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Differential expression of the c-fos protein
and synaptophysin in zebrin Il positive
and zebrin Il negative cerebellar cortical areas
in 4-aminopyridine seizures
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The present study examined temporal activation patterns of rat cerebellar cortical neurons in 4-aminopyridine induced
seizures, using c-fos protein as a marker of neuronal activity. C-fos-containing cells were counted in each cerebellar cortical
layer, and cell count was compared between zebrin Il positive and zebrin Il negative bands of the lobules of the vermis and
cerebellar hemispheres. We found significant activation of granule cells and interneurons of the molecular layer in zebrin Il
positive bands. The Purkinje cells, in contrast, exhibited non-significant, scattered c-fos immunoreactivity across all bands.
Fluctuation of synaptophysin expression in the mossy fibre rosettes of the granular layer was determined via light microscopic
immunohistochemistry. We detected a transient, significant decrease in synaptophysin staining density following 4-aminopyridine
seizures, which may indicate short-term synaptic depression. We also identified different timing of increased c-fos expression
in the neurons of the cerebellar cortex in different cortical zones. In particular, the activation pattern of the interneurons of the
molecular layer reflected the climbing fibre distribution, reflecting the zonal olivo-cortico-nuclear organization. Seizure-induced
activation of the granule cells corresponded with the zebrin Il positive zones. This observation raises the possibility that zebrin Il

positive compartments may be more susceptible to cerebellar convulsions.
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INTRODUCTION

Recent immunohistochemical and electrophysio-
logical studies have revealed intrinsic heterogeneity of
the cerebellar cortex (Voogd and Ruigrok, 2004a; Xiao
et al., 2014). Certain molecular markers, such as the ze-
brin 11/aldose C enzyme protein (Brochu et al., 1990;
Ahn et al.,, 1994), the glutamate transporter excitato-
ry amino-acid transporter 4 (Dehnes et al., 1998), and
the metabotropic glutamate receptor mGluR1b (Mateos
et al., 2001), show different expression patterns across
different subgroups of Purkinje cells (PCs). Further, the
zebrin II positive [Z(+)] and zebrin 1I negative [Z(-)] PC
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groups have been shown to alternate, and form ros-
tro-caudally oriented bands that span the entire vermis
and both hemispheres (Hawkes and Herrup, 1995). The
alternation and expansion of the Z(+) and Z(-) compart-
ments are best visualized in frontal- or horizontal-plane
sections of the cerebellar cortex, or in whole-mount
cerebellar immunohistochemistry (Brochu et al., 1990;
Sillitoe and Hawkes, 2002). It has also been demonstrat-
ed that the expression pattern of zebrin II corresponds
to the modular organization of the olivo-cortico-nu-
clear connections (Voogd and Ruigrok 2004a; Sugihara
and Quy 2007). Other studies have shown significantly
enhanced glutamate (GLU) release from the climbing
fibres in the Z(+) zones (Paukert et al., 2010). On the
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other hand, stimulation of the mossy fibres (MFs) has
been shown to elicit different electrophysiological re-
sponses in the Z(+) and Z(-) zones (Ebner et al., 2012).
The zonal distribution of synaptophysin (SYP) in the
cerebellar cortex is similar to the distribution of zebrin
II in the PCs (Hawkes et al., 1985; Leclerc et al., 1989).
SYP is a synaptic vesicle protein with four transmem-
brane domains. SYP is a marker of interneuronal syn-
apses, and its ubiquity at the synapse has led to the use
of SYP immunostaining for the quantification of syn-
apses (Li et al., 2017).

Autopsy of epileptic patients revealed a shrinkage
of the cerebellar cortex, and a reduction in the num-
ber of PCs. These findings suggest that the cerebellum
is involved in neuronal hyperactivity during epilepsy
(Honavar and Meldrum, 2001). Indeed, several epileptic
patients present cerebellar symptoms, and cerebellar
epileptic foci have been clinically demonstrated (Boop
et al., 2013). The neocortico-ponto-cerebellar connec-
tions often participate in these pathologies (Mohamed
et al., 2011). Further, degeneration of PCs has been
shown to follow the zebrin II pattern in some patholog-
ical conditions (Cerminara et al., 2015). Our previous
experiments demonstrated the primary importance of
the pontocerebellar MFs in overexcitation of the cere-
bellar cortex in epilepsy (Téth et al., 2015). Subsequent
experiments (Téth et al., 2018) demonstrated that ion-
otropic glutamate receptors are involved in cerebellar
convulsions that were precipitated by 4-aminopyridine
(4-AP).

