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Anxiety is a  complex psychological state which happens after stressful life experiences. Many factors such as daily life events, 
neurotransmitter systems, and different brain areas could influence anxiety behavior in humans and animals. For example, opioids and 
androgens decrease anxiety behavior both in humans and animals. Furthermore, removing the testes (gonadectomy) causes higher 
levels of anxiety‑like behaviors, in which the administration of testosterone and opioid antagonist can reverse some of these behaviors. 
We review the effects of morphine and androgens on the modulation of anxiety behavior in gonadectomized animals. We begin by 
highlighting the effects of opioid drugs and androgens on the modulation of anxiety behavior that have been implicated in anxiety 
behavior. We then discuss the functional consequences of gonadectomy on anxiety behavior. Finally, we consider how the opioids and 
androgens may contribute to adaptive responses associated with anxiety. 
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INTRODUCTION 

Anxiety is a  complex psychological process that of‑
ten occurs after stressful life experiences. In a number of 
cases, it is adaptive since it prepares the organism for fu‑
ture stressful encounters. Nevertheless, if prolonged or 
exaggerated over time, anxiety induces many abnormal 
and maladaptive thoughts and behaviors (Leuner and 
Shors, 2012). Anxiety disorders are the most common of 
all psychiatric disorders; though, the current human and 
animal investigation has yet to provide a  clear under‑
standing of the neural mechanisms underlying their eti‑
ology. Understanding the effect of hormones on the neu‑
robiological systems which modulate anxiety behavior 
will increase our capacity to develop new drug targets 
to treat several mental illnesses in humans (McHenry et 
al., 2014). In fact, animal behavioral profiles are usually 
employed to evaluate new therapeutic agents to treat 
anxiety disorders and to evaluate the mechanism of ac‑
tion of anxiolytic drugs (Siepmann and Joraschky, 2007). 

Several lines of research support the role of opioid 
receptors on the modulation of anxiety (Perrine et al., 
2006; Erbs et al., 2012; Miladi‑Gorji et al., 2012). For ex‑
ample, anxiety‑like responses in mice are differentially 
affected by the activation of opioid receptors which the 
effects depend on the social status of the animals (Ku‑
dryavtseva et al., 2004). Several studies indicated that 
systemic administration of µ‑opioid receptor agonists 
induces anxiolytic‑like effect (Zarrindast et al., 2005; 
Solati et al., 2010; Eslimi et al., 2011), while the opioid 
receptor antagonists increase anxiety (Zarrindast et 
al., 2008; Rezayof et al., 2009; Zarrindast et al., 2010).

Moreover, many investigations demonstrate that 
some androgens possess anxiolytic‑like activity both 
in humans and animal models (Frye and Edinger, 2004; 
Giltay et al., 2012; McDermott et al., 2012; Terburg et 
al., 2016). Testosterone is the main circulating andro‑
gen. It interacts with classic androgen receptors, there‑
by induce anxiolytic‑like activity (Fernandez‑Guasti 
and Martinez‑Mota, 2005). Investigations from human 
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and rodent studies have revealed that levels of testos‑
terone are inversely correlated with levels of anxiety 
(Frye and Seliga, 2001; Khera, 2013; Khakpai, 2014; Dos‑
sat et al., 2017). 

Removing the testes (gonadectomy), the main 
source of testosterone, causes higher levels of behav‑
ior indicative of anxiety in a  variety of tasks, in male 
rats (Justel et al., 2012a). Testosterone deficiency syn‑
drome, also recognized as late‑onset hypogonadism, is 
a  clinical and biochemical syndrome that can happen 
in men in relation to advancing age. The condition is 
characterized through deficient testicular production 
of testosterone. It may influence many organ systems 
and can result in substantial health consequences (Mo‑
rales et al., 2015).

The appropriate use of testosterone replacement 
therapy advised the management of testosterone de‑
ficiency syndrome (Morales et al., 2015). Also, the re‑
lationship between testosterone levels and anxiety 
disorders in humans and animals is evident with hy‑
pogonadism (long‑term) and gonadectomy (short‑ and 
long‑term) in male humans and rodents, respectively. 
Numerous researches indicated that testosterone‑re‑
placement therapy for short‑ and long‑term in hypogo‑
nadal men and gonadectomized male rodents critically 
alleviates anxiety (Fernandez‑Guasti and Martinez‑Mo‑
ta, 2005; Zarrouf et al., 2009; McHenry et al., 2014). 

Interestingly, opioids play a  role in the effects of 
androgen in modulating anxiety behavior. So, investi‑
gations show the involvement of testosterone and opi‑
oid system in anxiogenic‑like behaviors induced by go‑
nadectomy in adult male rats for short‑term (10 days) 
(Khakpai, 2014). Here, we review the effects of mor‑
phine and androgens on the modulation of anxiety be‑
havior. We also consider how gonadectomy may induce 
anxiety behavior, as well as gonadectomy‑treatment, 
may reverse responses associated with anxiety. 

