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Central GPR55 may prevent nicotine  
reinforcing actions: a preliminary study

Alejandro Díaz‑Barba, Argelia Calvillo‑Robledo, Priscila Vázquez‑León,  
Eduardo Gallegos-Vieyra, J. Luis Quintanar, Bruno A. Marichal‑Cancino*

Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas,  
Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico, 

* Email: bruno.marichal@edu.uaa.mx 

GPR55 is an orphan receptor whose endogenous agonists include lysophosphatidylinositol (LPI) and N‑acetylethanolamides 
(NAEs), such as palmitoylethanolamide (PEA) and anandamide. Furthermore, its physiology in the central nervous system 
involves motor coordination, procedural and spatial memory, pain, and anxiety, among others. Recent reports indicate that 
systemic injections of O‑1602 (a GPR55 and GPR18 agonist) blocked the reinforcing effects of morphine and nicotine in the 
conditioned place preference (CPP) paradigm, suggesting a possible participation of peripheral and/or central GPR55/GPR18 in 
brain reward/anti‑reward systems. In this pilot study, the endogenous GPR55 agonists LPI and PEA, the highly selective GPR55 
synthetic agonist ML184 or the selective GPR55 antagonist ML193 were injected  to examine their pharmacological effects on 
the reinforcing actions of nicotine in the CPP paradigm. Our preliminary study shows that injections of LPI, PEA, ML184 and 
ML193 interfered with the change in place preference induced by nicotine via mechanisms that remain to be identified (which 
probably include central GPR55). 
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INTRODUCTION

The endocannabinoid system has been implicated 
in the mechanisms underlying the reward effects of 
several drugs of abuse (Di Marzo, 2006; Parsons and 
Hurd, 2015), including nicotine (Le Foll et al., 2008; 
Muldoon et al., 2013). Although the psychoactive ef‑
fects of cannabinoids have been historically associated 
with the cannabinoid type 1 receptor (CB1), the wide‑
ly used CB1 blockers/inverse agonists (e.g., AM251 and 
SR141716) may also interact as agonists for the orphan 
receptor GPR55 (Table  1). Furthermore, GPR55 is ex‑
pressed in brain areas involved in the reinforcing ac‑
tions of drugs of abuse, such as the basal nuclei, fron‑
tal cortex, and hippocampus (Sawzdargo et al., 1999; 
Ryberg et al., 2007), and in others related with nega‑
tive emotional actions (e.g., pain, anxiety, irritability, 

etc.) of the compulsive intake of substances such as 
the periaqueductal gray (PAG) and amygdala (Deliu et 
al., 2015; Marichal‑Cancino et al., 2017; Shi et al., 2017; 
Vázquez‑León et al., 2021b). Nevertheless, a  possible 
function of GPR55 in the mechanisms that underlie 
brain reward and anti‑reward systems remains virtu‑
ally unexplored. 

Two G protein‑coupled receptors (GPCRs) have 
been classified as cannabinoid receptors (i.e., the type 
1 and type 2; CB1 and CB2, respectively), but other GP‑
CRs such as GPR3, GPR6, GPR12, GPR18, GPR55 and 
GPR119 have been genetically, pharmacologically and/
or molecularly associated with the endocannabinoid 
system (Allende et al., 2020; Guerrero‑Alba et al., 2018; 
Guzmán‑Rodríguez et al., 2021; Marichal‑Cancino et 
al., 2014; Morales and Reggio 2017; Ramirez‑Orozco et 
al., 2019). Among those putative cannabinoid GPCRs, 
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GPR55 has been proposed as the type 3 cannabinoid 
receptor (CB3) (Yang et al., 2016). Moreover, as it is also 
activated by the non‑cannabinoid lipid lysophospha‑
tidylinositol (LPI), it remains un‑classified by the In‑
ternational Union of Basic and Clinical Pharmacology, 
IUPHAR (Pertwee et al., 2010).

GPR55 is closely related to the endocannabinoid 
system as it (i) is activated by phytocannabinoids 
(e.g., THC), endocannabinoids (e.g., anandamide) and 
palmitoylethanolamide (PEA) (Ryberg et al., 2007; 
Marchial-Cancino et al., 2020); (ii) forms heterodimers 
with CB1 and CB2 (Balenga et al., 2014; Martínez‑Pinilla 
et al., 2014); (iii) shares signal properties that are sen‑
sitive to cross modulation by CB1 (Kargl et al., 2012); 
and (iv) mediates multiple pharmacological actions 
induced by exogenous cannabinoids (e.g., vasodilata‑
tion, anxiety, pain, insulin secretion, cell proliferation, 
learning and memory, among others) (Marichal‑Can‑
cino et al., 2013; 2016; 2017; 2018; Calvillo‑Robledo et 
al., 2022). 