In our studies, we use 4-AP to elicit generalised ton-
ic-clonic seizures (GTCS). 4-AP works by blocking K*
channels in different neuronal populations, thereby
increasing transmitter release and inducing epileptic
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neuronal activity (Thesleff 1980; Kovécs et al., 2003).
Given that the major cerebellar afferents operate with
glutamic acid transmitters, the postsynaptic effects of
4-AP elicited convulsions can be long-lasting and can be
detected with immunohistochemistry (Téth et al., 2015;
2018). C-fos protein immunohistochemistry can be used
as marker of neuronal activity, and for semiquantitative
mapping of activated neurons (Willoughby et al., 1995;
Mihdly et al., 1997; Herdegen and Leah, 1998; Té6th et al.,
2015). The present study aimed to examine: the timing
and lobular distribution of the postsynaptic activation
pattern of the cerebellar cortical neurons in 4-AP in-
duced seizures; the sensitivity of Z(+) and Z(-) micro-
domains of the cerebellar cortex to convulsive activity
and the seizure-induced expression of c-fos protein;
and possible seizure-induced alterations of SYP immu-
nostaining in the MF rosettes of the granular layer.

METHODS
Animals and treatment

We used 12-14 week-old, male Wistar rats weighing
220 - 280 g, bred in the Central Animal House of the
University of Szeged. The animals were housed under
standard conditions with free access to water and food.
The experiments were conducted in accordance with
the “Directive 2010/63/EU of the European Parliament
and of the Council of 22 September 2010 on the Protec-
tion of Animals Used for Scientific Purposes”. The ex-
perimental protocol was approved by the Institutional
Ethics Committee on Animal Experiments at the Facul-
ty of Medicine, University of Szeged.

Table I. The plane of section, immunostaining method, and number of animals in each experimental group.

number of rats

number of rats

Post-injection time

4-AP treated control 4-AP treated control
1h 3 3 3 3
1.5h 3 3 = -
2h 3 3 3 3
25h 3 3 - -
3h 3 3 3 3
4h 3 3 3 3
5h 3 3 3 3
plane of section sagittal frontal
immunostaining cfos Zebrin Il + c-fos double staining

Zebrin Il + SYP double staining
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A total of 72 animals were used in the experiments
(Table 1). Seizures were induced with a single intra-
peritoneal (i.p.) injection of 4-AP (5 mg/kg, Sigma, St.
Louis, USA), dissolved in physiological saline at a con-
centration of 0.67 mg/ml. This dose of 4-AP proved
to be epileptogenic in our previous investigations
(Mihdly et al., 1990; Szakécs et al., 2003). The control
group (see Table I) received a similar volume of phys-
iological saline.

Behavioural symptoms and latency of the onset of
GTCS were recorded from the time of 4-AP injections.
At the end of the experiment (1 h, 1.5 h, 2 h, 2.5 h, 3 h,
4 h and 5 h after the injection of 4-AP), the animals
were deeply anaesthetized with halothane (Halothane,
Sigma, St. Louis, USA) and perfused transcardially with
0.1 M phosphate-buffered saline (PBS), pH 7.4, followed
by 4% phosphate-buffered paraformaldehyde, pH 7.4,
as a fixative. Each time group (i.e., 1 h, 1.5 h, 2 h, 2.5 h,
3 h, 4 h and 5 h after the injection of 4-AP) consisted
of three animals treated with 4-AP, and three control
animals (Table 1). The brain was subsequently removed
and post-fixed in 4% buffered paraformaldehyde for
24 h at room temperature. Following post-fixation, the
brains were cryoprotected overnight in 30% sucrose
in PBS, pH 7.4, and 24 pum thick sagittal plane sections
were cut from the vermis using a freezing microtome
(Reichert-Jung Cryocut 1800). Sagittal plane sections
of the vermis were used to investigate seizure-induced
activation of the vermal cerebellar lobules (Téth et
al., 2015; 2018). Free-floating tissue sections were pro-
cessed for c-fos immunohistochemistry.

In the second experiment, we investigated 1 h, 2 h,
3 h, 4 h and 5 h post-injection times, again with three
4-AP treated and three control animals in each time
group. Coronal (i.e., frontal) plane frozen sections were
cut from the whole cerebellum for immunohistochem-
istry (Fig. 1). Coronal sections are needed to reveal the
distribution of Z(+) and Z(-) compartments of the cer-
ebellar cortex (Brochu et al., 1990; Ahn et al., 1994; see
also Fig. 1). The relevant characteristics of the exper-
imental groups and immunostainings are summarized
in Table I.