The effect of opioid system on anxiety behavior

Opioid peptides play a  role in many functions, in‑
cluding pain perception, respiration, homeothermy, 
nutrient intake, and the immune response. Moreover, 
studies have demonstrated the role of opioid receptors 
in regulating baseline anxiety states and related be‑
haviors (Roeska et al., 2008; Solati 2011; McHugh et al., 
2017; Wang et al., 2017). These functions are mediated 
by three major classes of G protein‑coupled receptors, 
µ, δ and κ, whose activation inhibits adenylyl cyclase 
(Kahveci et al., 2006). It is well known that systemic 
injection of µ‑opioid receptor agonists including mor‑
phine causes the anxiolytic‑like effect (Zarrindast et al., 
2005; Solati et al., 2010; Eslimi et al., 2011), probably by 

interacting with the GABAergic system (Le Merrer et 
al., 2006). In contrast, the opioid receptor antagonists 
enhance anxiety in various behavioral animal tests 
such as the elevated plus‑maze (Zarrindast et al., 2008; 
2010; Rezayof et al., 2009). It has been revealed that 
both intra‑peritoneal (Shin et al., 2003), and intra‑ce‑
rebral (Zarrindast et al., 2005) injections of morphine 
potently induced anxiolytic effects. Studies performed 
in rodents demonstrated that µ‑ and δ‑opioid receptors 
are involved in the control of emotional responses, in‑
cluding anxiety and depressive‑like behaviors (Erbs et 
al., 2012). Cat odor exposure produced a significant in‑
crease in the expression of pro‑opiomelanocortin and 
µ‑opioid receptor genes in the brain structures relat‑
ed to anxiety (amygdala) and motivation (mesolimbic 
area). Anxiety response produced via the odor of a pred‑
ator is an innate behavioral response and evolutionarily 
highly conserved. There is a report showing that a cloth 
impregnated with cat odor placed on the cage of rats 
caused a  robust anxiogenic‑like action in rats. This is 
also coherent with the hypothesis that morphine en‑
hances defensiveness in a  situation related to the cat 
odor stimuli and also morphine eliminates ultrasonic 
vocalizations evoked by cat odor, which supports the 
assumption that the opioid system mediates behavioral 
responses associated with anxiety (Areda et al., 2005). 
Moreover, withdrawal from chronic opiates is related to 
an increase in anxiogenic‑like behaviors, but the anx‑
iety profile in the morphine‑dependent animals is not 
clear (Buckman et al., 2009; Pooriamehr et al., 2017; Kim 
et al., 2018). Additionally, recent investigations have 
revealed that voluntary exercise can decrease anxiety 
levels in rodents. Miladi‑Gorji and coworkers (2012) re‑
ported that voluntary exercise decreases the severity 
of the anxiogenic‑like behaviors in both morphine‑de‑
pendent and withdrawn rats. Therefore, voluntary exer‑
cise could be a potential natural method to ameliorate 
a number of the deleterious behavioral consequences of 
opiate abuse. In addition, anxiety has been described as 
key comorbidity in patients suffering from chronic pain. 
It has been reported that rats subjected to neuropathic 
pain models develop anxiety‑like behavior which can 
be reversed through appropriate analgesic treatment 
such as morphine and gabapentin (Roeska et al., 2008). 
Many neurotransmitter systems including cannabinoid, 
acetylcholine, histamine, dopamine (Zarrindast et al., 
2005; 2008; Rezayof et al., 2009) in different sites of the 
central nervous system (CNS) such as the hippocampus 
and amygdala have been proposed to be involved in the 
modulation of morphine functions on anxiety behavior 
(Solati et al., 2010; Kesmati et al., 2014). 

Collectively, µ‑ and δ‑opioid receptors are involved 
in the modulation of anxiety‑like behaviors (Erbs et al., 
2012). So that administration of opioid agonists induced 
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anxiolytic‑like effect (Zarrindast et al., 2005; Solati et al., 
2010; Eslimi et al., 2011), but the application of opioid 
antagonists induced anxiogenic‑like response (Zarrin‑
dast et al., 2008; 2010; Rezayof et al., 2009). In the present 
review, the possible mechanism(s) between the opioid 
system and androgens in the modulation of anxiety‑like 
behaviors have been investigated.

The effect of androgens on anxiety behavior

Many investigations demonstrate that some andro‑
gens possess anxiolytic‑like activity both in humans 
and animal models (Frye and Edinger, 2004; Giltay et 
al., 2012; McDermott et al., 2012; Terburg et al., 2016). 
Testosterone is a  main circulating androgen. Prelimi‑
nary researches suggest that testosterone may have 
anxiety‑decreasing and cognitive‑increasing proper‑
ties in animals and people (Frye and Seliga, 2001; Her‑
mans et al., 2006; Miller et al., 2009). It interacts with 
classic androgen receptors, proposing that its anxiolyt‑
ic‑like activity could be mediated via this mechanism 
(Fernandez‑Guasti and Martinez‑Mota, 2005). Testos‑
terone secretion is under the quick pulsatile control of 
gonadotropin‑releasing hormone (GnRH) that in turn 
activates the production of luteinizing hormone (LH). 
The brain has receptors for testosterone and is capable 
of synthesizing and metabolizing testosterone too, for 
example, estradiol. It has been reported that low sali‑
vary testosterone levels are related to both depressive 
and anxiety disorders (Giltay et al., 2012). 

