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For years, interneurons expressing vasoactive intestinal peptide (VIP) interneurons and their function within the neocortex have been 
shrouded in mystery. Their relatively small size and minimal representation in the cortex have made investigation difficult. Due to 
their service role performed in co‑operation with glia and blood vessels to supply energy during neuronal activation in the brain, the 
contribution of VIP interneurons to local neuronal circuit function was not appreciated. VIP interneurons in the neocortex account for 
roughly 12% of all interneurons. They have been described as a subgroup of the third largest population of 5-hydroxytryptamine 3a 
(5HT3a) receptor‑expressing interneurons, non‑overlapping with interneuron populations expressing parvalbumin (PV) or somatostatin 
(SST). However, it was recently shown that only half of VIP interneurons display a  5HT3a receptor response and a  subset of VIP 
interneurons in visual cortex co‑express SST. Over the last several years, due to new technical advancements, many facts have emerged 
relating to VIP interneuron phylogenetic origin, operational mechanisms within local circuits and functional significance. Some of these 
discoveries have dramatically shifted the perception of VIP interneurons. This review focuses on the function of the VIP interneurons 
residing in layer 2/3 of the mouse neocortex.
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INTRODUCTION

Vasoactive intestinal peptide (VIP)‑expressing in‑
terneurons exhibit a combination of features that rath‑
er clearly distinguish them from other interneuron 
populations. Primarily, VIP interneurons exhibit a dif‑
ferent distribution than parvalbumin‑expressing (PV+) 
or somatostatin‑expressing (SST+) cells, which are 
most abundant in layer 4 or in deep layers, respective‑
ly (Tremblay et al., 2016; Yavorska and Wehr, 2016). In 
contrast, VIP interneurons mainly occupy layer 2/3. In 
layer 1 they comprise only 10 % of neurons and below 
layer 2/3 their number progressively diminishes with 
depth (Prönneke et al., 2015; He et al., 2016). Regarding 
neuronal morphology, all large populations of inter‑
neurons (PV+ and SST+ groups) include cells of multi‑
polar, transcolumnar and translaminar extent (Xu and 

Callaway, 2009; Lee et al., 2010; Prönneke et al., 2015; 
2019; He et al., 2016; Tremblay et al., 2016; Zeng and 
Sanes, 2017; Feldmeyer et al., 2018). This is also the case 
for VIP interneurons; however, the great majority are 
bipolar or tripolar cells. VIP bi‑ or tripolar cells repre‑
sent a variant of translaminar neuron and many exhibit 
the unique feature of an axonal arbor specifically span‑
ning layer 2/3 and layer 5 (Prönneke et al., 2015; He et 
al., 2016; Feldmeyer et al., 2018; Prönneke et al., 2019). 
Additional unique features of VIP interneurons are de‑
scribed in detail in the subsequent sections.

VASOACTIVE INTESTINAL PEPTIDE (VIP) 

In the brain, VIP interneurons comprise greatly 
heterogeneous group in terms of electrophysiological 
activity and morphology, with their primary unifying 
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feature being the expression and release of VIP. VIP 
was first isolated from the porcine duodenum (Said 
and Mutt, 1970; 1972). VIP neurons exist not only in the 
submucous plexus throughout the digestive tract but 
in many other organs, such as heart, lung, kidney and 
exocrine glands and within the urogenital tract and im‑
mune system, supporting many vegetative functions. 
VIP stimulates the process of vasodilation (Lundberg et 
al., 1980; Wilkins et al., 2004) and glycogenolysis and 
gluconeogenesis (Matsumura et al., 1977; Magistretti, 
1990). Originally, it appeared that neurons were the 
sole source of VIP, but immune and endocrine cells 
were later reported to also express and secrete VIP (re‑
viewed in: Delgado et al., 2004).

In the neuron, VIP is synthesized in the soma, ex‑
ported to the axons and dendrites (Iversen et al., 2012) 
and synaptically released in a  K+‑sensitive, Ca2+‑de‑
pendent mechanism (Giachetti et al., 1977; Emson et 
al., 1978). VIP belongs to a family of structurally relat‑
ed neuropeptides and hormones that includes secre‑
tin, glucagon, growth hormone releasing factor, gluca‑
gon‑like peptide‑1 and ‑2, helodermin, gastric inhibi‑
tory peptide and pituitary adenylate cyclase‑activating 
polypeptide (PACAP) (Delgado and Ganea, 2013). Among 
these members, VIP shows particularly high homology 
to PACAP. Both peptides are ligands of the VIP/ PACAP 
membrane receptors VPAC1, VPAC2 and PAC1, which 
belong to the class II B G protein‑coupled receptor fam‑
ily (Taylor and Pert, 1979; Martin et al., 1992; Harmar et 
al., 1998; Shen et al., 2013). Binding of VIP to the recep‑
tors initiates the adenylyl cyclase‑dependent signaling 
pathway, resulting in an increase in cyclic adenosine 
monophosphate (cAMP) concentration and cAMP‑de‑
pendent activation of transcription factors and/or ion 
transporters.

