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Decreased cerebral blood flow (CBF) in aging is known to induce aging‑related cerebral deteriorations, such as neuronal 
degeneration, white matter (WM) alterations, and vascular deformations. However, the effects of cerebral hypoperfusion on 
WM alterations remain unclear. This study investigates the relationship between cerebral hypoperfusion and WM total volume 
changes by assessing the trends in CBF and WM changes by meta‑analysis. In this meta‑analysis, the differences in CBF were 
compared according to cerebral hypoperfusion type and the effect of cerebral hypoperfusion on the total volume of WM 
changes in rodents. Using subgroup analysis, 13 studies were evaluated for comparing CBF according to the type of cerebral 
hypoperfusion; 12 studies were evaluated for comparing the effects of cerebral hypoperfusion on the total volume of WM 
changes. Our meta‑analysis shows that the total volume of WM decreases with a decrease in CBF. However, the reduction in 
the total volume of WM was greater in normal aging mice than in the cerebral hypoperfusion model mice. These results suggest 
that the reduction of cerebral WM volume during the aging process is affected by other factors in addition to a decrease in CBF. 
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INTRODUCTION

Cerebral hypoperfusion induces physical alter‑
ations in the white matter (WM) of the brain during 
the aging process (Hase et al., 2017). Age‑related WM 
alterations appear in the magnetic resonance imaging 
(MRI) scans as an increased intensity or a decline in the 
volume of WM areas (Fazekas et al., 1988; Salat, 2011). 
The bright WM areas on the brain MRI are called white 
matter hyperintensities (WMHs) (Rane et al., 2018). 
The increase in WMHs is a  clinically important indi‑
cator of aging and neurodegenerative disease because 
they are accompanied by symptoms such as cognitive 
impairment and reduced executive functions (Lo et al., 
2012; Crane et al., 2015). Current studies mainly report 
the relationship between cerebral blood flow (CBF) re‑
duction and WM changes by measuring WMHs (Shi et 
al., 2016). However, reports on the change in the total 

volume of WM tissue following age‑related low CBF are 
limited. Therefore, it is essential to determine the rela‑
tionship between cerebral hypoperfusion and changes 
in the total volume of WM during normal aging.

The natural decrease in CBF during aging is accom‑
panied by vascular alteration and neuronal change. The 
aged brain shows an increase in tortuous arterioles and 
the accumulation of collagen in the vessels (Brown et 
al., 2002; Kang et al., 2016). In addition, myelin alter‑
ation and breakdown, degeneration of oligodendro‑
cytes, and increase in oligodendrocyte progenitor cells 
(OPCs) are representative neuronal changes in aging, 
which eventually induces WM lesions (Kohama et al., 
2012; Liu et al., 2017). Based on these findings, CBF re‑
duction may not be considered as the sole reason for 
WM lesions in the aged brain. 

However, previous studies have revealed a  close 
relationship between CBF reduction and WM chang‑
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es. To clarify the relationship between CBF and WM 
alterations, the WM alterations induced by only CBF 
must be analyzed. In human studies, it is difficult to 
study WM alterations occurring only in a single con‑
dition of low blood flow. Therefore, an experimental 
cerebral hypoperfused animal model is needed for 
understanding the association between CBF and WM 
alterations. 

In this systematic review, we aim to evaluate the 
association between cerebral hypoperfusion and WM 
changes in rodents by we meta‑analyzed on published 
studies on the measurements of CBF and the total vol‑
ume of WM in cerebral hypoperfusion model mice and 
aging mice. 

Systematic review, data collection and analysis

This meta‑analysis was conducted according to the 
Preferred Reporting Items for Systematic Review and 
Meta‑Analyses (PRISMA) guidelines. An electronic lit‑
erature search was conducted using the PubMed and 
Cochrane library March 1996 to October 2019, with 
search key terms such as ‘chronic hypoperfusion’ and 
‘aging brain white matter’. Only English publications 
were included. Online searching of the databases was 
performed in October 2019. The keyword search was 
last accomplished on November 6, 2019. After the lit‑
erature search, appropriate data were selected. In addi‑
tion, reference citations in reviews and primary papers 
were reviewed. All the searches were restricted to ro‑
dent studies. 