Testosterone plays a role in many behaviors associ‑
ated with sexual and reproductive function as well as 
fear and anxiety behaviors (King et al., 2005; Carrier 
and Kabbaj 2012; McDermott et al., 2012). A wide body 
of evidence demonstrates an anxiolytic‑like effect of 
testosterone (Justel et al., 2012a; Kim and Spear 2016; 
Liang et al., 2018). There is also considerable document 
for fear‑ and anxiety‑reducing properties of testos‑
terone across a  number of species, such as rats, mice, 
ewes, and humans (van Honk et al., 2005; Lacreuse et 
al., 2010; Domonkos et al., 2017). Studies revealed that 
subcutaneous administration of testosterone increases 
anti‑anxiety behavior in the elevated plus‑maze, zero 
mazes, and Vogel task and also enhances motor behav‑
ior in the activity monitoring test in aged intact male 
C57/B6 mice (Frye et al., 2008). In animal models, the 
anxiolytic‑like activity of androgens have been report‑
ed after different schedules; so, whereas some found 
immediate actions (Frye and Edinger, 2004), others 
reported decreased anxiety only after a  long chronic 
administration (Fernandez‑Guasti and Martinez‑Mo‑
ta, 2005). It has been demonstrated that the androgen 
receptors play a role in regulating anxiety‑related be‑

haviors, as well as corticosterone responses and neural 
stimulation following exposure to a mild stressor in ro‑
dents (Zuloaga et al., 2011). 

In humans, gonadal hormones affect mood disor‑
ders such as anxiety and depression. Women are de‑
tected with anxiety disorders and depression more of‑
ten than are men, and these disorders often coincide 
with a  decrease in levels of estrogen during meno‑
pause (Arpels, 1996). Moreover, estrogen replacement 
therapy has been revealed to decline anxiety in post‑
menopausal women (Yazici et al., 2003). In men, alike 
but a less abrupt decrease in androgen levels with age 
is also often accompanied through symptoms of anxi‑
ety and depression (Kaminetsky 2005; Eskelinen et al., 
2007). Androgen treatment of aging men, or of younger 
men with reduced testicular production of testoster‑
one, improves some of these symptoms in both aging 
and younger men (Eskelinen et al., 2007; Amore et al., 
2009; Seidman et al., 2009; Zuloaga et al., 2011). Fur‑
thermore, disorders of anxiety and fear dysregulation 
are highly prevalent. These disorders affect wom‑
en nearly 2  times more than they affect men, occur 
predominately during a  woman’s reproductive  years, 
and are particularly prevalent at  times of hormon‑
al flux. This suggests that gender differences and sex 
steroids play a main role in the regulation of anxiety 
and fear (Toufexis et al., 2006). Gender differences in 
the age‑of‑onset and prevalence of psychiatric disor‑
ders such as anxiety and depression indicate that sex 
hormones may modify symptoms of mental illness. 
Fear‑potentiated startle is a  translational measure of 
fear and anxiety as recent investigations have shown 
fear‑potentiated startle in monkeys is reliably de‑
creased by anxiolytics such as diazepam and morphine. 
Fear‑potentiated startle is also changed in people with 
depression and anxiety (Toufexis et al., 2006; Morris et 
al., 2010). Correspondingly, boys and girls with low tes‑
tosterone levels display greater indices of depression 
and anxiety than those with high testosterone (Eding‑
er and Frye 2005; Zuloaga et al., 2011). Granger et al. 
(2003) reported that young boys and girls with lower 
salivary testosterone levels are more likely to experi‑
ence higher levels of anxiety, depression and attention 
problems throughout the day compared to boys and 
girls of the same age with higher salivary testosterone 
levels. Androgen reduction related to aging is associat‑
ed with negative mood and increased anxiety in men 
and women. These results suggest that androgens may 
have organizational and/or activational properties on 
mood and anxiety in people (Edinger and Frye, 2005; 
Domonkos et al., 2018). Although the clinical research‑
es of testosterone therapy in women are more limited, 
some studies support anxiolytic roles for testosterone 
(Miller et al., 2009). In fact, women with a type of anxi‑
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ety disorder, such as generalized anxiety express lower 
levels of salivary testosterone, compared to emotion‑
ally healthy women (Giltay et al., 2012). Clinical docu‑
ments suggest that testosterone has anxiolytic bene‑
fits, with the potential to promote improved mood in 
both women and men (McHenry et al., 2014). 

At least two non‑exclusive mechanisms may me‑
diate the behavioral functions of steroid hormones. 
A  classic genomic mechanism contains the coupling 
of the steroid hormone to intracellular receptors 
which are translocated to the nucleus and activate 
protein‑synthesis. Furthermore, an alternative mech‑
anism includes the activation of membrane receptors 
coupled to neurotransmitter receptor systems, as is 
the case of the GABAA‑benzodiazepine receptor com‑
plex. There is evidence showing that testosterone ex‑
erts its anxiolytic‑like activity via its conversion to the 
reduced metabolites with the consequent activation 
of the GABAA receptor complex (Aikey et al., 2002; Fer‑
nandez‑Guasti and Martinez‑Mota, 2005). In addition, 
testosterone activates the hypothalamic‑pituitary‑ad‑
renal axis, anxiety‑related behavior, corticosterone re‑
sponses, and sensorimotor gating in rodents (Zuloaga 
et al., 2011). Additionally, injection of either estrogens 
or androgens generally results in reduced indices of 
anxiety and depression‑related behaviors in rodents 
(Frye et al., 2008). Studies suggest that anxiolytic func‑
tions of estrogens are largely mediated via activation 
of the estrogen receptor (Lund et al., 2005). Particular‑
ly, testosterone treatment declines, whereas estrogen 
treatment enhances, the release of stress hormones 
adrenocorticotropic hormone (ACTH) from the pitu‑
itary gland, and corticosterone from the adrenal cor‑
tex (Zuloaga et al., 2008; 2011). There is a wide body of 
evidence to propose that sexual experience may affect 
androgen secretion in many species, in turn, androgens 
may also affect anxiety. Sexual experience may change 
anxiety behavior and secretion of endogenous andro‑
gens. So, sexual experience is related to lower levels 
of anxiety‑like response and higher levels of androgen 
secretion (Edinger and Frye, 2007b). Endogenous and 
exogenous testosterone affects some behavioral traits 
as revealed in human and animal studies. The effects 
of testosterone can be mediated through androgen or 
estrogen receptors, but also through rapid non‑genom‑
ic effects. Endogenous testosterone levels have been 
revealed to be inversely related to anxiety and depres‑
sion severity (Hodosy et al., 2012). 