VIP and PACAP have retained high phylogenic se‑
quence conservation from their obscure origin em‑
bedded in the rise of vertebrates or even slightly (on 
the scale of evolution) earlier – with the emergence of 
cephalochordates (Cardoso et al., 2010; Ng et al., 2012; 
Jékely, 2013). Interestingly, VIP’s pleiotropic effects do 
not seem to have a  simultaneous evolutionary origin. 
Phylogenetic analysis indicates that VIP and PACAP’s 
signaling originated in the brain and during subsequent 
evolution spread alongside the central nervous system 
and to the periphery (Ng et al., 2012). It is worth not‑
ing that the early VPAC receptors present in agnathans 
acted through calcium signaling pathway, resembling 
a  putative protostome G protein‑coupled receptor as‑
sociated with calcium homeostasis and stress response 
(Ng et al., 2012).

In the brain, VIP plays an important role in CNS de‑
velopment (Hill et al., 1994; Batista‑Brito et al., 2017), 
exhibits neuroprotective and neurotrophic properties 

(Brenneman et al., 1998; 1999; Moody et al., 2003), con‑
tributes to communication between neurons, glia and 
blood vessels (Paspalas and Papadopoulos, 1998) and 
participates in circadian rhythm regulation in the su‑
prachiasmatic nuclei (Hughes et al., 2011; Kudo et al., 
2013; Blasiak et al., 2017; Liu et al., 2018). VIP stimulates 
carbohydrate metabolism that satisfies the rapid ener‑
gy demands during neuronal activation in the brain 
(Magistretti et al., 1981; Sorg and Magistretti, 1992). 
Targeting the membranes of astrocytes, VIP stimulates 
glycogenolysis and gluconeogenesis (Sorg and Magis‑
tretti, 1992) along other neuromodulators from sub‑
cortical nuclei (Subbarao and Hertz, 1991; Chen et al., 
1995). Some of the VIP interneurons produce perivas‑
cular neuronal endings (Martin et al., 1992; Chédotal 
et al., 1994). The most recent in vivo finding, howev‑
er, indicates that different gamma aminobutyric acid 
(GABA)-ergic interneurons can contribute to neuro‑
vascular coupling in the cerebral cortex (Krawchuk et 
al., 2019). The power supply‑function of VIP neurons is 
controlled with great spatial resolution by the restrict‑
ed horizontal spread of their dendritic and axonal ar‑
bor (Magistretti, 1986; Karnani et al., 2016; Prönneke 
et al., 2015, 2019). All of the actions of VIP are exerted 
via subtypes of VIP receptors that are differentially dis‑
tributed across astrocytes, microvessels and neuronal 
membranes (Martin et al., 1992; Joo et al., 2004).

The influence of VIP on the electrical activity of neu‑
rons in the cortex or hippocampus has been primarily 
investigated in rat (in vivo by extracellular single‑unit 
recordings in the cortex – Phillis et al., 1978; Lamour et 
al., 1983; Ferron et al., 1985; Sessler et al. 1991; in vitro 
by extracellular or intracellular recordings in the hip‑
pocampus – Haas and Gähwiler, 1992; Cunha‑Reis et al., 
2004). In vivo iontophoretical or in vitro bath applica‑
tion of VIP was shown to produce non‑uniform effects 
across targeted cortical neurons belonging to the same 
pyramidal cell class. These effects were excitatory, in‑
hibitory, biphasic or none, depending on the particular 
neuron (Phillis et al., 1978; Lamour et al., 1983; Ferron 
et al., 1985). In the hippocampus, VIP action on pyra‑
midal cells is also diverse (Haas and Gähwiler, 1992; 
Cunha‑Reis et al., 2004). VIP signaling was shown to po‑
tentially influence the operation of local circuits in the 
hippocampus, mainly by supporting release of inhibi‑
tion, exerted by other interneurons, on the pyramidal 
cells (Cunha‑Reis et al., 2004). At least two subtypes of 
VIP cells selectively innervate other inhibitory inter‑
neurons in the hippocampus (Cunha‑Reis et al., 2004). 
VIP enhances inhibition imposed on GABA‑ergic inter‑
neurons by utilizing pre‑ and postsynaptic receptors 
(Cunha‑Reis et al., 2004). Interestingly, a similar mech‑
anism of pyramidal neuron disinhibition by VIP inter‑
neurons was described in cortical neuronal networks 
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and considered to be the primary mechanism of VIP in‑
terneuron action in cortical circuits (Fu et al., 2014; Lee 
et al., 2013; Pi et al., 2013). However, in these studies the 
action of VIP alone on postsynaptic neurons was not 
investigated. Though, enhancement of GABA‑induced 
inhibition by VIP was described in the cortex (Sessler 
et al., 1991). It is worth noting that, in the majority of 
the target cortical neurons, VIP enhanced responses to 
GABA while having little effect on spontaneous firing 
activity (Sessler et al., 1991).