Immunohistochemistry

The sections were pretreated with 1.5% H,0, and
rinsed in 0.1 M PBS containing 0.2% Triton X-100 (Sig-
ma, St. Louis, MO, USA). Next, the sections were incu-
bated in 20% normal pig serum for 1 h at room tem-
perature. The primary antibody was polyclonal c-fos
antibody raised in rabbit (#sc-52; Lot. No. J 300; Santa
Cruz Biotechnology, CA, USA; 1:4000), which was fol-
lowed by the secondary antibody, donkey anti-rabbit
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IgG (1:40; Jackson ImmunoResearch, PA, USA). Perox-
idase-antiperoxidase (PAP) complex (dilution: 1:1000;
Jackson ImmunoResearch, PA, USA) was applied as
a tertiary reagent, and the peroxidase reaction was vi-
sualized with 3,3’-diaminobenzidine tetrahydrochlo-
ride (DAB; Sigma, St. Louis, MO), containing 0.3% nickel
sulphate and 0.01% hydrogen peroxide (Ni-DAB). Cell
nuclei containing c-fos were coloured black by the re-
action product.

The primary antibody cocktails were composed of
two different primary antibodies: mouse anti-zebrin
IT (1:12000; Cat. No. Y 030144, Lot. No. AP 3658, ABM
Inc., Canada) and rabbit anti-c-fos (1:4000), and mouse
anti-zebrin II (1:12000) and rabbit anti-synaptophysin
(1:3500; DAKO, Cat. No. A0010, Santa Clara, CA, USA;
see Table I). Both procedures were continued by the
application of biotinylated anti-mouse 1gG (1:600; Vec-
tor Laboratories, CA, USA) and plain donkey anti-rab-
bit 1gG (1:40), detected with streptavidin-peroxidase
(1:2000; Vector Laboratories, CA, USA) and PAP (1:1000).
Streptavidin-peroxidase was visualized by using plain
0.05% DAB (Sigma), with 0.01% hydrogen peroxide,
yielding a brown reaction colour (zebrin II containing
elements). The PAP complex, in contrast, was detected
with Ni-DAB yielding a black reaction colour (c-fos- or
SYP-containing structures).

Fig. 1. Coronal plane low magnification images of double immunostained
(zebrin Il + c-fos) anterior (A) and posterior lobes (B) of the cerebellum.
The Arabic numerals label the Z(-) compartments of the fourth and eighth
lobules, and the arrows indicate the intervening Z(+) bands. Abbreviations:
Roman numerals [I-X: vermal lobules; a-c: sublobules; COP: copula
pyramidis; Crus | and Crus II: crura of ansiform lobule; LS: simple lobule;
PF: paraflocculus; PMD: paramedian lobule. Bar: 1 mm.
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Image analysis

A quantitative analysis was performed with a Nikon
Eclipse 600 microscope equipped with a SPOT RT Slider
digital camera (1600 x 1200 dpi in 8 bits) and using Im-
age Pro Plus 4.5 morphometry software (Media Cyber-
netics, Silver Spring, MD, USA). Areas of interest (AOIs)
for the cell counting were selected blindly on the cap-
tured sections, following background subtraction. For
c-fos and zebrin II immunostainings, the analysis was
performed on five tissue sections from each animal. On
the sagittal plane sections, the granular and PC layers
were investigated in every lobule of the vermis, and
the data were sorted according to cerebellar lobes.
Cell counts were completed using a 20x objective on
the AOI, which was a 0.005 mm? rectangular area of the
granular layer. The number of c-fos IR cell nuclei were
corrected to a 1 mm? tissue area (further detail is pro-
vided in the Figure captions). Counting of the PC nuclei
containing c-fos IR was performed on the basis of the
linear density of the c-fos IR PCs. During the measure-
ment, a freehand line was drawn through the centre
of the PCs in the folium. The number of c-fos IR cell
nuclei were counted and the length of the line was also
measured. The number of c-fos IR PCs was corrected to
a 1 mm PC layer length.