Additionally to endogenous androgens’ effect on 
anxiety behaviors, exogenous androgens may be used 
in part for their effects on mood. Men with low endog‑
enous androgen levels due to aging or hypogonadism 
indicate more anxiety symptoms and declined mood 
than do their androgen‑replete counterparts (Edinger 

and Frye, 2005; Meyers et al., 2010). Testosterone‑re‑
placement to such individuals can decrease some 
of the negative effects related to androgen decline 
(Edinger and Frye, 2005). Also, gonadectomy in adult 
rats for short‑term (two  weeks) declines open field 
activity in male rats and supplementation with tes‑
tosterone propionate in gonadectomized rats recov‑
ers open field activity (Zhang et al., 2011; McDermott 
et al., 2012) (Table  I). Testosterone is metabolized to 
neuroactive steroids through diverse pathways: in one 
pathway, it is converted to androstenedione and fur‑
ther reduced to androsterone; in other, it is converted 
to dihydrotestosterone which may be further reduced 
to 3α‑androstanediol. This last pathway has been sug‑
gested to involve in the decreased anxiety produced 
via androgens in intact male rats and proposes that the 
anxiolytic‑like action of androgens may require 5α‑re‑
duction (Edinger and Frye 2005; Fernandez‑Guasti and 
Martinez‑Mota, 2005). In support of this idea, Frye and 
Edinger (2004) indicated that the intrahippocampal 
injection of a  3α‑hydroxysteroid‑dehydrogenase in‑
hibitor, indomethacin, to dihydrotestosterone‑treat‑
ed rats prevented the anxiolytic‑like action induced 
by this steroid. Physiological levels of testosterone 
replacement in adult gonadectomized male, but not 
female rats, show protective properties against the 
development of anxiety‑like behaviors in a  model of 
chronic social isolation (Carrier and Kabbaj, 2012). 
Likewise, in intact aged male rodents with lower lev‑
els of testosterone, the application of testosterone 
decreases anxiety‑like behaviors in the open field 
test and light‑dark box test (Frye et al., 2008). These 
reports thus support the hypothesis that the activa‑
tional effects of testosterone can decrease behavioral 
measures of anxiety in male rodents (McHenry et al., 
2014; Domonkos et al., 2018).

Altogether, testosterone by interacting with classic 
androgen receptors induced anxiolytic‑like effect (Fer‑
nandez‑Guasti and Martinez‑Mota, 2005). In animals 
(Frye and Edinger, 2004) and human studies, gonadal 
hormones affect anxiety behavior. Gender differences in 
the age‑of‑onset and prevalence of anxiety indicate that 
sex hormones may modify symptoms of anxiety (Edinger 
and Frye, 2005; Zuloaga et al., 2011). Androgen reduction 
related to aging is associated with the enhancement of 
anxiety in men and women. It seems that androgens may 
have organizational and/or activational effects on anxi‑
ety in people (Edinger and Frye, 2005). Testosterone‑re‑
placement to such persons can decline some of the neg‑
ative effects associated with androgen decrease (Edinger 
and Frye, 2005). Similarly, gonadectomy in rats induced 
anxiogenic‑like effect which testosterone supplementa‑
tion in gonadectomized rats recovered this effect (Zhang 
et al., 2011; McDermott et al., 2012). 
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The effect of gonadectomy on anxiety behavior

Previous evidence indicates that sexual behavior 
induces an anxiolytic‑like effect decreasing the im‑
pact of several types of stressors. Second, androgens 
have been described to have anxiolytic effects in oth‑
er situations including emotional stress. For example, 
male rats administered testosterone are less disrupted 
during punished drinking testing in the Vogel para‑
digm (Bing et al., 1998) and display declined signs of 
anxiety in the elevated plus‑maze (Aikey et al., 2002), 
open field test (Edinger and Frye 2004), defensive bury‑
ing test (Fernandez‑Guasti and Martinez‑Mota, 2003), 
and defensive freezing (Edinger and Frye, 2005) rela‑
tive to vehicle‑treated rats. Additionally, enhancement 
of endogenous androgen release via sexual stimuli also 
enhances exploratory behavior in the open arms of the 
elevated plus‑maze in male mice (Aikey et al., 2002). 
As mentioned previously, gonadectomy in adult male 
rats during short‑term (10  days) as well as long‑term 
(70  days) induces higher levels of anxiety behavior 
(Svensson et al., 2000; Justel et al., 2012a; Khakpai 

2014), which testosterone administration can reverse 
some of the effects of gonadectomy (Frye and Edinger, 
2004; Justel et al., 2012a; Khakpai, 2014). Toufexis et al. 
(2005) reported that castration of male rats produced 
a  more consistent light‑enhanced startle (anxiogenic 
response), similar in magnitude to that observed in fe‑
male rats. Replacement of testosterone, at high physi‑
ological doses, significantly attenuated light‑enhanced 
startle in castrated males and further reduced it in in‑
tact male rats. This shows that circulating testosterone 
acts to decrease the response of male rats to the anx‑
iogenic stimulus of bright light (Toufexis et al., 2005).