Interestingly, SR141716 was reported to prevent 
the nicotine‑induced conditioned place preference 
(CPP), which was an effect attributed to the CB1 re‑
ceptor blockade (Le Foll and Goldberg, 2004). More‑
over, the morphine and nicotine‑induced CPPs were 
prevented with a  systemic pretreatment with O‑1602 
(Alavi et al., 2016; Liu et al., 2021), a  GPR55/GPR18 
agonist (Ryberg et al., 2007; Schicho and Storr 2012), 
suggesting that stimulation of the abovementioned 
receptors may interfere with the reinforcing actions 
of morphine and nicotine. In a recent study (published 
by the time the present article was under revision), 
Liu et al. (2021) reported in mice that (i) there is high 
expression of GPR55 in the nucleus accumbens (NAc); 
(ii) that NAc neurons from animals that received sys‑
temic nicotine and O‑1602 produced less spontaneous 
excitatory postsynaptic currents compared to animals 

which received systemic nicotine alone; (iii) that in‑
creases in serum levels of dopamine induced by nico‑
tine were prevented after systemic O‑1602 (although 
this failed to modify dopamine levels in NAc); and (iv) 
that activation of GPR55 in NAc appears to modulate 
the expression of AMPA receptors. Notably, a  partial 
GPR55 knockdown (approximately 40%) in NAc did not 
modify the preventive actions of systemic O‑1602 on 
nicotine‑induced CPP (Liu et al., 2021). The above re‑
sults suggest a possible role of GPR55 in the reinforc‑
ing actions of nicotine. 

We established a pilot study to explore the effects of 
pharmacological manipulation of central GPR55 on the 
nicotine‑induced CPP paradigm.

METHODS

Animals

Male Wistar rats (n=100; 250‑300  g) approximately 
8  weeks of age (Sengupta, 2013) were obtained from 
the vivarium of the Autonomous University of Aguas‑
calientes. All experimental protocols were approved 
by our Institutional Ethics Committee (CE‑UAA) and 
followed the Mexican Guidelines for Animal Care 
(NOM‑062‑ZOO‑1999) in accordance with the ARRIVE 
guide (McGrath et al., 2010) and the Guide for the Care 
and Use of Laboratory Animals in the USA (Bayne, 
1996). Animals were kept under a  12‑hour light/dark 
cycle, with water and food ad libitum. 

Stereotaxic surgery

All rats were anesthetized with 1 mL/kg (i.p.) Zo‑
letil®50 (35 mg/mL) and Xylazine (8 mg/mL). A  guide 
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Table 1. Affinity values (pEC50/pIC50) of several ligands for GPR55 and CB1 receptors.

Ligand GPR55 CB1

PEA Agonist 8.4a pEC50 Agonist <4.5a pEC50

LPI Agonist 5.9d-7.3e pEC50 Agonist <4.5d pEC50

Δ9-THC Agonist 8.1 pEC50a Agonist 8.2a pEC50 

Rimonabant Agonist 5.5b pEC50 Antagonist 7.9c-8.6b pIC50

AM251 Agonist 5.5b-7.4a pEC50 Inverse agonist 7.5d pEC50

ML184 Agonist 6.6f pEC50 Antagonist 5.6fg pIC50

ML193 Antagonist 6.7g pEC50 Antagonist 4.6g pIC50

Data taken from: aRyberg et al., 2007; bBrown et al., 2011, cFelder et al., 1995, dKapur et al., 2009, eHenstridge et al., 2010, fKotsikorou et al. 2011; gHeynen-Genel et al., 2010.



Diaz-Barba et al.

cannula was stereotaxically implanted into the right 
lateral ventricle (AP: -1.7  mm, ML: 2.6  mm and DV: 
3.4 mm) based on the Paxinos and Watson (2014) atlas. 
The guide cannula was held in place to the skull with 
two screws and dental acrylic, and a stylet was inserted 
into the guide. After surgery, the animals were placed 
in post‑surgery recovery for at least 7 days.