Double labelled sections were cut in the frontal
(i.e., coronal) plane, allowing for the observation of the
vermis and both hemispheres in each section (Fig. 1).
Image analysis was conducted on the first Z(-) stripe
labelled as P1(-) (Brochu et al., 1990), and in the neigh-
bouring P2(+) band in the anterior and posterior zones
of the vermis (Fig. 1). In the hemisphere, the two most
laterally situated bands were chosen, including P5(-)
and P6(+) in the anterior lobe, and P5(-) also in the
lobulus simplex (LS), the crura of the ansiform lobule
(Crus I and Crus 1I), the paramedian lobule (PMD), P6(-)
or e2(-) in the copula pyramidis (COP), and P7(+) in the
posterior lobe (Fig. 1; Brochu et el. 1990). Image analy-
sis was performed in the granular (0.005 mm? rectangu-
lar AOI) and molecular (0.01 mm? rectangular AOI) lay-
ers. The PC layer was counted using similar procedures
to the sections of the vermis (see above). The number
of c-fos IR cell nuclei were corrected to a 1 mm? tissue
area. Zebrin II-c-fos double stained sections were ex-
amined in relation to the number of c-fos immunola-
belled neuronal nuclei in the AOI The zebrin II-synap-
tophysin labelled sections were investigated using two
different methods: calculating the ratio of the SYP im-
munoreactive area inside the AOI; and the standard op-
tical density (OD) of SYP-stained structures. During the
determination of the density per area, the threshold
was adjusted to segregate the immune-signal from the
background, and SYP immunoreactive areas were nor-
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malized to the area of the AOI, yielding the percentage
of the labelled area. Standard OD was calculated using
the morphometric software, according to the conven-
tional logarithmic formula (Russ, 2011):

INTENSITY(x,y) - BLACK
INCIDENT - BLACK

oD (x,y) = -lg

Where INTENSITY(x,y) is the intensity at pixel (x,y);
BLACK is the intensity generated when no light goes
through the material; and INCIDENT is the intensity of
the incident light. BLACK=0 was determined without
exception, and the INCIDENT was adjusted to the lev-
el of the white matter. The cell counts were analysed
at each predefined post-injection time point by means
of ANOVA, and Bonferroni corrected post hoc test were
used following significant main effects or interactions.
The threshold of significance was set at p=0.05. Statisti-
cal analyses were performed using SPSS 17.0 (SPSS, Inc.,
Chicago, USA). Of note, each measurement comprised
of four tissue sections from each animal, and thus 12
measurements were included for each experimental
group (n values are provided in the Figure captions).

RESULTS
Behaviour during generalized convulsions

Consistent with previous reports (Mihdly et al,,
1990, 2001; Szakécs et al., 2003; Téth et al., 2015), i.p. ad-
ministration of 4-AP caused characteristic behavioural
symptoms, which culminated in GTCS. The GTCS symp-
toms correspond with a stage 5 seizure on the Racine
scale (Racine, 1972). Every animal injected with 4-AP
displayed GTCS. The symptoms of the first GTCS were
always sudden and obvious; therefore, the latency mea-
surements were reliable. The first GTCS developed at
16.7+1.4 minutes after the 4-AP administration. The an-
imals recovered from the convulsion 90-100 min after
the 4-AP injection.

Seizure-induced alterations of c-fos
immunostaining in vermal lobules

The first series of experiments aimed at the detailed
description of the c-fos expression pattern of the gran-
ule cell layer in the lobules of the vermis, in gener-
alised 4-AP seizures. The control animals displayed bas-
al c-fos staining; few labelled nuclei and low intensity
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Fig. 2. Temporal alterations of c-fos protein IR in the cell nuclei of the cerebellar vermis. The low magnification pictures represent sagittal plane sections
of the posterior lobe. A: control, B: 4-AP, 1 h post-injection; C: 4-AP, 3 h post-injection; D: 4-AP, 5 h post-injection. Abbreviations: gl: granular layer, ml:
molecular layer, PCI: PC layer. Bar: 200 mm. E: The diagram shows the number of c-fos IR cell nuclei in the granular layer of the vermal lobules following
4-AP seizures. The vertical bars represent the standard error of the mean (SEM). The asterisks denote significant differences (P<0.05) between the signed
and the previous column (n=15). Density values on the Y-axis represent the number (x104) of c-fos IR cell nuclei in 1 mm? cortical tissue.
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immunostaining were observed (Fig. 2A). The number
of c-fos IR cells increased significantly 1 h after 4-AP
administration (Fig. 2B, E), continued to further in-
crease until 2 h (Fig. 2E). At this time point, the results
of the measurements from the three vermal lobes di-
verged. The anterior lobe showed a prominent peak in
the density of the labelled cells 3 h after the injection,
and it was followed by a continuous, significant decline
(Fig. 2E). In the posterior lobe, the number of the c-fos
labelled cells increased significantly until 3 h after the
injection, when number of cells reached a maximum
level (Fig. 2C, E). This maximum persisted through 4 h,
and a significant reduction was observed only at 5 h
(Fig. 2D, E). The nodulus exhibited maximal c-fos ex-
pression at 3 h, followed by a significant decrease at
4h and 5 h (Fig. 2E). Of note, the number of c-fos IR cell
nuclei in 1 mm?at the 5 h time point were still signifi-
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cantly higher than the control condition (Fig. 2E). For
the PC layer, the number of c-fos IR cell nuclei did not
display significant alterations in any of the investigat-
ed convulsion times (i.e., 1 h, 3 h and 5 h; not shown),
as compared to controls.