In the open field test, animals treated with anxiolyt‑
ics display an enhanced tendency to explore the central 
location of the field (Prut and Belzung, 2003; Yan et al., 
2015). So, it was expected that exogenous testosterone 
treatment would increase activity in the central area of 
the open field. Conversely, gonadectomy in adult male 
rats for short‑term reduce activity in the central area 
of the open field (Justel et al., 2012a). The effects of go‑
nadectomy and hormone replacement for short‑term 
in adult rats on various measures of anxiety have also 
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Table I . The table explains experimental design. 

Gonadectomy Post‑operative 
period

Drug treatment Species Age Effect on anxiety Reference 

↓ Testosterone 10 days (Testosterone: 200, 300  
and 450 mg/kg)

Rat 3 month Gonadectomy → anxiogenic 
Testosterone treatment → anxiolytic 

Morphine treatment → anxiolytic 
Naloxone treatment → anxiogenic 

(Khakpai, 2014)

↓ Testosterone 2 weeks (Testosterone: 2 mg/kg) Rat 3 month Testosterone treatment → anxiolytic (Zhang et al., 2011; 
Shin et al., 2003)

↓ Testosterone 10 days (Testosterone: 25 mg/kg) Rat 2‑3 month Testosterone treatment → anxiolytic (Frye and Edinger, 
2004)

↓ Testosterone 4 to 6 weeks (Testosterone:  
10 mg per rat)

Rat 2 month Testosterone treatment → anxiolytic (Edinger and Frye, 
2004)

↓ Testosterone 4 to 6 weeks (Testosterone: 1 mg/kg) Rat 2 month Testosterone treatment → anxiolytic (Edinger and Frye, 
2005)

↓ Testosterone 3 weeks (Testosterone: 0.25, 0.50,  
1.0 mg/rat)

Rat 3 month Testosterone treatment → anxiolytic (Fernandez‑Guasti 
and Martinez‑Mota, 

2005)

↓ Testosterone 7 days (Estradiol: 5 or 10 mg/rat) Rat 2 month Estradiol treatment → anxiolytic (Walf and Frye, 
2005a)

↓ Testosterone 4 weeks (Morphine: 5 and 10 mg/kg) Rat 3 month ↓ Opioid transmission in relation  
to LHRH release

(Almeida et al., 1988)

↓ Testosterone 2 to 4 weeks (Testosterone: 1 mg/rat, 
naloxone: 1 mg/kg)

Rat 3 month Gonadal factors → opiate  
activational and/or organizational 

effect on LH secretion

(Masotto and 
Negro‑Vilar, 1988)

↓ Testosterone 13 days  
to 31 days

(Morphine: 1.5 mg/kg) Rat 3 month Tolerance → effect of morphine  
on LH secretion 

(Cicero et al., 1982)

↓ Testosterone 10 days (Oestradiol: 1.25 µg/kg, 
naloxone: 600 µg/kg)

Ferret Adult Interaction between steroids  
and opioids → regulation  

of LH secretion

(Lambert et al., 1990)

↓ Testosterone 4 weeks (µ‑receptor agonist 
(DAMGO): 1 nM, δ‑receptor 

agonist (DSLET): 5 nM)

Rat 3‑4 month Gonadectomy → failed to  
affect µ‑ or δ‑receptor agonists 

induced analgesia

(Kepler et al., 1991)
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been studied in the elevated plus‑maze (Walf and Frye, 
2005b), avoidance (Frye et al., 2004; Edinger and Frye, 
2007a) and acoustic startle response paradigms (Turvin 
et al., 2007), consequently introducing the further 
probability that anxiety in the gonadectomy and/or 
hormone‑replaced subjects could affect NOR testing 
and outcome (Aubele et al., 2008). 

Researches demonstrated that testosterone‑re‑
placement can alleviate anxiety behavior related to 
gonadectomy from 4 to 6  weeks following surgery. As 
mentioned previously, testosterone’s anti‑anxiety ef‑
fects may be modulated in part by its metabolites. Tes‑
tosterone can be aromatized to estrogen, which has 
been revealed to decline anxiety behavior in people 
and animals. However, testosterone is also metabolized 
to dihydrotestosterone. Administration of dihydrotes‑
tosterone, a nonaromatizable metabolite, can decrease 
the anxiety behavior of gonadectomized rats similarly 
to testosterone administration (Edinger and Frye, 2004; 
Frye and Edinger, 2004). Dihydrotestosterone can me‑
tabolize to 3α‑androstanediol and systemic injection 
of 3α‑androstanediol can also decrease anxiety behav‑
ior of intact or gonadectomized male or female rats 
(Edinger and Frye, 2005). Studies indicated that block‑
ing dihydrotestosterone metabolism to 3α‑androstane‑
diol with indomethacin, a 3α‑hydroxysteroid dehydro‑
genase inhibitor also increases anxiety behavior in the 
open field, elevated plus maze, and defensive freezing 
tasks of intact or dihydrotestosterone replaced male 
rats (Frye and Edinger, 2004). These findings propose 
that testosterone’s anti‑anxiety properties may be due 
in part to the actions of its 5α‑reduced metabolites, in‑
dependent of its aromatization to estrogen.