The setting conditions for this meta‑analysis ac‑
cording to the possible population, intervention, and 
outcome (PICO) approach are as follows. Population is 
rodents, and intervention is normal aging and cerebral 
hypoperfusion. The comparison for each intervention 
is a  young and sham condition, respectively. The out‑
comes of this meta‑analysis are CBF and the total vol‑
ume of WM.

Exclusion criteria were as follows: studies published 
before 1996; reviews, duplicate publications, and stud‑
ies that did not include full‑text articles; human stud‑
ies, animal studies except for rodents, and genetically 
modified animals. Experimental animals with other 
diseases, such as heart failure, diabetes, or high blood 
pressure owing to aging or treatment; among the CBF 
and WM measurement methods, studies that were not 
objective in the numerical calculation, and studies in 
which CBF and WM measurements were not clear ; and 
in vitro and ex vivo studies.

Initial studies were conducted by eliminating du‑
plications and included only inclusion studies based 
on title‑abstract‑full text screening. All studies report‑

ing mean and standard deviation (SD) were included 
in the meta‑analysis (Shi et al., 2016). Two authors in‑
dependently screened the data. All data were checked 
for title, abstract, full‑text, and appropriateness. The 
primary outcomes were the weighted mean differenc‑
es in CBF between the hypoperfusion group and con‑
trol group. The secondary outcomes were weighted 
mean differences in WM volume in the same groups. 

The meta‑analyses were conducted using Review 
Manager version 5.3 software (RevMan 5.3, Copenha‑
gen, Denmark). To analyze the effect of hypoperfusion 
on CBF and the total volume of WM alterations across 
studies, the results were calculated for each compari‑
son with 95% confidence intervals (CI) using the ran‑
dom‑effects methods. The outcomes in the included 
studies were meta‑analysis using the mean difference 
(MD). Heterogeneity between study results was as‑
sessed by calculating the I2 statistic. A P‑value<0.05 was 
considered statistically significant.

The quality of the measures of selected studies was 
assessed using a modified version of the CAMARADES’ 
study quality checklist (Fig.  1) (Sadigh‑Eteghad et al., 
2017).

Second, to assess the risk of bias in the selected 
studies, the RevMan 5.3 program was used (Fig. 2).

A funnel plot was used for evaluating publication 
bias.

Study selection

A total of 6,792 publications were initially found and 
178 duplicate publications were reviewed. For eligibil‑
ity, 6,614 publications were assessed based on the title 
and abstract; 4,967 publications were excluded based 
on the title level, and 1,062 publications were excluded 
based on the abstract level. A total of 585 studies were 
evaluated based on full text; 503 were excluded, and 82 
were assessed for eligibility. A total of 25 studies were 
included in the meta‑analysis based on the eligibility 
criteria. A PRISMA flow chart summarizing the search 
and selection process is presented in Fig. 3.

The comparisons were segregated according to the 
cerebral hypoperfusion type and effect of cerebral hy‑
poperfusion on WM change. 

Two types of cerebral hypoperfusion were estab‑
lished for comparing CBF according to the low blood 
flow type; 13 studies were included. In the case of 
normal aging, the age of mice was accurately indicat‑
ed in three studies (3/13) (Farkas et al., 2011; Suenaga 
et al., 2015; Ding et al., 2019). In the other nine cases, 
the most common carotid arteries (CCAs) were oper‑
ated for inducing cerebral hypoperfusion (9/13). Five 
studies conducted suture ligation, (Ouchi et al., 1998; 
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Ohmori et al., 2011; Kitamura et al., 2012; Park et al., 
2019; Xie et al., 2019) and four studies used micro‑coils 
with an inner diameter of 0.18 mm (Shibata et al., 
2004; Nishio et al., 2010; Patel et al., 2017; Dominguez 
et al., 2018). One study used facial vein ligation with 
sutures for inducing cerebral hypoperfusion (Chen et 
al., 2009). The induction period was described when ce‑
rebral hypoperfusion was induced by surgery. Charac‑
teristics such as species, gender, number of groups, age 
(weight), anesthesia methods, and measurement units 
are also described in Table 1.

