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Identification of potential biomarkers and 
small‑molecule compounds related to intracerebral 

hemorrhage with bioinformatics analysis
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This study aimed to further explore the underlying molecular mechanism of intracerebral hemorrhage (ICH), gene expression 
profile GSE24265, containing perihematomal tissues, contralateral grey matter, and contralateral white matter was retrieved 
and analyzed. The data was hierarchically clustered and the differentially expressed genes (DEGs) were screened. Functional 
analysis and protein interaction analysis of DEG hubs were performed, and the miRNA‑transcription factor (TF)‑target 
network was built. In addition, the candidate small-molecule compounds that might reverse the expression of an ICH‑linked 
gene were identified by CMap. This method revealed a total of 408 DEGs. Five modules including chemokine-related, antigen 
immune-related, pathogen infection, cell reaction, and positive regulation of tyrosine phosphorylation and MAPK cascade 
were identified. The expression levels of CCL5, CXCL8, ICAM1, IL-1B, IL-6, VCAM1, and VEGFA were correlated with ICH among 
the top 10 hub genes obtained in the protein protein interaction (PPI) network. A total of 237 miRNA‑TF‑target regulatory 
relationships were obtained, including 6 TFs, 11 miRNAs and 105 target genes. Finally, the CMap database identified 
Prestwick-1083, xamoterol, ifosfamide, methyldopate, nifurtimox, propranolol, and methoxamine as potential therapeutic 
agents for ICH while doxorubicin, menadione and azacitidine may increase its pathogenicity. Furthermore, CCL5, CXCL8 and 
VEGFA may be novel candidate susceptibility genes for ICH. Some small-molecule drugs, including xamoterol may be used 
for the treatment of ICH.
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INTRODUCTION

Spontaneous intracerebral hemorrhage (ICH), also 
known as cerebral bleed, usually presents with bleed‑
ing in both the brain tissue and ventricles. In the Unit‑
ed States, approximately 37,000–52,400 people are af‑
fected by ICH each year, which accounts for 20%–30% 
of all cases of cerebrovascular diseases (Caceres and 
Goldstein, 2012; Zhong et al., 2016). The risk factors 
for ICH included hypertension, amyloidosis, alcohol‑
ism, and cocaine use (Caceres and Goldstein, 2012), and 
the primary brain injury caused by ICH is mainly due 
to compression and destruction of brain tissue con‑
tained within the skull (Zheng et al., 2016). Identifying 

the pathological mechanisms for ICH is essential. Ge‑
nome‑wide gene expression profiles can simultaneous 
compare transcripts of thousands of differentially ex‑
pressed genes (DEG) between diseased and normal tis‑
sue. Currently, expression profiling has been used to 
identify prognostic and therapeutic markers involved 
in the pathomechanism of many diseases, such as ICH. 
Stamova et al. (2018) analyzed the differentially ex‑
pressed transcripts of ICH from patients with ischemic 
stroke (IS) and matched controls (CTRL). Sang et al. 
(2017) demonstrated a complex mechanism of periph‑
eral blood mononuclear cells (PBMCs) in response 
to ICH, which could help understand its pathogene‑
sis. The expression level of golgin A8 family member 
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A (GOLGA8A) was increased in the blood of patients 
with ICH (Merino‑Zamorano et al., 2016). Interesting 
experiments using mRNA microarrays have identified 
some dysregulated mRNAs, and biological processes 
enriched by differentially expressed genes (DEGs) may 
help explain the pathophysiological changes in ICH 
(Hanjin et al., 2018). Furthermore, similar work has 
demonstrated sex differences in ICH patients (Xie et 
al., 2018). However, the underlying molecular mecha‑
nism of ICH remains largely unknown.

Rosell et al. (2011) conducted a microarray study of 
brain tissues of deceased patients with ICH and found 
that the overexpressed genes were related to cyto‑
kines, chemokines, and coagulation factors. Further‑
more, Yang et al. (2014) applied the same dataset of 
brain tissues after ICH and found that there was sig‑
nificant dysregulation in the calcium signaling path‑
way of DEGs in ICH. Our investigations built on this 
previous work by examining DEGs and functional gene 
analysis, together with PPI and miRNA–TF–target net‑
work analysis. In addition, we identified some of the 
ICH‑related small‑molecule drugs that targeted the 
DEGs. These results may help illustrate the molecular 
mechanism and explore the key genes involved in ICH.