Drugs and microinjections

All compounds used in the present study were 
obtained from Sigma Aldrich® (Saint Louis, Missouri, 
USA). Microinjections were made over a  60  s period 
by a  syringe pump (Sage Instruments), and the in‑
jection cannula was left undisturbed for another 60 s 
to avoid backflow. Lysophosphatidylinositol (LPI), 
palmitoylethanolamide (PEA), CID‑2440433 (ML184) 
and N‑[4‑[[(3,4‑dimethyl‑5 isoxazolyl)amino]sulfonyl]
phenyl]‑6,8‑dimethyl‑2‑(2‑pyridinyl)‑4‑quinoline‑
carboxamide (ML193) were dissolved in 10% dimeth‑
ylsulfoxide (DMSO). Fresh solutions were prepared 

prior to each experimental session and freebase was 
considered to calculate the concentrations reported. 

Rats were divided in two blocks to drive the CPP 
protocols. Block 1 (n=50) received  s.c. injections of 
saline solution and block 2 (n=50) received  s.c. injec‑
tions of nicotine (0.03 mg/kg). Before each nicotine or 
paired‑s.s. injection (Fig. 1), animals received pretreat‑
ments (1  µl; i.c.v.) of (i) vehicle (VEH; 10% DMSO); (ii) 
LPI (1 nmol); (iii) PEA (1 nmol); (iv) ML184 (1 nmol); 
or (v) ML193 (1 nmol). Hence, the saline‑block was uti‑
lized as an experimental control to analyze the effects 
of the i.c.v. pretreatments, whereas the nicotine‑block 
examined the effects of the i.c.v. pretreatments on the 
reinforcing actions of nicotine in the CPP paradigm. 
In this pilot study, doses of treatments were selected 
a  priori at 1 nmol, which has been reported as a  bio‑
logically active dose in previous cognitive paradigms 
with i.c.v. injections of LPI, ML193 and PEA (D’Agostino 
et al., 2007; Vázquez‑León et al., 2021a). On the other 
hand, as no previous studies involving i.c.v. ML184 in‑
jections were found, we decided to also use 1 nmol for 
comparisons. 
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Fig. 1. Schematic diagrams of the experimental protocols.
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Behavioral tests

We used a CPP apparatus, that consists of two large 
side chambers (41.5 cm × 32.5 cm × 30.5 cm) and one 
middle chamber between both compartments (27.5 cm 
× 15 cm × 12.5 cm). The two side chambers differed in 
floor textures (course versus fine) and somatosensory 
cues (black versus white). The CPP paradigm consist‑
ed of three different phases, namely pre‑conditioning 
with a duration of 3 continuous days, conditioning with 
a duration of 5 continuous days, and test day (Fig. 1). 

Animals were treated in the opposite chamber to 
that preferred during the pre‑conditioning phase. The 
difference between the time spent in the drug‑paired 
compartment during the test day and the time spent 
in the drug‑paired compartment during pre‑condition‑
ing (lateral preference shift) was taken as the degree 
of conditioning. Therefore, a  statistically significant 
increase in time spent in the drug‑paired chamber sug‑
gests a conditioning effect induced by the treatments, 
as previously reported (Liu et al., 2019).

Pre‑conditioning phase

The baseline and compartment preference were de‑
termined by placing each animal in the middle com‑
partment of the CPP apparatus, then removing the 
barriers to allow free access to the entire apparatus 
for 15 min per day for days 1 to 3. The activity of rats 
was recorded, and the time spent in the non‑preferred 
chamber (i.e., the chamber where animals spent less 
time) at day 3 was used as the baseline (Fig. 1) (Sun et 
al., 2018).

Conditioning phase

This phase consisted of 5 days of conditioning ses‑
sions. Prior to (5  min) performing each paired com‑
partment session, the pretreatments of vehicle (10% 
DMSO), LPI (1 nmol), PEA (1 nmol), ML184 (1 nmol) or 
ML193 (1 nmol) were microinjected i.c.v through the 
cannula into the lateral ventricle. Conditioning was 
carried out twice a day (7:00 am and 11 am) for 15 min 
with 4 hours between sessions where either 0.03 mg/kg 
nicotine or saline was injected subcutaneously. Access 
to other compartments was blocked during this phase.