For comparing WM changes, two types of cerebral 
hypoperfusion of cerebral hypoperfusion were es‑
tablished similar to CBF comparison. To evaluate WM 
changes, the total volume of WM were compared. A to‑
tal of 12 studies were included. In the case of normal 
aging, the age of mice was accurately indicated in nine 
studies (9/12) (Sun et al., 2005; Maheswaran et al., 
2009; Yang et al., 2009; Shao et al., 2010; Shi et al., 2011;  
Nemeth et al., 2014; Yang et al., 2015a; 2015b; Ding et 
al., 2019). Two studies were used micro‑coils with an 
inner diameter of 0.18  mm for both CCAs; (Holland et 
al., 2011; 2015), one study used a 30 G needle on the left 
internal carotid artery for inducing cerebral hypoper‑
fusion (Nemeth et al., 2014). The characteristics of the 

included studies of the effects of cerebral hypoperfu‑
sion on WM change are described in Table 2. One study 
overlapped for each comparison but described sepa‑
rately for each comparison (Table 2).

Meta‑analysis of the effects of cerebral 
hypoperfusion type on CBF

The meta‑analysis of CBF according to cerebral hy‑
poperfusion was conducted using two subgroup analy‑
ses. In the subgroups, the analysis was divided into dif‑
ferent cerebral hypoperfusion types (normal aging or 
hypoperfusion model). In both the cerebral hypoper‑
fusion types, CBF decreased compared to the control 
group. CBF moderately decreased in the normal aging 
group than in the young group (MD ‑ 9.56 ; 95% CI ‑ 
11.64 to ‑ 7.49 ; P<0.00001) (Fig. 4A). CBF also decreased 
in the hypoperfusion model group than in the sham 
group (MD ‑ 23.37 ; 95% CI ‑ 32.24 to ‑ 14.51 ; P<0.00001) 
(Fig.  4C). The CBF reduction was more severe in the 
hypoperfusion model group than in the normal aging 
group. The evidence of heterogeneity was evaluated 
using I2. The heterogeneity for normal aging and hy‑
poperfusion model was I2=0% (aging and young group) 
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Fig. 1. Risk of bias of the included rodent studies according to the modified CAMARADES’ study quality checklist. (A) CAMARADES’ study quality checklist 
from selected studies of CBF change. (B) CAMARADES’ study quality checklist from selected studies of the total volume of WM change.
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and I2=97% (hypoperfusion and sham group), respec‑
tively. A funnel plot was used for evaluating the publi‑
cation bias of the studies included in each meta‑analy‑
sis (Fig. 4B, 4D). 

Meta‑analysis of cerebral hypoperfusion on WM 
change

The meta‑analysis of cerebral hypoperfusion on WM 
change was conducted using three subgroup analyses. 
In the subgroups, the analysis was divided for differ‑
ent cerebral hypoperfusion types, such as CBF compar‑
isons. In both cerebral hypoperfusion types, WM vol‑