METHODS

Data preprocessing

The gene expression profile GSE24265 (Rosell et 
al., 2012) was obtained from the NCBI Gene Expression 
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) 
database (Barrett et al., 2005). A  total of eleven brain 
samples were obtained, from 4 deceased patients with 
ICH comprising perihematomal area (PH), contralateral 
white matter (CW), and contralateral gray matter (CG). 
Using GPL570 (HG‑U133_Plus_2) Affymetrix Human Ge‑
nome U133 Plus 2.0 Array as the detection platform, 
the raw data (CEL file) was then preprocessed by the 
Affy package (Gautier, Cope, Bolstad, and Irizarry, 2004) 
in R (version 1.50.0; http://www.bioconductor.org/
packages/release/bioc/html/affy.html). These data 
were normalized using the Robust Multi‑Array Average 
(RMA) algorithm. The RMA algorithm is a comprehen‑
sive means for extracting signals and standardization, 
comprising background correction, normalization, and 
expression calculation. This was used to establish an 
expression matrix based on the Affymetrix data. Once 
the probe is mapped to the same gene, the average ex‑
pression value of the probe is used as the gene expres‑
sion value, after which the annotation file was down‑
loaded and probes that did not fit the gene symbol were 
deleted. 

Principal component analysis (PCA) 
and cluster analysis

We then used PCA and hierarchical clustering was 
used to investigate the similarity of samples. PCA 
was performed by applying the R prcomp function 
(https://stat.ethz.ch/R‑manual/R‑devel/library/
stats/html/prcomp.html) with standard parame‑
ters, which reduces the dimensionality of the data, as 
well as identify the latent variables (principal com‑
ponents). Then, the scatterplot3d package (version 
0.3–41; https://mirrors.tuna.tsinghua.edu.cn/CRAN/
bin/windows/contrib/3.4/scatterplot3d_0.3‑41.zip) 
was performed to build the PCA map. To observe 
whether it is consistent with the pre‑grouping, hi‑
erarchical cluster analysis was used to investigate 
the hclust function (https://stat.ethz.ch/R‑manual/ 
R‑devel/library/stats/html/hclust.html) in R.

Identification of DEGs 

To identify DEGs within the data, the Limma 
package (Smyth, 2011) (version 3.10.3; http://www.
bioconductor.org/packages/2.9/bioc/html/limma.
html) was performed on CG vs. PH, CW vs. PH, and CG vs. 
CW. Adjusted P value < 0.05 and |log2FC (fold change)| 
> 1 were set as the cutoff values for DEG identification. 
To observe the expression level of the DEGs between 
the contralateral hemisphere of cerebral hemorrhage 
and PH, and to exclude any heterogeneity caused by 
different contralateral areas, the overlapping DEGs 
of the CG vs. PH and CW vs. PH groups were obtained, 
then genes with the same expression trend in the CG 
vs. PH and CW vs. PH groups were screened. We then 
removed genes from the CG vs. CW group and any re‑
maining DEGs of interest were used for subsequent 
analysis.

Functional analysis

The Gene Ontology (GO) (Ashburner et al., 2000) 
biological process (BP) and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) 
were analyzed to examine DEG pathways by apply‑
ing DAVID (version 6.8; https://david‑d.ncifcrf.gov/), 
(Huang et al, 2008) with P value < 0.05 as the cutoff cri‑
terion and an enrichment count of 5 being considered 
significant. 

The results of the enrichment analyses were 
grouped using the functional annotation clustering 
feature of DAVID by integrating the kappa statistics 
algorithm and the fuzzy heuristic clustering algo‑
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rithm. The parameter was set to Classification Strin‑
gency: Medium, and Enrichment Thresholds: 0.05. Fi‑
nally, the R FGNet package (http://bioconductor.org/
packages/release/bioc/html/FGNet.html) (Aibar et 
al., 2015) was performed to visualize the functional 
modules.

PPI network and module construction

The PPIs among the DEGs were analyzed by apply‑
ing the STRING (Szklarczyk et al., 2014) (version 10.0; 
http://www.string‑db.org/) database, with a  confi‑
dence of >0.7 being the required threshold. Subse‑
quently, the PPI network was built and visualized by 
applying the Cytoscape software (version 3.4.0; http://
chianti.ucsd.edu/cytoscape‑3.4.0/) (Shannon et al., 
2003). We then applied the CytoNCA (Yu and Tang, 2014) 
plugin (version 2.1.6; http://apps.cytoscape.org/apps/
cytonca) to obtain the hub nodes and to further ana‑
lyze topology properties (degree centrality, between‑
ness centrality, and closeness centrality) of the node 
network. Then, the major protein of the PPI network 
that participated in protein interaction was obtained 
based on the ranking of the topological property score 
of each node.