The effect of VIP on target neurons can differ when 
occurring simultaneously with the release of other 
neurotransmitters (Lamour et al., 1983; Ferron et al., 
1985; Magistretti, 1986; Sessler et al., 1991). Inhibition 
produced by VIP was enhanced by norepinephrine 
(NE), even if NE was applied at doses that alone pro‑
duced little or no change in spontaneous firing rate 
(Ferron et al., 1985; Magistretti, 1986). Interestingly, in 
neurons, in which VIP alone produced depolarization, 
NE reversed the VIP‑excitatory effect, and the combi‑
nation of VIP and NE resulted in inhibition even when 
NE was applied at a  subthreshold dose (Ferron et al., 
1985; Sessler et al., 1991). VIP mainly facilitates dis‑
charges of cortical neurons evoked by acetylcholine 
(ACh); however, it can also act antagonistically (Lamour 
et al., 1983; Sessler et al., 1991). VIP and NE interaction 
produces a particularly interesting effect on GABA‑ or 
ACh‑induced responses in the target cortical neuron. 
VIP together with NE facilitates GABAergic inhibition, 
while the modulatory effects of VIP on ACh‑induced 
excitation can be reversed or enhanced by NE, indepen‑
dent of the direction of the effect of VIP alone on the 

target neuron (Sessler et al., 1991). It is challenging to 
explain the complex effects produced by VIP and NE, 
though the underlying mechanism is likely related to 
the machinery of cAMP‑pathways activated by the re‑
ceptors for VIP and NE.

HETEROGENEITY OF VIP INTERNEURONS

Studies attempting to define diverse interneuron 
populations in terms of their morphological and elec‑
trophysiological characteristic have provided evidence 
of significant VIP interneuron heterogeneity (Xu and 
Callaway, 2009; Miyoshi et al., 2010; Lee et al., 2010; 
Rudy et al., 2011; Prönneke et al., 2015; He et al., 2016; 
Tremblay et al., 2016; Prönneke et al., 2019) (Fig. 1, Ta‑
ble I). In these studies, differing methods were used for 
neuronal identification. VIP interneurons were studied 
in several transgenic mouse lines in which different 
selected subsets of neurons was visualized with genet‑
ically encoded fluorescent proteins (Xu and Callaway, 
2009; Miyoshi et al., 2010; Lee et al., 2010; Prönneke et 
al., 2015; 2019; He et al., 2016). The morphologies of 
VIP interneurons were reconstructed by staining bio‑
cytin‑filled neurons (Xu and Callaway, 2009; Miyoshi et 
al., 2010; Lee et al., 2010; Prönneke et al., 2015; 2019; 
He et al., 2016). The co‑expression of other interneu‑
ron markers by VIP interneurons was assessed with im‑
munochemistry (Chédotal et al., 1994; Gonchar et al., 
2008; Xu and Callaway, 2009; Miyoshi et al., 2010; Xu 
et al., 2010) or genetic modification in VIP‑Flp;CR‑Cre 
and VIP‑Flp;CCK‑Cre;Ai65 mutants (He et al., 2016). 

Fig. 1. A schematic drawing of the range of dendritic and axonal arbors in examples of individual VIP‑expressing interneurons based on their reconstructions 
as presented in different studies (Prӧnneke et al. (2019) showed a superimposition of 12 vertically aligned somato‑dendritic and axonal reconstructions). 
Gray areas of hyperbolic or oval shape represent bi‑/tripolar or multipolar dendrite morphology, respectively. Hatched areas represent the highest axonal 
density and a black vertical line represents the deepest extent of the single axonal branch. The small black ovals represent the position of the neurons’ 
somas. In many of the studies the type of firing activity of the morphologically identified neurons has been described: IS – irregular spiking, AD – adapting, 
BS – burst spiking, bNA2 – burst non‑adapting type 2, while He et al. (2016) showed morphology reconstructions of VIP interneurons classified according 
to expression of calretinin (CR+ expressing) or cholecystokinin (CCK+ expressing).
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It appears that not all VIP neurons could be detected 
with each method, as diverse subpopulations emerged 
across different studies.