ume decreased compared to the control group, similar 
to the CBF comparisons. For the analysis of studies with 
different units of measurement, in case of aging and 
young group was divided into two analysis. The WM 
volume in most of the studies tended to decrease in 
the normal aging group than in the young group (MD 
‑ 24.46 ; 95% CI ‑ 39.15 to ‑ 9.76 ; P<0.00001) (Fig.  5A) 
(MD ‑ 0.07 ; 95% CI ‑ 0.16 to ‑ 0.03 ; P=0.16) (Fig. 5C). The 
WM volume also decreased in the hypoperfusion model 
group than in sham group (MD ‑ 0.04 ; 95% CI ‑ 0.05 to ‑ 
0.03 ; P<0.00001) (Fig. 5E). The WM volume reduction in 
the normal aging group was more than in the hypoper‑
fusion model group. The evidence of heterogeneity was 
evaluated using I2. The heterogeneity between normal 
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Fig. 2. Risk of bias chart from the included studies. (A) Bias risk chart from the selected studies of CBF change. (B) Bias risk chart from the selected studies 
of the total volume of WM change. 
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aging group and young group was I2=100% and I2=35%, 
respectively. The heterogeneity between hypoperfu‑
sion model group and sham group was I2=0%. A funnel 
plot was used for evaluating publication bias of each 
subgroup analysis (Figs 5B, 5D, 5F).

Meta‑analysis of cerebral hypoperfusion on WM

This meta‑analysis showed that the total volume of 
WM decreased during cerebral hypoperfusion in ro‑
dents. In the majority of studies, the total volume of 
WM tended to decrease in the normal aging than in 
the young group. In addition, the subgroup analysis 
showed that the total volume of WM reduction in the 
normal aging mice was higher than that in the cerebral 
hypoperfusion model mice group. These results sug‑
gest that the reduction in WM volume during normal 
aging is regulated by cerebral hypoperfusion and other 
factors involved. 

Cerebral hypoperfusion during aging is considered 
to be one of the causes of neurodegenerative brain dis‑
ease and cerebral vascular disease (Farkas et al., 2007; 
Zhao and Gong, 2015). However, the effects of aging and 
cerebral hypoperfusion on the brain are still not clear‑
ly distinguished. In human studies, there is a  limit to 
applying a  single condition of cerebral hypoperfusion 
over a long period of time. To investigate the effect of 
a single condition of CBF reduction on the brain, a se‑
lection of studies that artificially induced cerebral hy‑
poperfusion in experimental animals is necessary. The 
chronic hypoperfusion mouse model induced by com‑
mon carotid artery stenosis (BCAS) has been evaluat‑
ed as a reliable model for studying vascular dementia, 
such as cerebral hypoperfusion (Ihara and Tomimoto 
2011; Bink et al., 2013; Madigan et al., 2016). In addition, 
the cerebral hypoperfusion model using microcoils can 
be used for studying WM lesions caused by cerebral hy‑
poperfusion that show a  moderate CBF reduction and 
low mortality (Shibata et al., 2004). We meta‑analyzed 
studies using normal aging mice, BCAS model mice, and 
microcoils used model mice. The results of our analysis 
showed that CBF levels were slightly lower in the ce‑
rebral hypoperfusion model mice than in the normal 
aging mice.

Age‑related changes in WM are common based on 
animal and human research (Brickman et al., 2009). The 
decrease in CBF has been known to be closely related 
to cerebral WM changes during aging (Crane et al., 
2015). Several studies have reported that the cerebral 
hypoperfusion model presents WM lesions, abnormal 
inflammatory hyper‑activation, and changes in neuro‑
nal morphology (Yoshizaki et al., 2008; Hattori et al., 
2014; Mitome‑Mishima et al., 2014; Wang et al., 2016; 
Park and Lee, 2018; Somredngan and Thong‑Asa, 2018). 
The cerebral WM alterations were measured by the 
change in WMHs using MRI (Fazekas et al., 1988; Salat, 
2011). Previous clinical studies have shown that WMHs 
increase with decreasing CBF (Bahrani et al., 2017; Rane 
et al., 2018). These findings indicate that the changes in 
the macroscopic properties of cerebral WM are caused 
by cerebral hypoperfusion. However, Gurol (2013) re‑
ported the highest probability that WMHs may reduce 
blood flow. Moreover, Shi et al. (2016) reported that CBF 
reduction was greater in patients with severe WMHs, 
and suggested that cerebral hypoperfusion is more like‑
ly a consequence of WM change than the cause. Hence, 
the causal relationship between cerebral hypoperfu‑
sion and WM changes is still controversial. Therefore, 
we used a cerebral hypoperfusion model to determine 
whether cerebral hypoperfusion induces WM change.