MiRNA prediction and MicroRNA–target network 
construction

Based on the miRWalk, miRanda, miRDB, miRMap, 
miRNAMap, RNA22, and Targetscan databases, the 
miRNAs targeting DEGs were identified by applying the 
miRWalk2.0 (http://zmf.umm.uni‑heidelberg.de/apps/
zmf/mirwalk2/) tool (Dweep and Gretz, 2015). We as‑
sume that the predicted miRNAs can be considered to 
have high reliability when they appeared in more than 
6 of the aforementioned databases. Then, the miRNA–
mRNA relationship pair was acquired, and miRNAs reg‑
ulated 15 or more target genes were selected. Finally, 
the miRNA–target network was constructed by apply‑
ing the Cytoscape software.

TF prediction and TF–target network construction

The TRRUST online tool (Han et al., 2017) (version 2; 
http://www.grnpedia.org/trrust/) was used to predict 
TFs, with the threshold value of q < 0.05. Then, the in‑
tersection of the predicted TF with DEGs was initiated, 
and the TF related to disease occurrence was obtained. 
Finally, we applied the Cytoscape software to build the 
TF–target network.

MiRNA–TF–target network construction

The miRNA–TF–target network was built by inte‑
grating the miRNA–target and TF–target interaction 
pairs acquired above using the Cytoscape software.

Cerebral hemorrhage‑related 
small‑molecule drugs

The drug‑specific gene expression profiles 
in the CMap reference database (http://www.
broadinstitute.org/cmap/) can find the connections 
between small‑molecule drugs and diseases, when 
submitting the genes that may be related to a  spe‑
cific disease. Any identified DEGs between the con‑
tralateral tissue of cerebral hemorrhage and the nor‑
mal tissue surrounding the hematoma were divided 
into the upregulated and downregulated groups and 
were transformed into a  probe set on the HG‑U133A 
platform. Then, DEGs were mapped to the CMap da‑
tabase, and the enrichment values representing the 
degree of similarity were obtained. The enrichment 
value ranged between −1 and 1, and a value closer to 1 
demonstrated that the small‑molecule compound can 
simulate the state of normal tissue, while those clos‑
er to −1 indicate that the small‑molecule compound 
can simulate the state of the cerebral hemorrhage. 
A P value < 0.01 and |enrichment value| > 0.8 were cho‑
sen as the thresholds.

RESULTS

Data preprocessing, PCA, and cluster analysis

The distribution of the expression values is dis‑
played before and after preprocessing (Fig.  1A, B). Fi‑
nally, a  total of 20,514 genes were annotated and the 
PCA (Fig.  1C) and hierarchical clustering (Fig.  1D) re‑
sults show that all samples were more clearly grouped 
together according to the pregrouping, except for the 
GSM596850 (PH) sample, which was therefore excluded 
from further analysis.

Identification of DEGs

In total, there are 2,203 DEGs obtained in the CG vs. 
PH group, including 1,388 upregulated and 815 down‑
regulated. Moreover, there are 1,095 DEGs obtained in 
the CW vs. PH group, containing 400 upregulated and 
695 downregulated, with a P value < 0.05 and log2FC > 1 
set as the cutoff value. The co‑upregulated or co‑down‑

189Acta Neurobiol Exp 2022, 82: 187–196
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regulated DEGs were screened via intersected DEGs of 
the CG vs. PH and CW vs. PH group for further analysis. 
Then, in total, there are 433 common DEGs (including 
359 uniformly downregulated and 74 uniformly upreg‑
ulated) were obtained (Fig.  2). After excluding 2,383 
DEGs in the CG vs. CW group, 408 DEGs were obtained, 
and are related to disease occurrence as they are not 
affected in the contralateral area (Fig. 2A). Bidirection‑
al hierarchical clustering of DEGs is shown in Fig. 2B. 
The PH and contralateral samples were clearly sepa‑
rated based on the gene expression profile, while the 
CG and CW samples were not distinguished, suggesting 

that these DEGs were significantly related to the oc‑
currence of cerebral hemorrhage after removing the 
influence of the contralateral area.