Using the fate mapping method, Miyoshi et al. 
(2010) and Lee et al. (2010) characterized neurons 
that originated from the caudal ganglionic eminence 
(CGE). This group of neurons comprises all interneu‑
rons other than PV and SST cells (which in turn have 
their origin in the medial ganglionic eminence). VIP 
interneurons account for nearly 35% of all CGE‑derived 
interneurons (Miyoshi et al., 2010). Among them, the 
most numerous subtypes present in layer 2/3 are cells 
with bipolar/tripolar dendrite morphology, which dis‑
play irregular‑spiking (IS) or adapting (AD) electro‑
physiological responses (Miyoshi et al., 2010; Lee et al., 
2010; Prönneke et al., 2015). The percentage attributed 
to these two neuronal subtypes varies greatly among 
studies (Miyoshi et al., 2010; Lee et al., 2010; Prönneke 
et al., 2015). It appears that AD bipolar/tripolar neu‑
rons are more numerous than IS neurons in cortical 
layer 2/3 (Miyoshi et al., 2010; Prönneke et al., 2015). 
The AD cells, exhibiting a mostly VIP+/calretinin neg‑
ative (CR‑) phenotype, cease firing before the end of 
a 500 ms current injection (Miyoshi et al., 2010; Lee et 
al., 2010; Prönneke et al., 2015). The IS bipolar/tripolar 
neurons, which have been classified as VIP+/CR+, ex‑
hibit considerable interspike interval variability in re‑

sponse to moderate stimulation and pronounced spike 
height adaptation throughout suprathreshold current 
injection (Miyoshi et al., 2010; Lee et al., 2010; He et al., 
2016). These neurons exhibit the closest resemblance 
to VIP interneurons, innervating other interneurons 
and minimally innervating pyramidal cells, described 
by Caputi et al. (2009).

It was estimated that approximately 20% of VIP in‑
terneurons in layer 2/3 exhibit burst spiking (BS) ac‑
tivity and bipolar morphology (Prönneke et al., 2019). 
Their localization is restricted to layer 2/3 with prefer‑
ence to the upper part of the layer. These neurons show 
an interesting firing pattern. They respond with burst 
at minimal to moderate current stimulation, but when 
depolarized to more than ‑50 mV, they switch to tonic 
activity (Prönneke et al., 2019). There is a  lack of in‑
formation on the interneuron markers, other than VIP, 
that BS neurons could express (Prönneke et al., 2019).

BS, IS or AD responses were also exhibited by VIP 
interneurons belonging to an interesting group with 
the distinctive feature of multipolar morphology and 
characteristic local axon branching around somata of 
excitatory neurons. These are small basket cells exist‑
ing mainly in upper layer 2/3 but also in deep layers 
(Xu and Callaway, 2009; He et al., 2016). Some were clas‑
sified as VIP+/CR+ and others as VIP+/cholecystokinin 
(CCK+) (Xu and Callaway, 2009; He et al., 2016).

Table  I. Types of VIP‑expressing (VIP+) interneurons distinguished on the basis of morphology and firing pattern. CR+, calretinin‑expressing; CCK+, 
cholecystokinin‑expressing; CGE, caudal ganglionic eminence.

VIP INTERNEURON  
SUBTYPES

MORPHOLOGY

dendrite morphology: 
bipolar/tripolar or modified bipolar, often tufted 
Most commonly axonal density peaked in layer 2/3 or in layers 2/3 and 
5a (but see Fig.1)

multipolar dendrite 
morphology

FIRING 
PATTERN

irregular‑spiking (IS)

CR+
(CCK+ subpopulation found by He et al., 2016) 

(22% of CGE‑derived interneurons – Lee et al. 2010, 
10% of CGE‑derived interneurons – Miyoshi et al. 2010, 
15% of VIP interneurons in layer 2/3 – Prönneke et al., 2015)

CCK+ or CR+ 
Localized mainly in the upper 
part of layer 2/3 but also 
in deep layers, presumably 
small basket cells
(Xu and Callaway, 2009;  
He et al., 2016)

adapting (AD)

mainly CR‑ 
(CR+ subpopulation found by He et al., 2016;  
CCK+ subpopulation found by He et al., 2016) 

(12% of CGE‑derived interneurons – Lee et al., 2010, 
25% of CGE‑derived interneurons – Miyoshi et al., 2010, 
68% of VIP interneurons in layer 2/3 – Prönneke et al., 2015)

burst spiking (BS) 

Expression of interneuron markers other than VIP was not investigated.
Localized mainly in the upper part of layer 2/3. Found only in layer 2/3. 