In the brain, androgen receptors are expressed 
through both neurons and glial cells and are predomi‑
nantly found in the hippocampus, amygdala, thalamus, 
hypothalamus, and cerebral cortex (Moghadami et al., 
2016). The hippocampus is a putative site of action for 
androgens’ anti‑anxiety properties. The hippocampus 
modulates the anxiety process (Bannerman et al., 2002). 
Androgens can have actions in the hippocampus. In the 
rat hippocampus, the androgen receptor is mainly con‑
centrated in the CA1 pyramidal cells. It is reasonable to 
assume the presence of an association between andro‑
gen receptors and cognitive activities (Moghadami et 
al., 2016). Castration decreases neuronal firing, enhanc‑
es vulnerability to cell death, and decreases synapse 
density in the hippocampus, effects which can be re‑
versed by androgen‑replacement (Hajszan et al., 2004). 
The enzymes necessary for testosterone’s metabolism, 
5α‑reductase, and 3α‑hydroxysteroid dehydrogenase, 
are also located within the hippocampus (Rhodes and 
Frye, 2004). As such, testosterone and dihydrotestos‑
terone are readily metabolized to 3α‑androstanediol in 

the hippocampus (Edinger and Frye, 2004). These data 
propose that testosterone’s 5α‑reduced metabolites 
may have actions in the hippocampus to modulate the 
anxiety process (Frye and Edinger, 2004; Edinger and 
Frye, 2005). 

Overall, sexual behavior caused an anxiolytic‑like 
effect. Gonadectomy for short‑term and long‑term in‑
duced higher levels of anxiety behavior (Svensson et 
al., 2000; Justel et al., 2012a; Khakpai 2014), which ad‑
ministration of testosterone can reverse some effects 
of gonadectomy (Frye and Edinger, 2004; Justel et al., 
2012a; Khakpai 2014), showing that circulating testos‑
terone decreased the response of males to the anxio‑
genic stimulus (Toufexis et al., 2005). Testosterone’s 
anti‑anxiety effects produced via 5α‑reduced metabo‑
lites (Edinger and Frye, 2004; Frye and Edinger, 2004). 

The effects of opioid antagonist and testosterone 
on the modulation of anxiety behavior

Opioids are known to play a  role in mediating the 
effects of androgen. Nonetheless, opioids have many 
adverse effects, including opioid‑induced androgen de‑
ficiency (Chrastil et al., 2014). The effect of the opioid 
system on the modulation of testosterone levels is sug‑
gested to be mediated via effects on both the hypothal‑
amus and the testes. Opiates are proposed to affect the 
release of GnRH from the hypothalamus. In the CNS, 
endogenous opioids inhibit pulsatile GnRH release, 
partly mediating the stress response within the central 
nervous‑pituitary‑gonadal axis (Bottcher et al., 2017). 
This, in turn, causes a decrease in the release of LH from 
the anterior pituitary gland, which is necessary for the 
activation of Leydig cells to produce testosterone. In 
addition, opiates were also shown to increase the sen‑
sitivity of the hypothalamus to the negative feedback 
effects of testosterone causing a  marked suppression 
in LH release (Lambert et al., 1990; Hofford et al., 2010; 
Ruka et al., 2016). Opioidergic transmission reduced, 
in relation to LHRH release, after long term castration. 
Opioid receptor activity (evaluated via responsiveness 
to an opioid receptor agonist) of female rats is main‑
tained, while that of male rats is lost, after long term 
gonadectomy (Almeida et al., 1988). Studies indicated 
that naloxone can stimulate LH release when rats go‑
nadectomized for a  few  weeks, were injected with ei‑
ther oestradiol benzoate or testosterone propionate. 
Masotto and Negro‑Vilar (1988) reported that male rats 
indicated no variation in any parameter of pulsatile LH 
secretion in response to naloxone 8 weeks after castra‑
tion whereas a small enhance in mean LH level and in 
LH pulse amplitude was observed 1 to 2 weeks after go‑
nadectomy. In gonadally intact ewes the opioid antag‑
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onist, WIN 44,441‑3, increased LH pulse frequency and 
amplitude at selected  times during the estrous cycle, 
however, it had no influence in subjects ovariectomized 
for 4 months or more. Ewes retained an ability to indi‑
cate a small enhance in LH pulse frequency when given 
an opioid antagonist 1  week after ovariectomy (Whis‑
nant and Goodman, 1988). In other researches, howev‑
er, LH responses to opioid manipulation have been ob‑
served following short‑ and long‑term castration. For 
example, Cicero and coworkers (1982) found alike LH 
response to naloxone in male rats tested 3 and 31 days 
after castration. In female rats, plasma LH levels en‑
hanced in response to naloxone 24 h, 4 days and 8 days 
after ovariectomy (Babu et al., 1988). Also, intraventric‑
ular injection of the opioid receptor agonist, β‑endor‑
phin to female rats which had been ovariectomized for 
3  weeks, produced significant reductions in LH pulse 
frequency and amplitude as compared to the LH output 
observed during a comparable saline injection. Female 
rabbits displayed dramatic rises in LH pulse amplitudes 
and mean LH levels when given an intravenous injec‑
tion of naloxone 2 weeks after gonadectomy. Although 
LH responses to naloxone are variable after short‑term 
gonadectomy in the species as mentioned, gonadal‑
ly intact subjects or animals given sex steroids after 
short‑term gonadectomy generally show an enhance 
in LH secretion in response to opioid receptor antag‑
onists (Lambert et al., 1990). Otherwise, modulation of 
the sensitivity of the hypothalamus‑pituitary axis via 
opiates was also proposed to result from a declined sen‑
sitivity of the pituitary to GnRH. Additionally to their 
effects on the hypothalamus, the opioid system was re‑
vealed to inhibit gonadal function through specific opi‑
oid receptors within the testes. This was confirmed to 
be mediated by suppression of testicular steroidogene‑
sis, which results in reductions in plasma testosterone 
levels (Hofford et al., 2010).