Functional enrichment analysis of DEGs 

The GO‑BP and KEGG pathway enrichment analysis 
of DEGs identified 143 GO‑BP terms and 42 KEGG path‑
ways. The top 10 GO‑BP terms and top 10 KEGG terms 
are displayed in Fig. 3. According to the functional anno‑
tation clustering feature of DAVID, five functional mod‑

190 Acta Neurobiol Exp 2022, 82: 187–196

Fig. 1. Data preprocessing. (A) Box chart after normalization. (B) Box chart before normalization. (C) Principal component analysis (PCA) for samples; red 
square indicates the contralateral gray matter (CG), green triangle indicates the contralateral white matter (CW), and blue dots indicate the perihematomal 
area (PH). (D) Hierarchical clustering tree diagram of all genes in samples by RMA normalization.
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ules were obtained (cl 1: chemokine‑related, cl 2: anti‑
gen immune‑related, cl 3: pathogen infection, cl 4: cell 
reaction, and cl 5: positive regulation of tyrosine phos‑
phorylation and MAPK cascade) (Fig. 4A). In addition, 29 
versatile genes associated with two or more modules are 
shown in Fig. 4B, such as IL‑6 involved in modules 2, 3, 
4, and 5. A  distance heat map of all modules was pro‑
duced to analyze the similarity of the modules (Fig. 4C). 
In a distance heat map, the closer the two modules were, 
the higher the similarity was, and the more the number 
of genes shared. As shown (Fig. 4C), modules 1 and 4 and 
modules 4 and 5 exhibited higher similarity. 

PPI network and module construction 

In total, there are 755 protein interaction pairs were 
obtained, and the PPI network containing 228 nodes 
(9 upregulated and 219 downregulated) was construct‑
ed. After the topological property analysis of the PPI 
network, the top 10 genes with supreme DC, BC, or CC 
scores, such as IL‑6 and VEGF‑A, are shown in Table 1. 
The nodes with the highest DC, BC, or CC scores in the 
PPI network may play crucial roles in ICH. 

The miRNA–TF–target network 

There are 3,466 miRNA–target relationship pairs 
were calculated totally, among them, 11 miRNAs were 
able to regulate 15 or added target genes, and 189 miR‑
NA–target relationship pairs were found between 11 
miRNAs and 84 targets (23 upregulated and 61 downreg‑
ulated). In addition, 48 TF–target relationship pairs were 
calculated, contains 6 TFs (5 downregulated and 1 up‑
regulated) and 30 downregulated target genes. Integrat‑
ing the 189 miRNA–target pairs and 48 TF–target pairs 
mentioned previously, 237 miRNA–TF–target regulatory 
relationships were obtained, including six TFs (1 upreg‑
ulated and 5 downregulated), 11 miRNAs, and 105 target 
genes (22 upregulated and 83 downregulated) (Fig. 5).

Cerebral hemorrhage‑related 
small‑molecule drugs

A total of 23 small‑molecule drugs with highly signif‑
icant correlations with cerebral hemorrhage were ob‑
tained in the study (Table 2). The enrichment values of 
Prestwick‑1083, xamoterol, ifosfamide, methyldopate, 

191Acta Neurobiol Exp 2022, 82: 187–196

Fig. 2. VENN diagram and heat map cluster of DEGs. (A) VENN diagram shows the intersection of DEGs in the CG vs. PH and CW vs. PH groups. (B) The 
intersection of DEGs after removing DEGs in the CG vs. CW group is showed the VENN diagram. (C) The heat map of DEGs by RMA normalization. The 
top blue bar indicates the perihematomal area (PH), yellow indicates the contralateral area, red indicates the contralateral gray matter (CG), and green 
indicates the contralateral white matter (CW).
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nifurtimox, propranolol, and methoxamine were great‑
er than 0.8, indicating that these 7 small‑molecule drugs 
were potential therapeutic drugs for the management 
of cerebral hemorrhage. In addition, small‑molecule 
drugs with enrichment values of less than −0.9, such 
as doxorubicin, menadione, and azacitidine, exhibited 
highly significant negative scores, indicating potential 
pathogenic substances for ICH.