Zebrin Il - c-fos double staining revealed
differential expression of c-fos in cortical
microdomains

Zebrin 11/aldolase-C was expressed in a subset of
PCs, and these Z(+) and Z(-) microdomains were clearly
visible in the frontal (i.e., coronal)-plane sections of the
vermis and hemispheres (Figs 1 and 3). We investigated
the differences between the Z(+) and Z(-) bands in rela-
tion to the number of the c-fos IR cell nuclei. In control

Fig. 3. Distribution of c-fos IR cell nuclei in the Z(+) and Z(-) bands of the cerebellar cortex, as measured on double immunostained frontal plane sections.
The brown colour indicates zebrin Il positive PC's (soma and cell processes are stained), and the black-greyish colour denotes the c-fos IR cell nuclei.
A: control; B: 4-AP at 1 h post-injection; C: 4-AP at 3 h post-injection; D: 4-AP at 5 h post-injection. Abbreviations: gl: granular layer, ml: molecular layer,
PCl: PC layer. Bar: 100 mm.
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animals, no differences were observed in Z(+) and Z(-)
bands in the cerebellum; however, a basal level of c-fos
IR was detected (Figs 3A and 4). The epileptic animals
exhibited a significant elevation in the number of c-fos
IR cell nuclei in the vermis and in the hemispheres
at each post-injection time, as compared to controls
(Figs 4 and 5). Comparison of the Z(+) and Z(-) bands
of the granular layer revealed a significantly greater
number of c-fos IR cells in the Z(+) areas as compared
to the Z(-) areas, at every time point (Fig. 3B-D and 4-5).

The Z(+) bands of the anterior vermal zone (lob-
ules 1 to V) showed the characteristic activation pat-
tern described in the c-fos immunochemistry of the
vermal lobules. In particular, we observed a continu-
ous increase in the number of c-fos IR cells until 3 h,
which was then followed by a significant decrease. In
the z(-) bands, the maximum number of c-fos IR cells
appeared 4 h after the administration of the drug; how-
ever, the maximum failed to reach the mean value of
the Z(+) peak (Fig. 4A). In the central vermal zone (i.e.,
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lobules VI to VII), the maximum level of c-fos protein
expression in the Z(+) band was observed between 2 h
and 4 h. In the Z(-) band, in contrast, maximum c-fos
levels were observed 3 h to 4 h after the 4-AP injection
(Fig. 4B). In the posterior vermal zone (i.e., lobules VIII
to dorsal IX), c-fos staining in the Z(+) band was similar
to that observed in the anterior zone, whereas stain-
ing in the Z(-) band was similar to that observed in the
central zone (Fig. 4C). The nodulus was not compared
directly due to the lack of Z(-) PCs; in particular, only
Z(+) c-fos counts showed a significant peak at 3 h and
a slow decrease thereafter (Fig. 4D).

In the hemisphere, the time-related changes in the
density of c-fos IR were similar in the Z(+) and Z(-)
bands (Fig. 5A-D). Changes in c-fos expression were
similar in the LS and the crus II, wherein the highest
value was reached 3 h following the injection of 4-AP
(Fig. 5B). A similar pattern was detected in the PMD (not
shown) and in the COP (Fig. 5C), wherein the maximum
immunoreactivity was observed at 3 h post-injection.
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The nodulus (Fig. 4D) and the Floc (Fig. 5D) displayed
similar c-fos expression in 4-AP convulsions.

