa04650: Natural killer cell mediated cytotoxicity 8 1.81E‑02 GZMB, TNFSF10, PRF1

*hsa04750: Inflammatory mediator regulation of TRP channels 7 2.10E‑02 IL1R1, GNAQ, MAPK14

*hsa04668: TNF signaling pathway 7 3.07E‑02 CCL5, MAPK14, MMP9

*hsa04670: Leukocyte transendothelial migration 7 4.15E‑02 ITGAM, MAPK14, MMP9

*hsa04060: Cytokine‑cytokine receptor interaction 11 4.23E‑02 IL18RAP, IL1R1, CCL5

*hsa04071: Sphingolipid signaling pathway 7 4.93E‑02 PPP2R2B, GNAQ, PTEN

(DEGs) differentially expressed genes; (GO) Gene Ontology, (KEGG) Kyoto Encyclopedia of Genes and Genomes; (PPI) protein‑protein interaction.



Screening of immune‑related genes after SAHActa Neurobiol Exp 2022, 82

DISCUSSION

The immune system changes caused by SAH might 
affect the prognosis of patients and cause complica‑
tions (Zhou et al., 2017), which play an important role 
in SAH. Besides, the finding of biomarkers related to 
immune cell could help predict the diagnosis of SAH. 
In our study, we obtained 408 DEGs related to immune 
cell, based on which we constructed a  PPI network. 
Then, we obtained 10 overlapped KEGG pathways, such 
as hematopoietic cell lineage, NOD‑like receptor sig‑
naling pathway and T cell receptor signaling pathway. 
Subsequently, 9 DEGs related to immune cells (CCL5, 

CD27, CD3D, CREB5, FYN, ITPR3, TAB1, NCR3 and S1PR5) 
involved in SAH‑related KEGG pathways were obtained 
using LASSO and RFE algorithm. A diagnosis model was 
successfully constructed based on the 9 DEGs, which 
could identify the healthy people or SAH patients.

Comparing the KEGG pathways involved in the DEGs 
with the SAH‑related KEGG pathways from CTD dataset, 
we obtained 10 overlapped immune‑related KEGG path‑
ways with significance, among which we found that he‑
matopoietic cell lineage was significantly correlated to 
SAH. Previous study has indicated that hematopoietic 
cell lineage pathway might regulate the immune func‑
tion and participate in the procession of glioblastoma 
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Fig. 5. Screening and validation of hub genes. Combine the 9 optimized DEGs expression levels in the data set (A) and E‑TABM‑421 (B). * Means P<0.05, 
** means P<0.05, *** means P<0.005. Combining the data set (A) and E‑TABM‑421 (B) based on 9 DEGs sample diagnosis model ROC curve. The numbers 
in parentheses indicate the Specificity and Sensitivity of the corresponding curve. (DEGs) differentially expressed genes; (ROC) receiver operating 
characteristic.
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(Liu et al., 2021). Furthermore, we also found that this 
pathway was involved in 11 DEGs, such as CD2, CD4 and 
ITGAM. Among these DEGs, CD4 was reported by previ‑
ous studies indicating that CD4 might be a  biomarker 
for SAH (Zhao et al., 2019; Pu et al., 2019). The CD4 T 
cells might have originated from intracisternally in‑
jected blood cells and accumulated as a consequence of 
impaired cerebral lymphatic drainage. Recent reports 
indicated that lymphatic drainage is crucial for the ho‑
meostasis of brain‑immune interactions, and its abnor‑
mality is involved in the pathogenesis of immune‑as‑
sociated neurological diseases (DeRogatis et al., 2021). 
Thus, we inferred that CD4 involved in hematopoietic 
cell lineage pathway might be correlated to neurologi‑
cal deficits following SAH.

SVM is one of the most accurate methods among all 
well‑known data mining algorithms. It is a  two‑class 
classification algorithm that can support linear and 
nonlinear classification. In this study, a  SVM classifier 
was constructed to identify SAH patients. Recent studies 
have reported that the SVM could identify SAH patients. 
Danala et al. (2022) constructed a SVM model based on 
the clinical factor for assessing the diagnosis for SAH 
with the ROC range from 0.62 ± 0.07 to 0.86 ± 0.07. This 
result suggested that the SVM model has feasibility to 
predict diagnosis of SAH patients. In the present study, 
we also established a SVM model based on 9 immune‑re‑
lated DEGs with ROC of 0.865, indicating that the diag‑
nosis model could also accurately identify SAH patients. 

We have constructed a SVM model for distinguish‑
ing SAH patients based on 9 DEGs related to immunity. 
However, this study also has a few limitations. First, we 
did not elaborate on the detailed pathological mech‑
anisms of these DEGs. In addition, we need to collect 
a  large number of clinical samples to verify whether 
the SVM model could make diagnosis for SAH. Finally, 
further experimental studies were needed to verify the 
functions of these nine key genes.

CONCLUSION

A SVM classifier based on the 9 DEGs (CCL5, CD27, 
CD3D, CREB5, FYN, ITPR3, TAB1, NCR3 and S1PR5) related 
to immune cells might effectively identify SAH patients 
or healthy people. Our study might provide a  novel 
method for assessing the diagnosis for SAH.
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