(12‑20% of VIP interneurons in layer 2/3 – Prönneke et al., 2015; 2019)

burst non‑adapting  
type 2 (bNA2) 
(or high threshold 
bursting non‑adapting by 
Prönneke et al., 2015)

CR+
(CCK+ subpopulation found by He et al., 2016)
Found only in layer 2/3.  

(4% of CGE‑derived interneurons – Lee et al., 2010; Miyoshi et al., 2010, 
6% of VIP interneurons in layer 2/3 – Prönneke et al., 2015)
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A small subgroup of layer 2/3 VIP interneurons was 
found by fate mapping of CGE‑derived neurons. The 
subgroup includes burst non‑adapting type 2 (bNA2) 
interneurons generating at above, but not at, thresh‑
old bursts of two or three spikes followed, after a delay, 
by regular spiking. They have bipolar morphology and 
show VIP+/CR+ immunoreactivity (Lee et al., 2010; Miy‑
oshi et al., 2010; He et al., 2016). 

In the above‑mentioned mouse studies (Miyoshi et 
al., 2010; Lee et al., 2010; Prönneke et al., 2015) immu‑
nolabeling for choline acetyltransferase (ChAT) was 
not performed and only He et al. (2016) detected CCK; 
therefore, it is unclear whether some of the described 
subpopulations of VIP interneurons, especially those 
not expressing CR, also synthesize ACh or CCK. The ex‑
istence of a subgroup of VIP+/ChAT+ interneurons has 
been confirmed (Chédotal et al., 1994; Xu et al., 2010).

Data is lacking on the electrophysiological charac‑
teristics of a  significant group of VIP+/SST+ interneu‑
rons found in the visual cortex (Gonchar et al., 2008). 
This group has not been detected in another study in‑
vestigating interneuron molecular markers in the vi‑
sual cortex and other cortices (Xu et al., 2010). There‑
fore, some observed differences or, alternatively, a lack 
of differences among cortical areas could result from 
varied methodology. To what extent the composition of 
VIP interneuron subtypes varies between cortical areas 
remains to be fully elucidated.

LONG‑RANGE INPUTS TO VIP 
INTERNEURONS

In comparison to PV or SST interneuron popu‑
lations, VIP cells are major recipients of long‑range 
transmission as individual VIP neurons receive the 
largest number of inputs from thalamus and distal cor‑
tical areas (Lee et al., 2013; Wall et al., 2016). It appears 
that the quantity of long‑range inputs is the most 
significant discriminatory factor between VIP inter‑
neurons and interneurons of other groups as each in‑
terneuron class received factory a  similar proportion 
of thalamic vs. distal cortical inputs, about 40‑50% vs. 
40‑50% of inputs per neuron, respectively (Wall et al., 
2016). Direct neuromodulatory cholinergic synaptic 
transmission from the basal nucleus of Meynert is pro‑
vided to each interneuron population at a similar low 
level within the overall input proportion per group 
(Fanselow et al., 2008; Alitto and Dan, 2012; Wall et 
al., 2016; Askew et al., 2019; Prönneke et al., 2019). In‑
terneurons of PV+, SST+ and VIP+ populations receive 
NE inputs, while the effect of NE on target neurons is 
complicated and highly modulated (Polack et al., 2013; 

Aston‑Jones and Waterhouse, 2016). VIP interneurons 
have been classified to as a subgroup of the third larg‑
est, after SST+ and PV+ populations, group of inter‑
neurons expressing 5HT3a receptors (Lee et al., 2010). 
Interestingly, it was found that only half of all layer 
2/3 VIP neurons display 5HT3a receptor‑mediated re‑
sponses, but they are all activated via metabotropic 
5HT2 receptors (Prönneke et al., 2019).