DISCUSSION

ICH is the second most common type of hemor‑
rhagic stroke, with a 30‑day mortality estimated to be 
44%–52% (Dekker et al., 2018). The research presented 
herein identified 408 overlapped DEGs in the CG vs. PH, 
CW vs. PH, and CG vs. CW groups. Prior to our study, 35 
common DEGs have been identified in the PH vs. CG 
and PH vs. CW groups, although this was with tighter 
statistical parameters (Yang et al., 2014). We set our 
cutoff values at p value < 0.05 and |logFC| > 1, which 
enlarged the DEG search scope. Furthermore, we iden‑
tified the overlapped genes in the CG vs. CW group, 
which ensured the accuracy of the DEG analysis. DEGs 
also act as hub genes and play an important role in 
the PPI network and the miRNA–TF–target network. 
These crucial genes may participate in the underlying 

mechanism of ICH, and therefore our study could be 
used to further illustrate the etiology and pathogen‑
esis of ICH. 

Functional enrichment analysis revealed five mod‑
ules, including chemokine‑related process, antigen 
immune‑related process, pathogen infection, cell re‑
action, and positive regulation of tyrosine phosphor‑
ylation and MAPK cascade. Similar to our research re‑
sults, Carmichael et al. (2008) have demonstrated that 
immune responses and signal transduction were asso‑
ciated with ICH. The key genes of CXCL8 and CCL5 have 
previously been shown to be associated with chemok‑
ine signaling in the accumulation of inflammatory cells 
to the ICH site via their high‑affinity receptors (Yao and 
Tsirka, 2012). Studies indicated that the serum concen‑
tration of CXC chemokine ligand‑12 significantly in‑
creased after ICH (Shen et al., 2017). Serum levels of 
CCL2 and CXCL10 were also elevated post‑ICH. Interest‑
ingly, brain tissue injuries in patients with ICH occur 
after an inflammatory reaction and these pro‑inflam‑
matory chemokines are associated with worse func‑
tional outcomes after ICH (Landreneau et al., 2018). 
ICAM1, IL‑6, IL‑1B, and VACM1 were found to be related 
to the antigen immune‑related process. ICAM1 encodes 
a cell surface glycoprotein that was found to be highly 
expressed in rat brains after ICH (Zhi et al., 2007), to‑
gether with IL‑1B (Wagner et al., 2006). Furthermore, 

192 Acta Neurobiol Exp 2022, 82: 187–196

Fig. 3. The Gene Ontology (GO) biological process (BP) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis results. 
Black line indicates ‑log10 (p value), gray is the GO‑BP enrichment result, yellow is the KEGG pathway enrichment result, and bar length represents the 
number of enriched genes.
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Fig. 4. The network and heat map of five functional modules and genes. (A) An intersection network of the five modules. (B) The multifunctional genes in 
the modules. (C) Distance heat map for the five modules.

Table 1. Top 10 genes with highest degrees in protein–protein interaction network.

Gene Names DC Gene Names BC Gene Names CC

IL‑6 43 VEGFA 7411.906 IL‑6 0.038267028

CXCL8 39 IL6 7123.1206 CXCL8 0.03822192

VEGFA 36 VCAM1 5109.4194 VEGFA 0.038100034

IL‑1B 32 CXCL8 4742.5576 CCL5 0.038061704

CCL5 31 IL‑1B 4301.455 IL‑1B 0.038055323

CXCL12 28 TYROBP 3997.5818 ICAM1 0.038017083

VCAM1 27 ITGAM 3485.4338 VCAM1 0.038010716

ICAM1 27 ITGA5 3059.5947 CXCL12 0.038010716

CXCR4 27 ICAM1 2807.8218 CCL2 0.037978917

PPBP 26 CCL5 2403.2915 PTPRC 0.037896495

Note: DC, Degree Centrality; BC, Betweenness Centrality; CC, Closeness Centrality.
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VCAM1 may be involved in neuronal apoptosis and the 
pathophysiology of ICH (Dongmei et al., 2015). The in‑
flammatory cytokine IL‑6 is involved in neuronal sur‑
vival and axonal regeneration following ICH (Xiong and 
Yang, 2015), although its upregulation is associated 
with the clinical conditions of ICH patients (Antunes 
et al., 2010). In addition, IL‑6 and VEGF‑A were associ‑
ated with positive regulation of tyrosine phosphoryla‑
tion and MAPK cascade. Overexpressed VEGF may play 
a pathophysiological role in metastatic brain tumor‑as‑
sociated ICH (Shin et al., 2006). These genes were also 
hub genes in the PPI network. Moreover, in the miR‑
NA–TF–target network, these key DEGs, except VCAM1, 
were all regulated by one or more TFs and miRNAs. The 
results demonstrate the significant roles of these genes 
in the progression of ICH.