Animal studies also support links between anabol‑
ic‑androgenic steroids and opioids. At the physiologic 
level, testosterone increases the response to opioids. 
At the pharmacologic level, testosterone self‑admin‑
istration intracerebroventricular causes autonomic 
depression alike to opioid overdose, which is inhibited 
by the opioid antagonist naltrexone. In other studies, 
anabolic‑androgenic steroids increase morphine‑in‑
duced hypothermia (Celerier et al., 2003), even as they 
decrease the analgesic response of morphine (Philipova 
et al., 2003), and weaken tolerance to morphine’s anti‑
nociceptive effect (Celerier et al., 2003). This is consis‑
tent with anabolic‑androgenic steroids‑induced opioid 
receptor binding in the brain (Cooper and Wood, 2014). 
The effect of castration may be nociceptive because 
it enhanced morphine analgesia on the hot‑plate test 
(Ali et al., 1995). Alike to results in female rats, intra‑

cerebroventricular morphine infusions in castrated 
male rats induce analgesia on the tail‑flick and jump 
tests which are decreased in efficacy but not potency 
(Kepler et al., 1989). This effect may be CNS area‑de‑
pendent because morphine potency after infusion into 
the ventrolateral periaqueductal gray in castrated male 
rats is slightly enhanced. Generalizations cannot be 
made from morphine to other µ‑receptor agonists be‑
cause gonadectomy in adult male rats during 4  weeks 
failed to consistently affect analgesia induced by in‑
tracerebroventricular infusions of µ‑receptor‑selective 
agonist D‑Ala2‑MePhe4‑Gly‑ol5‑enkephalin (DAMGO). 
Gonadectomy in adult male rats for 4  weeks was sim‑
ilarly without action on the δ‑receptor analgesia of 
[D‑Ser2, Leu5]enkephalin‑Thr6 (DSLET) (Kepler et al., 
1991). In male mice, morphine analgesia after castra‑
tion is enhanced on the hot‑plate test and against ab‑
dominal writhing produced by acetic acid but declined 
on the tail‑flick test (Ali et al., 1995). Testosterone re‑
versed the decreased morphine sensitivity of the cas‑
trated rat (Kest et al., 2000). Results of nociceptive 
testing procedures examining the activational roles of 
gonadal hormones on opioid antinociception are some‑
what variable. In male rats, gonadectomy for short‑ 
and long‑term enhanced, declined or failed to change 
µ‑opioid antinociception. Also, in females, gonadecto‑
my during short‑ and long‑term enhanced, declined or 
did not change opioid antinociception. The variability 
across investigations that have manipulated gonadal 
hormones in adult rats might be due to the wide array 
of methodologic differences across investigations. Al‑
most every investigation has used different gonadecto‑
my test intervals (short‑ and long‑term), hormone re‑
placement regimens, opioid injection procedures, and 
nociceptive testing procedures. Investigations suggest 
that both testosterone in adult male rats and estradi‑
ol in adult female rats contribute to the sex difference 
in morphine antinociception (Craft et al., 2004). Sex 
differences in the antinociceptive effects of opioids 
have been revealed in both non‑human primates and 
rodents, with males being usually more sensitive than 
females (Terner et al., 2002; Loyd et al., 2008; Bai et al., 
2015). There is abundant evidence showing that phar‑
macokinetic factors cannot fully account for these dif‑
ferences, as opioids are more potent in males following 
central injection, and systemic injection of morphine 
causes comparable brain and plasma levels in males 
and females (Kepler et al., 1991; Kest et al., 1999; Tern‑
er et al., 2002). There is also evidence proposing that 
pharmacodynamic factors do not play a key role, as sex 
differences have not been indicated in opioid binding 
affinity and receptor density (Terner et al., 2002).

In mammals, opioids control food intake and ener‑
gy balance, and gonadal androgens interact with the 
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opioid system neurochemically and behaviorally (Ma‑
teo et al., 1992). So, pretreatment with the long‑acting 
opioid blocker naltrexone inhibited the physiologic 
and behavioral symptoms of testosterone injection and 
blocked the reinforcing effects of testosterone self‑ad‑
ministration (Peters and Wood, 2005). 

 Investigations show the involvement of testoster‑
one and opioidergic system in anxiogenic‑like behav‑
iors induced by gonadectomy during the short‑ and 
long‑term. Several studies have reported an anxiolytic 
function for morphine and µ‑opioid receptor agonists 
when injected peripherally, whereas µ‑opioid recep‑
tor antagonists tend to be anxiogenic (Le Merrer et al., 
2006; Zarrindast MR 2008). As mentioned above, the en‑
dogenous opioid system could influence testosterone 
levels via effects on the hypothalamic‑pituitary‑gonad‑
al axis and the testes (Hofford et al., 2010). Thus, the 
possible mechanism(s) between testosterone and opi‑
oid system in anxiety behavior control seem possible. 
Administration of opioids in males causes opioid pro‑
duced androgen deficiency, i.e. a significant reduction 
in plasma testosterone levels. This effect is reported in 
humans as well as in experimental animals, for exam‑
ple, rodents (Khakpai, 2014). This opioid effect is dra‑
matic, a  single administration can cause a  robust de‑
crease in testosterone levels comparable to castration. 
Moreover, tolerance does not develop to this opioid 
mediated effect, consequently, this decrease lasts for 
the entire duration of opioid administration (Aloisi et 
al., 2005).