LOCAL CONNECTIONS OF LAYER  
2/3 VIP INTERNEURONS

Within the local circuit of layer 2/3, VIP interneu‑
rons are reciprocally connected with pyramidal cells, 
SST interneurons and PV interneurons (Caputi et al., 
2009; Pi et al., 2013) (Fig. 2). Focusing on layer 2/3 VIP 
interneuron interactions with pyramidal cells, there 
is need to consider translaminar connections as they 
are excited by inputs from layer 2/3 pyramidal cells to 
a  lesser degree than other local interneurons (Lee et 
al., 2013) (Fig. 2). Layer 2/3 VIP interneurons, at least 
these belonging to the subgroups of AD bi/tripolar 
cells or IS multipolar cells, receive considerable excit‑
atory input from layer 4 and layer 5 (Xu and Callaway, 
2009). Excitatory transmission from layer 5 is provid‑
ed in a higher proportion to layer 2/3 VIP cells than 
to the SST neurons (Xu and Callaway, 2009). Recent 
findings have shown that pyramidal cells, and not 
inhibitory interneurons as was previously thought, 
comprise the most prominent targets for layer 2/3 
VIP neurons (Wall et al., 2016; Zhou et al., 2017). Pre‑
sumably, a considerable amount of VIP interneuron to 
pyramidal cell transmission targets layer 5 pyramidal 
cell apical dendrites that extend to superficial layers 
(Jiang et al., 2013; Zhou et al., 2017). This could explain 
the low connection ratio between VIP interneurons 
and local layer 2/3 pyramidal cells detected by paired 
recordings (Lee et al., 2013; Pi et al., 2013). Layer 2/3 
VIP interneurons, together with VIP neurons residing 
within layer 1 and 4, strongly innervate also non‑GAB‑
Aergic cells in these layers (Zhou et al., 2017). In the 
layer 5, in contrast, axons of VIP interneurons target 
mainly dendrites of GABAergic neurons (GABAergic 
neurons in layer 5 receive also many perisomatic axo‑
nal endings form layer 5 VIP interneurons, Zhou et al., 
2017) (Fig. 2).

Considering GABAergic translaminar inputs to 
layer 2/3 VIP interneurons, they mainly mirror 
translaminar inputs from excitatory cells. Therefore, 
layer 2/3 VIP interneurons, at least these belonging 
to the subgroups of AD bi/tripolar cells or IS multipo‑
lar cells, receive GABAergic transmission from layer 
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4 and 5 (Zhou et al., 2017). Additionally, IS multipolar 
cells are inhibited also by interneurons from layer 1 
(Fig. 2).

There is considerable evidence that VIP interneu‑
rons within the local circuit of layer 2/3 provide strong 
inhibitory inputs to SST neurons (in the primary visual 
cortex – Pfeffer et al., 2013; Karnani et al., 2016; in the 
primary auditory cortex – Pi et al., 2013; and in the pri‑
mary somatosensory cortex – Lee et al., 2013; Walker 
et al., 2016) acting through synapses that exhibit fre‑
quency‑dependent facilitation (Walker et al., 2016). It 
has been proposed that this VIP to SST interneuron in‑
hibition could be functionally engaged for information 
processing during active behavioral states (Lee et al., 

2013; Pi et al., 2013; Fu et al., 2014). Putative circuit op‑
eration includes arousal‑mediating neuromodulatory 
inputs from bottom‑up projections to induce the VIP 
interneuron activation, which in turn, by way of SST 
interneuron inhibition, leads to the eventual release 
of pyramidal neurons from SST interneuron inhibitory 
influence. However, other studies that used a  similar 
experimental paradigm with additional sensory (visu‑
al) conditions put forward another mechanism of py‑
ramidal cell disinhibition – that SST interneurons re‑
main active during VIP interneuron activation (Polack 
et al., 2013; Pakan et al., 2016; Dipoppa et al., 2018). 
These studies showed that neural circuit operation de‑
pended on the context and increase in pyramidal neu‑