Additionally, the CMap database was applied to ana‑
lyze small‑molecule drugs that may reverse the expres‑
sion of ICH genes. Seven small‑molecule compounds, 
namely Prestwick‑1083 (enrichment value 0.965), xamo‑
terol (enrichment value 0.876), ifosfamide (enrichment 
value 0.867), methyldopate (enrichment value 0.842), 
nifurtimox (enrichment value 0.833), propranolol (en‑
richment value 0.824), and methoxamine (enrichment 
value 0.816) were identified to be candidate anti‑ICH 
drugs. This discovery could contribute to a  more tar‑
geted study of potential reversing agents for ICH. In ad‑

dition, doxorubicin (enrichment value −0.993), menadi‑
one (enrichment value −0.990), and azacitidine (enrich‑
ment value −0.976) may be involved in the progression 
of ICH. Ardestani et al. (2017) have demonstrated that 
xamoterol can reduce neuroinflammation in the brain 
of mice. Phelan et al. (2015) have found that β‑adren‑
ergic antagonists have a certain neuroprotective effect 
on ischemic stroke. Wajngarten and Silva (2019) have 
summarized that labetalol, nicardipine or sodium ni‑
troprusside can be used for the treatment of hyperten‑
sive encephalopathy, and drugs that affect the central 
nervous system should be avoided, such as nifurtimox. 
Doxorubicin is a chemotherapy medication for cancers 

194 Acta Neurobiol Exp 2022, 82: 187–196

Fig.  5. The transcription factor (TF) regulatory network. Red triangles 
indicate up-regulated TFs, dark blue inverted triangles indicate down-
regulated TFs, green circles indicate down-regulated genes, and light green 
arrows indicate TF-regulated target genes.

Table 2. Small molecule drugs related to cerebral hemorrhage and their 
corresponding P values.

CMap Name N Enrichment p

Prestwick‑1083 3 0.965 0.00006

xamoterol 3 0.876 0.00357

ifosfamide 3 0.867 0.00431

methyldopate 4 0.842 0.00101

nifurtimox 4 0.833 0.00117

propranolol 4 0.824 0.00161

methoxamine 4 0.816 0.00211

scoulerine 4 ‑0.805 0.00282

flucloxacillin 4 ‑0.807 0.00267

enoxacin 4 ‑0.832 0.00145

ouabain 4 ‑0.867 0.00062

clioquinol 5 ‑0.868 0.00008

lanatoside C 6 ‑0.886 0

suloctidil 4 ‑0.9 0.00016

mitoxantrone 3 ‑0.911 0.00124

alsterpaullone 3 ‑0.943 0.00028

ciclopirox 4 ‑0.948 0

GW‑8510 4 ‑0.952 0

H‑7 4 ‑0.964 0

camptothecin 3 ‑0.975 0.00004

azacitidine 3 ‑0.976 0.00004

menadione 2 ‑0.99 0.00026

doxorubicin 3 ‑0.993 0

Note: CMap: connectivity map; CMap name refers to the name of the small drug 
molecule; N refers to the number of samples in which the drug small molecule 
participates in the experiment; Enrichment refers to the enrichment score; P refers 
to the p value.
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and may induce congestive heart failure (Von Hoff et 
al., 1979). Moreover, neonatal brain damage is one of 
the adverse outcomes of menadione, and Azacitidine is 
another potential chemotherapeutic agent for cancers. 
At present, there are no reports on the relationship be‑
tween these molecules and ICH. Additionally, the tar‑
gets of the molecules participating in ICH need to be 
further investigated.

However, this study is primarily based on a  bioin‑
formatics analysis. Therefore, inevitable limitations 
exist. First, this study was based on only one dataset, 
as there were no other qualified datasets available in 
the GEO database. Second, the key DEGs and small‑mol‑
ecule compounds identified in this study were not vali‑
dated using laboratory experiments because of limited 
experimental conditions. In future studies, the authors 
will provide up‑to‑date literature searches and verify 
the results of this study.

CONCLUSION

In conclusion, key DEGs including CCL5, CXCL8, 
ICAM1, IL‑1B, IL‑6, VCAM1, and VEGF‑A play essential 
roles in ICH. Of these, CCL5, CXCL8, and VEGF‑A have 
not been identified previously as candidate susceptibil‑
ity genes for ICH. Some small‑molecule drugs may be 
useful for the treatment of ICH.
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