Scattered c-fos staining was detected at every
post-injection time point in the PC layer of the Z(+)
and Z(-) regions (Fig. 3A-D). Some c-fos IR cell nuclei
were surrounding PCs (Fig. 3B, C). However, no statis-
tical difference in c-fos expression was observed in the
PC layer as compared to controls. On the other hand,
we observed a significant change in c-fos expression in
the interneurons of the molecular layer; in particular,
the epileptic animals exhibited a significantly higher
density of c-fos labelled cells in the Z(+) stripes than in
the Z(-) stripes at every post-injection time (Figs 6A-D).
Maximal c-fos IR in the Z(+) bands was most commonly
detected 3 h after the 4-AP injection (Fig. 6A-D). The
observed decrease in the number of the c-fos IR cells
was slow, because at 5 h we detected significantly ele-
vated c-fos IR cell numbers as compared to the control
condition (Fig. 6A-D).
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Alterations in synaptophysin
immunostaining in the granular
layer during seizures

Next, we performed a quantitative analysis of ze-
brin II-SYP double immunohistochemistry sections
in the granular layer (Fig. 7). The SYP IR areas clearly
represented the MF rosettes located between the gran-
ule cells (Fig. 7A-C). The zebrin 1I-SYP double labelled
sections were investigated using two different meth-
ods: density per area and standard OD. To determine
the density per area, SYP-IR areas were normalized to
the area of the AOI (0.005 mm?), yielding the percent-
age of SYP labelled area (Fig. 7D, E). We found that the
proportion of SYP-IR area did not differ during the
time of the seizure (Fig. 7F). However, significant dif-
ferences were observed when comparing the Z(+) and
Z(-) stripes in the examined cerebellar regions at every
time-point; in particular, the SYP-IR areas were larg-
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and previous columns. A significant elevation in c-fos IR cell number was observed in the Z(+) and Z(-) stripes at every post-injection time point, as
compared to the control condition (n=15). Significant differences were observed between the Z(+) and Z(-) stripes in the majority of the convulsing
samples (i.e., A, B, C). Density values on the Y-axis represent the number (x10?) of c-fos IR cell nuclei in 1 mm? cortical tissue.
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er in the Z(+) stripes as compared to the Z(-) stripes
(Fig. 7F).

The calculation of standard OD was based on a con-
ventional formula that transforms the quantity of the
transmitted light into a logarithmic scale. On this scale,
higher values indicate darker pixels, thus correspond-
ing to stronger immunostaining. We found significant-
ly higher OD values in the Z(+) bands (as compared to
the zebrin negative areas) in both control and seizing
animals (Fig. 7G-H). The dominance of Z(+) SYP was not
modified during the seizures. However, at 1 h post-in-
jection, a significant reduction in SYP-IR OD was de-
tected in both the Z(+) and Z(-) bands (Fig. 7G, H). This
reduction was particularly evident in the vermal cen-
tral zone and in the COP. A significant reduction in OD
was also observed in the nodulus (Fig. 7). Following
this reduction, initial levels of SYP OD were restored by
3 h post-4-AP-injection. We did not observe any alter-
ation in SYP OD in the Floc (Fig. 7J).
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DISCUSSION

Although the cerebellar cortex displays a relative-
ly uniform cytoarchitecture and internal connections,
there are inter-regional differences in intrinsic neuro-
chemicals, which may reflect differences in synaptic
connections, electrophysiological responsiveness, and
information processing (Hawkes et al., 1985; Leclerc
et al., 1989; Dehnes et al., 1998; Mateos et al., 2001;
Paukert et al., 2010; Ebner et al., 2012; Xiao et al., 2014;
Zhou et al., 2014). The neurochemical microdomains of
the cerebellar cortex can be detected using immuno-
histochemistry by examining banding of different neu-
rochemical markers in the sagittal plane (Sillitoe and
Hawkes, 2002; Voogd and Ruigrok, 2004b). The present
study demonstrates that epileptic seizures induce sig-
nificantly stronger neuronal activation in the cortical
microdomains of zebrin II expressing PCs as compared
to zebrin negative cortical stripes.
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Fig. 7. Distribution of SYP IR structures in the Z(+) and Z(-) bands of the cerebellar cortex in double immunostained coronal plane sections (SYP: black colour;
Zebrin II: brown colour). Dense SYP staining is visible in the molecular layer, due to the large number of synapses. The mossy fibre rosettes appear as larger
black dots in the granular layer. A: control animal, Z(+) zone; B: 4-AP at 1 h post-injection, Z(-) zone; C: 4-AP at 3 h post-injection. Z(+) and Z(-) stripes are shown
by the white arrows. Bar: 100 um. D: Z(-) granular layer displaying the mossy fibre rosettes outlined with yellow lines. Yellow arrows indicate Z(-) PCs. E: Z(+)
granular layer, the mossy fibre rosettes are outlined with yellow lines, Z(+) PCs are indicated using yellow arrows (bar: 50 pm; ml: molecular layer; PCl: Purkinje
cell layer; gl: granular layer). The mossy fibre rosettes display significantly stronger staining in the Z(+) zones. F: in the Z(+) zones the relative size of the SYP IR
area of the granular layer is significantly larger both in control and in convulsing animals (1 h and 3 h data of the anterior vermis; area measured: 0.005 mm?).
G-J: Standard optical density measurements in the granular layer of the central zone (G), in the COP (H), in the nodulus (1), and in the Floc (J). The OD of the SYP
IR areas is significantly higher in the Z(+) areas. Reduction of SYP OD at 1 h post-injection was particularly evident in the vermal central zone, nodulus, and in
the COP. In the Floc, no alteration was observed in SYP OD values. The vertical bars represent the standard error of the mean (n=12). The asterisks on the top
of the columns denote significant differences (P<0.05). Black columns: Z(+) zones; white columns: Z(-) zones of the granular layer.