Fig.  2. Scheme of the primary cortical layer 2/3 VIP‑expressing interneuron (VIP INs) connections, generally differentiable as two morphologically 
distinct groups: bipolar/tripolar type – innervating dendrites, or multipolar type – innervating perisomatic regions. Both groups include diverse types 
of neurons, varying in terms of electrophysiological properties, as well as the extents of their dendritic and axonal arbors (see Fig. 1). Therefore, not 
every input or output occurs for each neuron within the group. In the figure, the axonal endings of VIP INs extending to layer 1 and layer 4 are not 
assigned to a particular type of neuron but in these layers they primarily target dendrites of non‑GABAergic cells (Zhou et al., 2017). The scheme of local 
inputs to layer 2/3 VIP INs is based on work by Xu and Callaway (2009). The illustrated inputs to bipolar/tripolar VIP INs of layer 2/3 are accurate for 
the fraction of cells displaying accommodating (adapting) spiking patterns of activity. The illustrated inputs to layer 2/3 multipolar VIP INs are accurate 
for the fraction of cells displaying irregular‑spiking or burst‑spiking patterns of activity (Xu and Callaway, 2009). Irregular‑spiking VIP INs receive strong 
excitatory inputs from layers 2/3 and layer 5a and inhibitory inputs from layers 1, 2/3 and 5a, b (Xu and Callaway 2009). Excitatory and inhibitory inputs 
for burst‑spiking VIP INs originate in layer 2/3 (Xu and Callaway, 2009). VIP – vasoactive intestinal peptide‑expressing interneurons of bipolar, tripolar 
or multipolar dendritic arbors, SST – somatostatin‑expressing interneurons, PV – parvalbumin‑expressing interneurons, INs – interneurons.
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ron activity during arousal was mediated by VIP in‑
terneurons only in some selected conditions. It seems 
plausible that, while important in some behavioral sit‑
uations, VIP interneuron operation based on SST cell 
inhibition is not the major mechanism of their action 
within the local circuit. Another question concerns the 
types of VIP interneurons that inhibit SST cells. These 
are represented, at least in part, by a  subtype of bi‑
polar VIP+/CR+ neurons displaying IS activity (Caputi 
et al., 2009). However, this group does not appear to 
be the most numerous among VIP interneurons (Miy‑
oshi et al., 2010; Lee et al., 2010; Prönneke et al., 2015). 
Other layer 2/3 VIP interneuron subtypes could also 
innervate SST interneurons, but that has not yet been 
established. Due to technical obstacles in isolating in‑
dividual VIP interneuron subgroups, it is difficult to 
fully elucidate their connections and functional signif‑
icance. Furthermore, within PV+ and SST+ interneuron 
cortical populations diverse subtypes of neurons have 
already been identified (Liguz‑Lecznar et al., 2016; Ur‑
ban‑Ciecko and Barth, 2016; Yavorska and Wehr, 2016; 
Garcia‑Junco‑Clemente et al., 2019; Knoblich et al., 
2019). They exhibit distinct functional relevance and, 
in many cases, an opposite pattern of activity during 
different behaviors (Garcia‑Junco‑Clemente et al., 
2017; 2019; Knoblich et al., 2019). Many studies have 
reported heterogeneity in responses within interneu‑
ron populations, which could reflect the existence of 
different subtypes within them (Lee et al., 2013; Fu et 
al., 2014; Pakan et al., 2016; Khan et al., 2018; Yu et al., 
2019). The connectivity between newly identified neu‑
ronal subtypes and the behavioral significance of their 
operation remains to be described.

PV interneurons, as compared to SST interneu‑
rons and pyramidal neurons, appear to be inhibit‑
ed to a  lesser degree by VIP interneurons (Lee et al., 
2013; Pi et al., 2013). Therefore, considering the pro‑
posed disinhibitory mechanism initiated by VIP in‑
terneurons acting during periods of arousal, it should 
be noted that inhibition of SST interneurons by VIP 
neurons could in turn potentiate inhibition of pyrami‑
dal cells imposed by PV cells (Pfeffer et al., 2013; Yu 
et al., 2019). It is also worth noting that VIP neurons 
display a spontaneous spike rate comparable to that of 
PV cells, at least in the primary visual cortex (V1) and 
primary somatosensory cortex (S1) (Mesik et al., 2015; 
Yu et al., 2019). Although the majority of VIP neurons 
have spike shapes narrower than but resembling those 
of putative pyramidal cells, some VIP interneuron 
groups were also found that generated narrow spikes 
similar to PV cells (Mesik et al., 2015). It appears that 
under some conditions, VIP and PV interneurons could 
co‑operate (Knoblich et al., 2019; Williams and Holt‑
maat, 2019; Yu et al., 2019).

ROLE OF VIP INTERNEURONS IN 
INFORMATION PROCESSING WITHIN 

CORTICAL CIRCUITS

Based on the available data, a  rather complicated 
picture emerges of VIP interneuron contribution to 
sensory information processing. The sensitivity of VIP 
interneurons for sensory inputs differs dramatical‑
ly among cortices of diverse modalities. In V1, it was 
shown that the spontaneous spike rate of VIP inter‑
neurons was comparable to that of PV cells, while it 
was decreased in response to visual stimuli (Mesik et 
al., 2015). The feature selectivity of VIP interneurons 
in V1 was most comparable to that of broadly tuned PV 
interneurons (Kerlin et al., 2010; Mesik et al., 2015). In 
S1, similarly as in V1, VIP interneurons fired at a high 
spike rate spontaneously, but in response to specif‑
ic stimulus (touch) they fired fewer action potentials 
or were suppressed (Yu et al., 2019). In contrast, the 
spontaneous spike rate of VIP interneurons in primary 
auditory cortex (A1) was significantly lower than that 
of PV cells, but they exhibited responses to sound that 
resembled the selectivity of narrowly tuned pyramidal 
cells, and they were even better tuned than pyramidal 
neurons for low sounds (Mesik et al., 2015). 