Test day

The next day after the conditioning phase, the test‑
ing phase was carried out. Guillotine doors were re‑

moved, and the rats had access to the entire appara‑
tus. The time each rat spent in the compartments over 
a 15‑min period was recorded. The difference between 
the time spent in the drug‑paired compartment during 
the test day and the time spent in the drug‑paired 
compartment during pre‑conditioning (lateral pref‑
erence shift), the time in movement (motor activity), 
the frequency of reading (vertical activity), number of 
entrances into the conditioning chamber, and time of 
total self‑grooming were evaluated.

Histology

At the end of the behavioral procedure, the ani‑
mals were overdosed with a lethal injection of sodium 
pentobarbital (70 mg/kg, i.p.). Intracardiac perfusion 
was performed with 0.9% isotonic saline followed by 
4% formaldehyde, the brain was removed, and pre‑
served in 10% formaldehyde. Subsequently, the brain 
was mounted in a  30% sucrose bath and coronally 
sectioned (60  μm) using a  cryostat. The slices were 
stained with cresyl violet (Sigma®, St Louis, MO) and 
viewed under a  microscope to verify the microinjec‑
tion sites. Only verified animals were included in data 
analysis. 

Data analysis

For all tests, the measure of central tendency was 
the mean ± standard error of the mean (SEM) and 
all data was normally distributed. Comparisons for 
the CPP‑protocol were analyzed by with a  two‑way 
analysis of variance with repeated measures 
(two‑way‑RM‑ANOVA), while other behaviors (Fig.  3) 
were analyzed by two‑way‑ANOVA. When significant, 
this was followed by the Bonferroni post hoc test. A p 
value of < 0.05 was considered statistically significant 
for all experiments.

RESULTS

Effects of the pretreatments on reinforcing 
actions of nicotine in the CPP apparatus

Fig.  2A shows the reinforcing effects of nicotine 
in the CPP paradigm. Subcutaneous administration of 
nicotine (0.03  mg/kg) in rats pretreated (i.c.v.) with 
vehicle (10% DMSO), caused an increase (F(1,18)=6.220, 
p<0.05) in the preference for the nicotine‑paired 
chamber when compared to baseline. Administration 
of the pretreatments (i.c.v.) PEA (1 nmol; Fig. 2B), LPI 
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(1  nmol; Fig.  2C), ML184 (1 nmol; Fig.  3A) and ML193 
(1 nmol; Fig. 3B) prevented the increase in the prefer‑
ence for the nicotine‑paired compartment. Moreover, 
PEA (1  nmol; Fig.  2B), but not LPI, ML184 or ML193, 
produced a  tendency (F(1,18)=3.730, p=0.06) to increase 
the preference for the saline‑paired compartment in 
absent of nicotine, although this did not reach statis‑
tical significance. 

Post‑administration effects of the 
pretreatments on motor activity, vertical 
activity, entrances, and self‑grooming behavior 
in the nicotine‑induced CPP

Fig.  4 highlights the post‑administration effects of 
vehicle, PEA, LPI, ML184 and ML193 on motor activity 
and total self‑grooming time during the CPP‑test (with‑
out i.c.v. or s.c. injections). In the vehicle pretreatment, 
rats from the nicotine‑block demonstrated more motor 
activity than those from the saline group, whereas the 
pretreatment with ML184 into the nicotine‑block pro‑
duced less motor activity compared with ML184 from 
saline‑block (Fig.  4A) (F(4,90)=3.264, p<0.05). Moreover, 
the PEA‑pretreatment group had higher motor activity 
in absence of nicotine (i.e., in the saline‑block), while 
in the nicotine‑block, ML184 produced less motor ac‑
tivity compared with vehicle, PEA and LPI (Fig.  4A) 
(F(4,90)=7.184, p<0.05). No differences were detected in 
vertical activity (F(3,72)=1.365, p=0.260) or entrances to 
the compartments (F(4,90)=2.404, p>0.05) (not shown). 
Animals treated with vehicle in the nicotine‑block 
showed less total self‑grooming time (F(4,90)=3.437, 
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Fig.  2. Effect of the vehicle (DMSO 10%; A), palmitoylethanolamide 
(PEA; B) or lysophosphatidylinositol (LPI; C) (i.c.v.) on the reinforcing 
effects of nicotine (0.03  mg/kg;  s.c.) in the CPP paradigm. *, p<0.05 
vs. corresponding baseline. Data are expressed as the mean ± SEM 
and analyzed by two‑way RM ANOVA, n=20 each treatment (i.e., n=10 
in saline/n=10 in nicotine groups). Comparisons were analyzed using 
Bonferroni’s post‑hoc test.