Acta Neurobiol Exp 2019, 79: 239-251

The climbing fibres (CF) project to Z(+) compart-
ments and carry cerebral, vestibular, tactile, and visual
information, whereas the Z(-) compartments receive
somatosensory information from their corresponding
CFs (Sugihara and Shinoda, 2004). Results of the pres-
ent study extend the known targets of the different PC
zones, showing that the expression pattern of zebrin II
corresponds with the modular organization of the ol-
ivo-cortico-nuclear connections (Voogd and Ruigrok,
2004a ; Sugihara and Quy, 2007). Through their connec-
tions with the thalamus, these cerebellar nuclei project
to various cerebral areas, including the motor cortex,
frontal eye fields, premotor, and parietal cortical areas
(Clower et al., 2001; Hoover and Strick, 1999; Lynch et
al., 1994; Middleton and Strick, 1994; 2001). This pro-
jection pattern indicates that Z(+) stripes participate
in both motor- and non-motor functions (Stoodley and
Schmahmann, 2009). We hypothesize that the signifi-
cant neuronal activation observed in the Z(+) domains
can be explained, in part, by descending connections
from the forebrain. In particular, 4-AP convulsions
have been shown to strongly activate the cerebral cor-
tex (Szakdcs et al., 2003), and the descending corticoru-
bral and corticoolivary tracts have been shown to exert
a stimulatory effect on the cerebellar cortex through
inferior olive CFs (Voogd and Ruigrok, 2004b).

4-AP seizures strongly increased GLU release in the
rat striatum, as demonstrated in our previous research
(Kovécs et al., 2003). Here, we predict that a similar in-
crease occurred in the cerebellar cortex. In particular,
during generalised seizures, the repetitive stimulation
of the CFs by 4-AP likely led to a spillover of GLU in the
CF-PC synapses. The diffusion of GLU in the molecular
layer, in turn, excited the inhibitory interneurons, thus
decreasing the possibility of PC activation (Szapiro and
Barbour, 2007). Our results suggest that this mechanism
is more pronounced in the Z(+) zones due to the recip-
rocal forebrain connections, which elicit enhanced GLU
release from the CFs (Paukert et al., 2010). Indeed, the
present results demonstrate (1) a depression of c-fos
expression in the PCs during convulsions, and (2) that
PCs are not significantly activated, despite a significant
rise in c-fos protein expression in the granule cells and
interneurons of the molecular layer.

The properties of the CF system cannot explain the
events observed in the granular layer during seizures.
The granule cells are stimulated by the MFs, which
originate from different parts of the central nervous
system and carry information from various (mainly
sensory) modalities to the cerebellum (Voogd and Rui-
grok, 2004b). Although the MF system is anatomically
independent from the CF system, a close relationship
exists in their inputs to certain areas of the cerebellar
cortex (Apps and Hawkes, 2009). Indeed, prior data in-

Cerebellar c-fos immunostaining in epilepsy 249

dicate that the cerebellar vermal zones and the lobules
of the hemispheres are supplied by different combina-
tions of MF inputs (Angaut and Sotelo, 1975; Ito 1984).
We predict that the observed different temporal c-fos
expression pattern in the vermal lobules following the
4-AP injection resulted from a different composition of
incoming MF inputs. The stronger activation of the pos-
terior lobe can be explained by the presence of the mas-
sive pontocerebellar projection, which is absent in the
anterior and flocculonodular lobes (Azizi et al., 1981;
Mihailoff et al., 1981; Pijpers and Ruigrok, 2006). This
pontocerebellar connection carries descending cere-
brocortical activity and plays an important role in sei-
zure related c-fos expression in the cerebellar cortex, as
demonstrated by our recent experiments. Indeed, tran-
section of the middle cerebellar peduncle significantly
reduced the expression of c-fos protein, as demonstrat-
ed by Western blots of the whole cerebellum and cere-
bellar immunohistochemistry (Téth et al., 2015).