The changes in WM are represented by the change 
in the volume of WM on MRI examination. WM atrophy 
is positively related to WMHs, which is a marker in the 
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Fig. 3. PRISMA flow chart of literature search and data selection.
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traumatic brain injury, depression model, and chron‑
ic neurodegeneration (Gao et al., 2017; Marion et al., 
2019). Brain atrophy is known to occur not only in neu‑
rodegenerative diseases such as Alzheimer’s disease 
but also in natural aging processes. Imaging studies 
have reported that brain atrophy predicts CBF reduc‑
tion (van Es et al., 2010; Zonneveld et al., 2015). Howev‑
er, most studies have revealed an association between 
cortical atrophy and CBF (Schmidt et al., 2005; Chen et 
al., 2011). In a meta‑analysis by Melazzini et al. (2021) 

a significant positive correlation was present between 
WMHs and age in individuals older than 50  years. In 
addition, a  meta‑analysis by Shi et al. (2016) reported 
the relationship between low CBF and WMHs severity. 
Few studies have examined changes in the WM volume. 
However, the change in both WMHs and WM volume oc‑
curs in the normal aging process, so it is also necessary 
to clarify the association between CBF reduction and 
the total volume of WM (de Leeuw et al., 2001; Bennett 
and Madden, 2014). In our review, we evaluated the as‑
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Table 1. Summary of the characteristics of included studies of the comparison of cerebral hypoperfusion type of CBF change.

Study Species Age  
or weight

Methods of 
anesthesia

Methods of 
measuring 
CBF

Units  
of CBF

Method of 
hypoperfusion 
induction

Induction 
period Comparison Measuring 

area

1 Farkas E  
et al., 2011 Wistar rats

Young  
(2 months; n=6), 
old  
(10 months; n=8)

Chloral hydrate 
(400 mg/kg, i.p.) LDF % – – Aging/ young Cerebral 

cortex

2 Suenaga J  
et al., 2015 C57bl/6J

Young  
(10 weeks; n=4), 
old  
(18 months; n=4)

1.5% isoflurane

Laser 
speckle 
contrast 
imager

% – – Aging/ young Cerebral 
cortex

3 Ding G 
et al., 2019 Wistar rats

Young (2‑3 
months; n=10) 
old (14‑15 
months; n=10)

1.0‑1.5% 
isoflurane MRI (PASL) C – – Aging/ young Cerebral 

cortex

4 Ouchi Y  
et al., 1998 Wistar rats

Sham 
(200‑350 g; n=6), 
hypoperfusion 
(200‑350 g; n=6)

Chloral hydrate 
(300 mg/kg, i.p.) MRI mL/100g/

min

Both cca 
double‑ligated 
with silk sutures

1 months Hypoperfusion 
model / sham

Frontal 
cortex

5 Shibata M  
et al., 2004 C57bl/6J

Sham 
(10 weeks; n=7), 
hypoperfusion 
(10 weeks; n=12)

Sodium 
pentobarbital 
(50 mg/kg, i.p.)

LDF %
Both cca twisted 
with 0.18 mm 
microcoils

2 h Hypoperfusion 
model / sham

Cerebral 
cortex

6 Chen L  
et al., 2009

Sprague Dawley 
rats

Sham  
(300‑400 g; n=25), 
hypoperfusion 
(300‑400 g; n=35) 

0.7% 
α‑chloralose, 
0.7% sodium 
biborate, and 
14% urethane 
(0.5 mL per 100 g 
of rat weight, 
i.p.)