Fig. 3. Effect of ML184 (A) or ML193 (B) (i.c.v.) on the reinforcing effects of 
nicotine (0.03 mg/kg; s.c.) in the CPP paradigm. Data are expressed as the 
mean ± SEM and analyzed by two‑way RM ANOVA, n=20 each treatment 
(i.e., n=10 in saline/n=10 in nicotine groups). Comparisons were analyzed 
using Bonferroni’s post‑hoc test.
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p<0.05) compared with the saline‑block (Fig. 4B) and fi‑
nally in the nicotine‑block, LPI produced a higher total 
grooming time than vehicle (Fig. 4B).

DISCUSSION

Cigarette smoking is an addictive, chronic and 
recurrent behavior that causes several preventable 
adverse outcomes, including lung cancer (Benowitz, 
2008a; Changeux, 2010). The reinforcing effects, de‑
pendence, and addiction to smoking are caused main‑
ly by the substance nicotine (Stolerman and Jarvis, 
1995). Nicotine has a high affinity for the α4 subunit of 
the nicotinic acetylcholine receptor (nAChR), which is 
ubiquitously expressed in the brain (Gotti et al., 2006; 
Nirogi et al., 2020), specifically the α4β2 subtype (Be‑
nowitz, 2008b; Dani and de Biasi, 2001). Nicotine may 
induce dopamine release in the NAc shell (Shin et al., 
2017) which partially explains its reinforcing actions 
(Xiao et al., 2020). Clearly, the background of nicotine 
addiction has several components, including pharma‑
cological, genetic, and environmental factors (Benow‑

itz, 2009; 2010). In this context, Win 55212‑2 (a CB1 full 
receptor agonist), which appears to be devoid of GPR55 
actions (Johns et al., 2007), was reported to positively 
modulate some of the reinforcing actions of nicotine 
via CB1 receptors (Gamaleddin et al., 2012), whereas 
rimonabant (a CB1 antagonist and GPR55 agonist) has 
been reported as effective in mediating smoking ces‑
sation (Rigotti et al., 2009). 

The main finding of the present study is that cen‑
tral administration of PEA (GPR55 endogenous promis‑
cuous agonist), LPI (endogenous GPR55/GPR18 ago‑
nist), ML184 (synthetic highly selective GPR55 agonist) 
and ML193 (selective GPR55 antagonist) prevented the 
reinforcing actions of nicotine in the CPP paradigm. 
Moreover, PEA produced hyperlocomotion in absence 
of nicotine compared with the vehicle. Conversely, 
ML184 significantly decreased activity compared with 
vehicle, PEA and LPI in the nicotine‑block, suggesting 
a  marked anxiolytic effect, which is not seen in ab‑
sence of nicotine. 

In the nicotine‑block, the vehicle showed less to‑
tal self‑grooming behavior, which was prevented only 
with pretreatment with LPI. Lastly, central injections 
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Fig.  4. Effect of the vehicle (VEH), palmitoylethanolamide (PEA), lysophosphatidylinositol (LPI), ML184 or ML193 on time in movement (A) and total 
self‑grooming (B) into the paired chamber in the CPP‑nicotine paradigm. *, p<0.05 where indicated; α, p<0.05 VEH in saline‑block vs. VEH in nicotine‑block; 
δ, p<0.05 ML184 in saline‑block vs. ML184 in nicotine‑block. Data are expressed as the mean ± SEM analized by two-way ANOVA. Comparisons were 
analyzed using Bonferroni's post-hoc test. 
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of PEA produced a tendency to increase preference in 
the absence of nicotine, which may be linked to its 
capacity to modulate striatal areas and increase can‑
nabinoid levels (e.g., 2‑AG) (Musella et al., 2017). Ad‑
mittedly, due to the extensive diffusion in the central 
nervous system (CNS) after the i.c.v. administration, 
our preliminary study is unable to point to a specific 
brain area in which the GPR55 could be exerting its 
preventive actions against the reinforcing nicotine 
effects in the CPP paradigm (DeVos and Miller, 2013). 
Nevertheless, our results should motivate further re‑
search about the potential general participation of 
GPR55 in the brain reward/anti‑reward systems. 