It is important to note that the functional organi-
zation of the granular layer also correlates with the
zebrin 11 expression pattern. The distribution of MFs
suggests a closed cortico-ponto-cerebellar loop in the
Z(+) bands (Kelly and Strick, 2003). Granule cells inner-
vate the PCs via the ascending part of their axons and
via parallel fibres (Voogd and Glickstein, 1998). We hy-
pothesize that, in generalised seizures, the ascending
segments of the GC axons carry the major part of the
excitation to PCs and to the inhibitory interneurons
of the molecular layer. Therefore, the powerful exci-
tation of the MFs causes the inhibition of PCs by in-
hibitory interneurons, which are also stimulated by the
GLU spillover from CF terminals (Szapiro and Barbour,
2007). Finally, the closed loop reinforces itself, result-
ing in a more robust activation in the granular layer
under the Z(+) PCs, as was observed in our experiments.
We did not observe significant differences in c-fos con-
tent between Z(+) and the Z(-) PCs. This may be due
to the potential influence of Bergmann glia (BG) cells
on PCs, apart from the influence of interneurons (De
Zeeuw and Hoogland, 2015). Indeed, previous research
suggests that BG cells can be excited by GLU, as they
express 17-fold more AMPA receptors than PCs (Matsui
et al., 2005). BG cells have also been shown to buffer ex-
tracellular glutamate and potassium (Helleringer et al.,
2017). These properties allow the BG cells to prevent
overexcitation (and thus triggering of c-fos expression)
in PCs (De Zeeuw and Hoogland, 2015).

Our present results demonstrate that SYP expression
in the granular layer is stronger in the Z(+) zones (Le-
clerc et al., 1989). SYP is localized to the membrane of
synaptic vesicles, interacts with synaptobrevin II, and
is essential for the efficient retrieval of synaptobrevin
11 to synaptic vesicles during endocytosis (Wiedenmann
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and Franke, 1985; Gordon et al., 2016). The existing lit-
erature suggests that immunohistochemical alterations
of SYP reflects true changes in the density and power of
synapses (Masliah et al., 1990; Rocher et al., 2003; Li et
al., 2017). Based on these data, we may conclude that the
MFs convey stronger excitation to the Z(+) zones than
to the Z(-) zones during a seizure. This is fitting with
reports of a reduction in SYP levels following high fre-
quency stimulation (Balaji et al., 2008). Indeed, repeti-
tive, strong stimulation leads to exocytosis, depletion of
the reserve pool of synaptic vesicles, and a decrease in
SYP in the presynaptic axon terminal (Hull et al., 2006;
Jackman et al., 2009; Gordon et al., 2016). Consequently,
the rate of endocytosis slows down (Balaji et al., 2008),
and finally short-term synaptic depression develops
(Hosoi et al., 2009; Kim and von Gersdorff, 2009). Our re-
sults are in agreement with this conclusion, and corrob-
orate a transient decrease in SYP concentration in MF
rosettes during 4-AP seizures, as measured by altered
optical density of SYP immunoreactivity.

CONCLUSIONS

C-fos protein expression in the granular layer of
the vermal lobules exhibited different temporal acti-
vation patterns following 4-AP seizures. We observed
stronger activation of the posterior lobe, which might
be explained by the presence of a massive pontocer-
ebellar MF projection to this region. The strong c-fos
protein expression lasted for several hours (1 - 5 h) af-
ter injection, in every cerebellar lobule.

In convulsing animals, c-fos expression significant-
ly differed between the Z(+) and Z(-) stripes at every
post-injection time point, in both the hemispheres and
vermis. The activation dominance of the Z(+) zones was
likely due to seizure-induced enhanced GLU release
from the CFs and MFs.

The scattered and unaltered c-fos expression of
the PCs did not follow the zebrin II pattern. This null
effect may be due to the inhibition of PCs by inter-
neurons, or the metabolic control of PCs by BG cells
during the seizure.

Density of SYP immunostaining was significantly
higher in the MF terminals of the Z(+) zones at every
time point in controls and after 4-AP treatment. This
result may indicate a higher rate of the MF synaptic
transmission in the Z(+) microdomains.
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