Collectively, the opioid system could modulate tes‑
tosterone levels by affecting the release of GnRH from 
the hypothalamus. Endogenous opioids inhibited pul‑
satile GnRH release (Bottcher et al., 2017) which caused 
a  decrease in the release of LH (Lambert et al., 1990; 
Hofford et al., 2010; Ruka et al., 2016). Opioid transmis‑
sion decreased, in correlation with LHRH release, after 
long‑term castration (Almeida et al., 1988). Naloxone 
stimulated LH to release following short‑ and long‑term 
castration in adult male rats (Cicero et al., 1982). In‑
teraction between testosterone and opioidergic sys‑
tem may modulate anxiogenic‑like responses induced 
by gonadectomy during the short‑ and long‑term. (Le 
Merrer et al., 2006; Zarrindast, 2008). 

Treatment of anxiety disorders  
with androgens alone or in a combination  
with different anxiolytics

Many investigations have demonstrated that anx‑
iety‑like behaviors are influenced via peripheral and 
central factors including hormones and neurotrans‑
mitters in the diverse regions of CNS. Many types of 

research have revealed the anxiolytic effect of andro‑
gens in various methods. The most cited paper ex‑
ploring the effects of testosterone on anxiety behav‑
ior in animals and humans has presented in numer‑
ous experiments that testosterone either endogenous 
or exogenous reduced anxiety (Frye and Seliga, 2001; 
Aikey et al., 2002; Khera, 2013; Khakpai, 2014; Dossat 
et al., 2017). Furthermore, a  similar experiment indi‑
cated that this anxiolytic response of testosterone is 
dose‑dependent and very probable mediated via 5‑al‑
pha reductase which reduces testosterone to dihydro‑
testosterone. Some experiments on gonadectomized 
rats indicated that dihydrotestosterone 3‑alpha me‑
tabolites can be the mediators of testosterone anxi‑
olytic effects (Edinger and Frye, 2005). Furthermore, 
blockade of the dihydrotestosterone transformation to 
3‑alpha androstanediol via a  3‑alpha hydroxysteroid 
dehydrogenase inhibited or prevented the anxiolysis 
(Frye and Edinger, 2004; Celec et al., 2015).

The hypothalamic‑pituitary‑gonadal axis is reg‑
ulated through a  complex series of outside effects 
as well. Opioids are one of a  number of such effects. 
Studies propose that opioids, both endogenous and 
exogenous, can couple to opioid receptors principally 
in the hypothalamus, but potentially also in the pi‑
tuitary and the testis, to regulate gonadal function. 
Opioids have been presented to decline the release of 
GnRH or restrict its normal pulsatility at the level of 
the hypothalamus, resulting in a reduced release of LH 
and FSH from the pituitary and a  second fall in the 
gonadal steroid production, that is, hypogonadism. 
Direct influences of opioids on the testis, including 
reduced secretion of testosterone and testicular inter‑
stitial fluid, have also been revealed. Opioid receptors 
have also been distributed in ovarian tissue cultures 
and opioids have been revealed to directly suppress 
ovarian steroid production in vitro. Opioids have also 
been revealed to change the adrenal production of 
dehydroepiandrosterone, the main precursor of both 
testosterone in men and estradiol production in wom‑
en (Katz and Mazer, 2009). Therefore, opioids by in‑
fluencing hypothalamic‑pituitary‑gonadal activity as 
well as GnRH and LH secretion interact with andro‑
gens to modulation of anxiety behavior.

CONCLUSION 

Anxiety can be produced by various endocrine, 
autoimmune, metabolic and toxic disorders as well 
as the adverse effects of medication (Kessler et al., 
2005). Several studies have reported anxiolytic func‑
tion for morphine and androgens. One the other hand, 
withdrawal of morphine (Buckman et al., 2009; Poori‑
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amehr et al., 2017; Kim et al., 2018) and gonadectomy 
for short‑ and long‑term (Svensson et al., 2000; Justel 
et al., 2012a; Khakpai 2014) cause to anxiogenic behav‑
ior. Interestingly, the opioid system was revealed to 
play a role in gonadal hormone regulation (Hofford et 
al., 2011). The effects of opioids on testosterone levels 
have several implications for the short and long term 
health of patients requiring pain management and for 
drug addicts. Opioid treatment decreases plasma tes‑
tosterone levels in males (Aloisi et al., 2009; Hofford et 
al., 2011). This effect induces via modulation of the hy‑
pothalamic‑pituitary‑gonadal axis activity (Hofford et 
al., 2011; Khakpai, 2014). Researches indicated the ef‑
fect of opioids on the modulation of anxiety‑response 
induced by androgen. Also, opioids by modulation of 
plasma testosterone levels could modulate anxiety 
behavior in gonadectomized animals (Khakpai, 2014). 
There are reports showing that injection of the opioid 
antagonist, naloxone, produces a rise in testosterone 
concentrations and so, administration of naloxone in 
low doses is capable of modifying testosterone con‑
centrations in plasma (Gartner, 2001; Khakpai, 2014). 
Therefore, naloxone may have an effect on the modu‑
lation of anxiety behavior in gonadectomized animals 
(Khakpai, 2014). Moreover, future studies are need‑
ed to fully understand the nature and causes of the 
possible mechanisms between opioid and androgens 
on the modulation of anxiety behavior in gonadecto‑
mized animals, as this might simultaneously target 
the cortical/cognitive as well as subcortical/reflexive 
characteristics of anxiety while avoiding the appar‑
ent side‑effects of chronic hormone administration or 
opiate abuse.
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