Pharmacological effects of PEA, LPI, ML184 
and ML193 on nicotine‑induced CPP 

All administered compounds (PEA, LPI, ML184 and 
ML193) prevented the acquisition of CPP to nicotine. 
As those compounds were administered by i.c.v. injec‑
tions, they were spreading widely in the CNS, which 
raises two main possibilities. Firstly, (i) that both stim‑
ulation and blockade of GPR55 may produce its pre‑
ventive effects against the reinforcing actions of nic‑
otine via different sites of action in the CNS and (ii) 
that the central GPR55 receptors interfering with the 
reinforcing actions of nicotine have a pivotal/modula‑
tory function.

Supporting the first possibility, it was reported that 
i.c.v. injections of ML193 produced anxiogenic and 
motor impairing effects (Rahimi et al., 2015). As no 
decreases were detected in locomotor activity in ani‑
mals injected with ML193, the preventive role of ML193 
against nicotine‑induced CPP may be linked to its ca‑
pacity to produce anxiety (Rahimi et al., 2015). On the 
other hand, LPI may promote an increase in intracel‑
lular Ca2+ via GPR55 (Henstridge et al., 2009; 2010; Ka‑
pur et al., 2009) which could subsequently produce the 
activation of the large voltage‑gated potassium chan‑
nels and high‑calcium conductance (BKCa) (Begg et al., 
2003; Hasegawa et al., 2003; Schilling et al., 2002). More‑
over, LPI (and perhaps PEA) may activate BKCa chan‑
nels via both GPR55‑dependent and independent path‑
ways (Bondarenko et al., 2010; 2011a; b). Interestingly, 
it was reported that activation of BKCa channels can 
reverse nicotine‑seeking behavior in the CPP paradigm 
(Ma et al., 2013). Hence, activation of GPR55 by LPI and 
PEA may prevent the reinforcing actions of nicotine via 
BKCa channels. 

Regarding to the possible pivotal/modulatory role 
of GPR55, in a recent study of a preclinical rodent mod‑
el of Parkinson’s disease, both LPI and ML193 improved 
motor and sensorimotor skills of rats (Fatemi et al., 

2020) suggesting a possible pivotal function of striatal 
GPR55. Moreover, the promotion in motor behavior of 
both LPI and ML193 could be involved in the decrease 
in the acquisition of nicotine. In addition, intrahippo‑
campal injections of both LPI and CID16020046 (a se‑
lective GPR55 antagonist) impaired spatial memory in 
a post‑training test in the Barnes maze (Marichal‑Can‑
cino et al., 2018). Hence, decreases in spatial memo‑
ry, induced by LPI and ML193, could explain its pre‑
ventative actions against the nicotine‑induced CPP. 
Admittedly, our results provide more questions than 
answers and further experiments, that fall out of the 
reach of the present pilot study, are required to clarify 
the participation of GPR55 receptors in the reinforc‑
ing actions of nicotine.

Lastly, it has been reported that PEA and oleoyleth‑
anolamide (OEA) have a  common main target, namely 
the PPAR‑α receptor (Mattace Raso et al., 2014). Inter‑
estingly, OEA attenuated cocaine‑induced behavioral 
sensitization (Bilbao et al., 2013). However, this effect 
appeared to be through an independent mechanism of 
the PPAR‑α receptor, since OEA administration could 
still attenuate BS to cocaine in PPAR‑α knockout mice 
(Bilbao et al., 2013). Furthermore, OEA and PEA have 
also been shown to differ in the modulation of some 
addiction‑related moods, being able to block stress‑in‑
duced anhedonia (Sayd et al., 2014). Inhibition of fatty 
acid amide hydrolase (FAAH) (Luchicchi et al., 2010), 
which increases the bioavailability of NAE, and ex‑
ogenous administration of OEA and PEA (Melis et al., 
2008) have also been shown to block the activation of 
neurons by nicotine in NAc shell and ventral tegmen‑
tal area. Interestingly, by using URB597 (a FAAH inhib‑
itor), Scherma et al. (2008) reported inhibition of the 
nicotine‑induced CPP. Thus, aside from the potential 
actions mediated by GPR55, the preventive effects of 
i.c.v. PEA on nicotine‑induce CPP may involve multiple 
pathways. 