Laser 
Doppler 
needle

%

Right anterior 
facial vein was 
ligated with 10‑0 
nylon suture

12 weeks Hypoperfusion 
model / sham

Occipital 
lobe

7 Nishio K  
et al., 2010 C57bl/6J

Sham 
(16 weeks; n=5), 
hypoperfusion 
(16 weeks; n=6)

Sodium 
pentobarbital 
(50 mg/kg, i.p.)

LSF %
Both cca twisted 
with 0.18 mm 
microcoils

3 months Hypoperfusion 
model / sham

Cerebral 
cortex

8 Ohmori Y  
et al., 2011 Wistar rats

Sham  
(300‑350 g; n=10), 
hypoperfusion 
(300‑350 g; n=10)

4% halothane LDF %
Both cca ligated 
with 4‑0 silk 
sutures

21 days Hypoperfusion 
model / sham

Frontal 
lobe

9 Kitamura A  
et al., 2012

Wistar‑Kyoto 
rats

Sham (12‑14 
weeks; n=6), 
hypoperfusion 
(12‑14 weeks; 
n=6) 

1.5% isoflurane LSF % Both cca ligation 
with silk suture 28 days Hypoperfusion 

model / sham
Frontal 
cortex

10 Dominguez R 
et al., 2018 C57bl/6J

Sham  
(12 weeks; n=14), 
hypoperfusion 
(12 weeks; n=14)

2% isoflurane LDF %
Both cca twisted 
with 0.18mm 
microcoils

Immediately 
after surgery

Hypoperfusion 
model / sham

Cerebral 
cortex

11 Park JH
et al., 2019 Wistar rats

Sham  
(8 weeks; n=22), 
hypoperfusion 
(8 weeks; n=22)

2% isoflurane LDF %
Both cca 
double‑ligated 
with silk sutures

28 days Hypoperfusion 
model / sham

Cerebral 
cortex

12 Xie X 
et al., 2019

Sprague‑Dawley 
rats

Sham 
(3 months; n=8), 
hypoperfusion 
(3 months; n=8)

3% sodium 
pentobarbital 
(0.1ml/ 100g)

MRI %
Both cca 
double‑ligated 
with silk sutures

28 days Hypoperfusion 
model / sham

Parietal 
cortex

Note: All the studies were carried out with the male mice. CCA: common carotid artery; CBF: cerebral blood flow; i.p.: intraperitoneal injection; M: male; MRI: magnetic resonance 
imaging; n: the number of animals; LDF: Laser doppler flowmeter; LSF: Laser speckle flowmetry; PASL: pulsed arterial spin labeling.
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sociation between cerebral hypoperfusion and changes 
in WM volume in studies that measured the total vol‑
ume of WM.

Our meta‑analysis shows the correlation between 
a decrease in CBF and a change in WM volume in a ro‑
dent cerebral hypoperfusion model. The total volume 
of WM slightly decreased in the cerebral hypoperfu‑
sion model mice than in the sham mice, which showed 
that CBF reduction alone can affect WM changes. How‑
ever, in the comparison of the aging group and young 

group, WM volume is clearly different. The results of 
our analysis show an average WM volume reduction of 
approximately 10% in most of the aging group of the 
included studies. Therefore, it was shown that WM 
atrophy occurs more certainly in the normal aging 
condition than in the cerebral hypoperfusion induc‑
tion condition. These results show that WM volume 
decreases as CBF decreases, which indicates that CBF is 
closely related to the changes in WM. However, it can 
be speculated that the change in WM is also affected by 
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Table 2. Summary of the characteristics of included studies of the comparison of cerebral hypoperfusion effects on the total volume of WM change.