On the other hand, VIP interneurons in S1 are 
strongly activated by projections from primary motor 
cortex during whisking (Gentet et al., 2012; Lee et al., 
2013; Yu et al., 2019). The stimulating effect of motor 
inputs on VIP interneurons is well established also in 
V1 (Polack et al., 2013; Fu et al., 2014; Jackson et al., 
2016; Pakan et al., 2016; Dipoppa et al., 2018). In con‑
trast, activation of VIP interneurons in A1 during lo‑
comotion disrupts their sophisticated contribution to 
stimuli processing (Bigelow et al., 2019). 

The image which emerge from data indicates that 
VIP interneurons are minimally engaged in the pro‑
cessing of the stimulus specific to visual and somato‑
sensory cortex, and they are actually more excited 
during spontaneous activity than in response to stimuli 
(Mesik et al., 2015; Yu et al., 2019). Contrastingly, they 
strongly contribute to the selectivity of stimulus fea‑
ture in the auditory cortex, as they are well‑tuned for 
the sound of diverse frequencies and intensities (Bige‑
low et al., 2019). They display an opposite effect when 
activated by motion‑mediating inputs. Then, they in‑
crease responses to visual and tactile stimuli and cease 
to improve auditory stimuli processing (Bigelow et al., 
2019). This pattern of VIP interneuron involvement in 
stimuli processing suits their plausible functional pri‑
ority, which is providing alertness in the awake ani‑
mal. During stationary behavior, when the head can be 
lowered and eyes can be closed, auditory processing is 
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more effective at detecting signals of danger from the 
environment. In contrast, during movement, especially 
during flight response, information processing needs 
to shift its focus toward processing stimuli important 
for navigation.

It was found that VIP interneurons contribute to 
high cortical activation induced not only by locomo‑
tion but also to activation occurring during other be‑
havioral states, including quiet immobility or anes‑
thesia (Jackson et al., 2016). It is likely that the circuit 
effects of VIP interneurons require modulation of the 
other cortical units’ activity by long‑range inputs (Ne‑
ske and Connors, 2016), but the issue requires further 
clarification.

A role for VIP neurons in learning has been impli‑
cated specifically in mediating bottom‑up information 
relating to reinforcement, while punishment evoked 
stronger VIP neuron responses than reward (Pi et al., 
2013). On the contrary, VIP interneurons in visual cor‑
tex did not appear to be directly involved in the learn‑
ing of a  visual discrimination task (Khan et al., 2018). 
The result, however, might reflect poor VIP interneuron 
selectivity per se, which appeared to be unaffected by 
learning (Khan et al., 2018). Moreover, it is also possible 
that learning‑induced sharpening of feature selectivi‑
ty could require suppression of VIP interneuron (Ibra‑
him et al., 2016). Regardless of the learning protocol, at 
some stage of the learning process, suppression of VIP 
interneurons could be crucial for acquisition of learn‑
ing‑dependent information (Mardinly et al., 2016).

CONCLUSIONS

VIP interneurons, with their phylogenetic origin 
embedded in the brain, perform a  set of functions 
related to neuronal activation in the neocortex that 
ranges from supplying neurons with energy to modu‑
lation of information processing during states of high 
cortical activity. In performing their specific roles in 
the cortical circuits, VIP interneurons primarily uti‑
lize a translaminar neuronal morphology that uniquely 
spans layers 2/3 and 5, which is responsible for the in‑
tegration of top‑down and bottom‑up information. In 
the neocortex, they appear to be the “best‑informed” 
neurons, relating to the global brain state as they re‑
ceive and process, at a level incomparable to other neu‑
rons, numerous inputs from the other cortical areas and 
subcortical structures. The pattern of VIP interneuron 
involvement in stimuli processing indicates their plau‑
sible functional priority, which is providing alertness. 
VIP interneurons, a very heterogeneous group, remain 
broadly unexplored. The connections of particular VIP 
interneuron subtypes with other neuronal populations 

and their functional significance require further inves‑
tigations.
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