Other behavioral effects of PEA, LPI, ML184 
and ML193 during the nicotine‑CPP test

During the CPP‑test (the no‑drugs phase), animals 
from the nicotine block that received vehicle (i.c.v.) 
showed more activity (p<0.05) than vehicle‑adminis‑
tered animals from the saline‑block. Previous studies 
reported decreased locomotor activity in rats follow‑
ing an acute nicotine administration, but an increased 
in activity after chronic nicotinic stimulation (Stoler‑
man et al., 1995; Dwoskin et al., 1999). In the present 
study, animals received a chronic schedule of nicotine, 
and thus our results are congruent with the previous‑
ly mentioned reports. Conversely, as no differences 
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were detected in the entrances to the paired chamber 
or in vertical activity (p>0.05), craving‑like behavior 
and anxiety induced by drug‑interruption may be un‑
derestimated (Bailey and Crawley, 2009; Lever et al., 
2006; Wu et al., 2016). Interestingly, ML184, but not 
LPI, prevented the hyperlocomotion induced by nic‑
otine, suggesting the potential participation of cen‑
tral GPR55 in controlling motor alterations induced 
by stimulants such as nicotine. To support the above 
notion, striatal GPR55 was reported to have a  modu‑
latory role in motor behaviors in a preclinical Parkin‑
son’s model (Fatemi et al., 2020) and motor alterations 
were reported in mutant mice that lack GPR55 (Wu et 
al., 2013).

Grooming behavior in rodents is based on specif‑
ic and highly stereotyped sequential movement pat‑
terns, known as the syntactic chain pattern (Kalueff 
et al., 2007), which often occurs during the transition 
between facial and body grooming. Grooming emerg‑
es as a  sensitive index of anxiety and altered animal 
emotionality. Numerous studies have shown that 
brain injuries (Berridge 1989; Berridge and Whishaw, 
1992; Cromwell and Berridge, 1996), pharmacogenic 
stimulation (Audet et al., 2006; Berridge and Aldridge, 
2000), genetic ablation of brain receptors (Cromwell 
et al., 1998) and stressors (Komorowska and Pellis, 
2004) can lead to an alteration in the onset and ter‑
mination of this chain bi‑directionally (Kalueff et al., 
2007). In this study, animals from the nicotine‑block 
treated with vehicle showed less total self‑grooming 
behavior than those from the saline‑block suggesting 
a  certain level of emotional alteration. This was not 
observed in those animals pretreated with LPI, which 
performed more total self‑grooming behavior in the 
nicotine‑block compared with vehicle. Interestingly, 
central administration of another GPR55/GPR18 re‑
ceptor agonists, O‑1602, has been reported to produce 
anxiolytic effects (Rahimi et al., 2015). Hence, we pro‑
pose a  possible role of central GPR18/GPR55 mediat‑
ing anxiolytic actions.

The tendency of PEA to increase place preference

A tendency to increase the time spent in the paired 
chamber was observed in the PEA group in an absence 
of nicotine. This effect could be explained due to an 
increase in acylethanolamides, since its degradation 
is mediated by fatty acid amide hydrolase (FAAH) (Cra‑
vatt et al., 1996) or N‑acylethanolamine‑hydrolyzing 
acid amidase (NAAA) (Ueda et al., 2013). Importantly, 
NAAA and FAAH preferentially hydrolyzes PEA over 
other EAs, producing an entourage effect particular‑
ly with endocannabinoid compounds (Ho et al., 2008; 

Ueda et al., 2013). Hence, the potential reinforcing ac‑
tions of PEA in the CPP could be associated with in‑
creased levels of endocannabinoids. Admittedly, the 
present pilot study did not measure levels of endo‑
cannabinoids, and thus, this possibility remains to be 
characterized.

Limitations of this pilot study

Our study has some limitations. Firstly, we have 
probed different drugs with affinity to GPR55, but we 
did not perform a  dose‑response curve with several 
doses in a logarithmic raising design for the compounds 
used. Secondly, we did not conduct experiments to de‑
tect the mechanisms of action involved in the preven‑
tive actions of LPI, PEA, ML184 or ML193. Finally, our 
i.c.v. administration pathway did not discriminate that 
many periventricular structures in which GPR55 is ex‑
pressed may participate, and therefore, we cannot pro‑
pose specific brain areas as places of action.

CONCLUSIONS 

Our data show that i.c.v. injections of LPI, PEA, 
ML184 and ML193 in the lateral ventricle interfere with 
the change in place preference induced by nicotine via 
mechanisms that remain to be identified, but that most 
probably involve central GPR55. 
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