Study Species Gender Age  
or weight

Methods of 
anesthesia

Methods of 
measuring WM

Units  
of WM

Method of 
hypoperfusion 
induction

Induction 
period Comparison Measuring 

area

1 Yang S 
et al., 2009

Long‑Evans 
rats F

Young  
(6‑8 months; 
n=5), old  
(27 months, n=8)

4% chloral 
hydrate  
(1 ml/100 g)

Stereological 
measurements mm3 – – Aging / young White 

matter

2 Maheswaran 
S et al., 2009 C57Bl/6 M

Young  
(6 months; n=11), 
old  
(14 months; n=11)

5% isoflurane MRI mm3 – – Aging / young Corpus 
callosum

3 Shao WH 
et al., 2010

Long–Evans 
rats F

Young  
(7 months; n=10), 
old  
(27 months; n=10)

4% chloral 
hydrate 
(10 mL/kg)

Stereological 
measurements mm3 – – Aging / young White 

matter

4 Shi XY 
et al., 2011

Long–Evans 
rats F

Young  
(6‑8 months; n=5, 
old  
(27 months; n=5)

4% chloral 
hydrate MRI mm3 – – Aging / young White 

matter

5 Yang S 
et al., 2015a

Sprague-
Dawley rats F

Young  
(6 months; n=10), 
old  
(14 months; n=12)

4% chloral 
hydrate 
(10 ml/kg)

Stereological 
measurements mm3 – – Aging / young White 

matter

6 Yang S 
et al., 2015b

Sprague-
Dawley rats M

Young  
(6 months; n=12), 
old  
(24 months; n=12)

4% chloral 
hydrate 
(1 ml/100 g)

MRI mm3 – – Aging / young White 
matter

7 Ding G
et al., 2019 Wistar rats M

Young (2‑3 
months; n=10), 
old (14‑15 
months; n=10)

1.0‑1.5% 
isoflurane MRI ms – – Aging / young Corpus 

callosum

8 Song SK 
et al., 2004

Swiss 
Webster –

Young  
(3 months; n=10), 
old  
(15 months; n=8)

5% isoflurane MRI 10‑3mm2/s – – Aging / young Corpus 
callosum

9 Sun SW 
et al., 2005 B6/SJL M, F

Young  
(8 months; n=8), 
old  
(18 months; n=8)

5% isoflurane MRI μm2/ms – – Aging / young Corpus 
callosum

10 Nemeth CL 
et al., 2014 Wistar rats M

Young  
(3 months; n=7), 
old  
(16 months; n=7) 
/sham 
(3 months; n= 9), 
hypoperfusion 
(3 months; n= 9)

isoflurane MRI FA

30 G needle 
to the left 
internal 
carotid artery

14 days
Aging / young + 
hypoperfusion / 
sham

Corpus 
callosum

11 Holland PR 
et al., 2011 C57Bl/6 M

Sham (n=8), 
hypoperfusion 
(n=15), 25-30 g

5% isoflurane MRI FA

Both cca 
twisted with 
0.18 mm 
microcoils

1 months Hypoperfusion 
model / sham

Corpus 
callosum

12 Holland PR 
et al., 2015 C57Bl/6 M

Sham (25‑30 g; 
n=11), 
hypoperfusion 
(25–30 g; 
n=20)

5% isoflurane MRI FA

Both cca 
twisted with 
0.18 mm 
microcoils

6 months Hypoperfusion 
model / sham

Corpus 
callosum

CCA: common carotid artery; F: female; FA: fractional anisotropy; i.p.: intraperitoneal injection; M: male; MRI: Magnetic resonance imaging; n: the number of animals;  
WM: white matter.
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Fig. 4. Meta‑analysis of CBF difference according to cerebral hypoperfusion type. (A) Comparison of changes in CBF was analyzed between normal aging 
and young group using forest plot. (B) Funnel plot used for evaluating publication bias for the included studies of a forest plot (A). (C) Comparison of 
changes in CBF was analyzed between hypoperfusion model and sham group using forest plot. (D) Funnel plot used for evaluating publication bias for the 
included studies of a forest plot (C). CBF, cerebral blood flow.



Cerebral hypoperfusion in the white matterActa Neurobiol Exp 2021, 81 303Acta Neurobiol Exp 2021, 81: 295–306



Mun et al.

other aging processes because the decrease in the total 
volume of WM appears to be greater in aging mice. The 
changes in neurons, blood vessels, and other factors 
owing to aging can affect WM changes. Further anal‑
ysis of other factors affecting WM changes will help 
identifying the mechanism of WM changes owing to 
cerebral hypoperfusion. 

Our analysis has several limitations. First, only a few 
studies were included in this meta‑analysis. Particular‑
ly, in the comparison of the differences in CBF accord‑
ing to cerebral hypoperfusion type, there were only 
three studies in the normal aging group. Second, for the 
cerebral hypoperfusion model, the induction period 
was short. Because chronic cerebral hypoperfusion has 
been associated with the aging process, a chronic lev‑
el of cerebral hypoperfusion induction period is more 
appropriate for comparing cerebral hypoperfusion in 
the aging process using a cerebral hypoperfusion mod‑
el (Santiago et al., 2018). The induction periods of the 
cerebral hypoperfusion model in our study were as 

follows: two studies were performed for 12 weeks, five 
studies for approximately four weeks, one experiment 
for 2  h after the surgery, and two studies were mea‑
sured for CBF immediately after the surgery. To under‑
stand the effect of chronic cerebral hypoperfusion on 
WM changes, further studies with prolonged cerebral 
hypoperfusion periods are needed. Third, in the com‑
parisons of the effect of cerebral hypoperfusion on WM 
changes, the number of cerebral hypoperfusion model 
studies was relatively small than that in normal aging 
studies. Owing to several limitations of animal exper‑
iments, only a  few studies measured the total volume 
of WM in the cerebral hypoperfusion model. Finally, 
the studies included in each comparison had relative‑
ly high heterogeneity. Because of the characteristics 
of animal experiments, various surgical and measure‑
ment methods were used, so most of the included stud‑
ies were not measured on the same scale. Therefore, 
the studies that belonged to the same comparison were 
evaluated as having a high heterogeneity. 
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Fig. 5. Meta‑analysis of cerebral hypoperfusion effects on the total volume of WM change between cerebral hypoperfusion (aging, hypoperfusion model) 
and control (young, sham) groups. (A) Comparison of changes in the total volume of WM was analyzed between normal aging and young group using 
forest plot. (B) Funnel plot used for evaluating publication bias for the included studies of a forest plot (A). (C) Comparison of changes in the total volume 
of WM was analyzed between normal aging and young group using forest plot. (D) Funnel plot used for evaluating publication bias for the included studies 
of a forest plot (C). (E) Comparison of changes in the total volume of WM was analyzed between hypoperfusion model and sham group using forest plot. 
(F) Funnel plot used for evaluating publication bias for the included studies of a forest plot (E). WM, white matter.
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CONCLUSION

In conclusion, despite the large heterogeneities 
across included studies, this systematic review shows 
that the tendency for a  reduction in the total volume 
of WM is affected by a  decrease in CBF. Particularly, 
a  greater more decrease in the WM volume in aging 
mice than in the cerebral hypoperfusion model. These 
results support the existing studies that WM changes 
in aging are regulated by not only in cerebral hypoper‑
fusion but also in various other factors (Liu et al., 2017; 
Bagi et al., 2018). In other words, a decrease in CBF in 
aging is one of the causes affecting WM change, and it 
is expected that other factors including alteration of 
vascular and neuronal cell will also affect the change in 
WM volume. If further analysis of other factors will be 
performed in the future, the mechanism of WM alter‑
ations during aging processes will be clarified. These 
results will also help to identify the cause of cerebral 
changes during aging at the clinical level.
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