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Increased short‑term food intake after external 
lateral parabrachial subnucleus lesions in rats 
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The vagus nerve and several brainstem nuclei to which it projects have been closely associated with food intake. The aim of 
this study was to determine the degree to which the same or different information on food intake is processed by this nerve 
and by one of these nuclei, the external lateral parabrachial subnucleus (LPbNe). For this purpose, we analyzed the solid and 
liquid food intake of Wistar rats subjected to vagal deafferentation with capsaicin or lesions of the LPbNe. Vagotomized animals 
consumed significantly larger amounts of solid food during the first 24 h post‑surgery but not at 48, 72, or 96 h. Animals with 
LPbNe lesions also consumed larger amounts of liquid and solid foods but only during periods of 60 min on day 5 and 90 min 
on day 6 post‑surgery, respectively. According to these findings, both the vagus nerve and the LPbNe appear to be involved in 
short‑term regulation of food intake, although they participate over different time scales. These data are discussed in terms 
of the potential importance of the vagal‑parabrachial axis in the rapid processing of nutritional information from the upper 
gastrointestinal tract. 
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INTRODUCTION

Short‑term satiety (or satiation) is a  motivational 
behavior that appears to largely depend on visceral‑ce‑
rebral neurobiological mechanisms (Snowdon and Ep‑
stein, 1970; Deutsch, 1990; Kaplan et al., 1993; Schwartz 
et al., 1999; Hamr et al., 2015). In normal conditions, 
information relating to food originating from different 
levels of the gastrointestinal tract is transmitted via 
neural pathways to the central nervous system, where 
they appear to decisively contribute to cessation of food 
intake (Molina and Puerto, 1986;  Schwartz, 2000). The 
peripheral neural mechanism responsible for this pro‑
cess appears to particularly involve the sensory compo‑
nent of the vagus nerve (Mordes et al., 1979; González 
and Deutsch, 1981; Smith et al., 1981; Altschuler et al., 
1989; Sengupta and Gebhart, 1994; Phillips and Powley, 
1998; Schwartz et al., 1999; Schwartz, 2000; Zafra et al., 

2003; Berthoud, 2008; Czaja et al., 2008; Peters et al., 
2013), a  cranial nerve whose afferents are widely dis‑
tributed throughout the digestive system (Loewy, 1990; 
Prechtl and Powley, 1990). 

It has been verified that complete resection of the 
vagus nerve (Phillips and Powley, 1998) and vagal de‑
afferentation by treatment with capsaicin (Castonguay 
and Bellinger, 1987; Chavez et al., 1997; Kelly et al., 1999; 
Zafra et al., 2003; 2004), a neurotoxin which transiently 
and selectively destroys weakly myelinated A‑delta or 
unmyelinated C afferent fibers (Hölzer, 1991; Ritter and 
Dinh, 1992; Czaja et al., 2008; Gallaher et al., 2011), both 
produce an initial increase in food consumption that is 
subsequently counteracted and normalized. These re‑
sults have been interpreted by multiple authors as the 
consequence of a  transient disorder in processes that 
regulate short‑term satiety. It appears that systems 
other than the affected vagal fibers subsequently com‑
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pensate for the deficits generated by the lesion (Kelly 
et al., 2000; Zafra et al., 2003).

The vagal afferents responsible for processing vis‑
ceral signals from different gastrointestinal tract seg‑
ments project towards various subnuclei located in 
the intermediate‑caudal area of the nucleus of the sol‑
itary tract (NTSic) (Shapiro and Miselis, 1985; Norgren 
and Smith, 1988; Altschuler et al., 1989). The NTSic is 
a brain gateway for visceral signal processing (Roman 
et al., 2016) in which information is organized in a vis‑
cerotopic manner. In this way, information from the 
stomach is usually sent to the dorsomedial subnucleus 
of the NTSic, whereas information from the small in‑
testine is distributed in more caudal and medial ar‑
eas (Altschuler et al., 1989). In turn, these subnuclei 
transmit visceral information from the gut to several 
parts of the lateral division of the pontine parabra‑
chial complex (Loewy and Burton, 1978), including 
the external lateral parabrachial subnucleus (LPbNe) 
(Herbert et al., 1990; Loewy, 1990; Bernard et al., 1993; 
Saper, 1995), which that may be part of the anatomi‑
cal axis through which the vagus nerve participates in 
short‑term nutrition.

In agreement with this hypothesis, various re‑
searchers have observed hyperphagic behaviors after 
large lesions of the parabrachial complex (Yamamoto 
et al., 1995) and also after lesions affecting the entire 
lateral parabrachial area (LPbN) (Nagai et al., 1987; 
Takaki et al., 1990; Zafra et al., 2005). These lesions 
appear to include the LPbNe, a  subnucleus that has 
generally been related to the processing of viscer‑
al‑sensory information (Herbert et al., 1990; Moga et 
al., 1990; Bernard et al., 1993; De Gobbi et al., 2001; 
Tanaka et al., 2004; Hurtado et al., 2014, 2017; Zafra et 
al., 2016).

Large lesions of the LPbN also block the effects of 
certain pharmacological or endocrine agents on food 
intake (Calingasan and Ritter, 1993; Trifunovic and 
Reilly, 2001; Becskei et al., 2007). Both the LPbN activa‑
tion induced by these agents and the consequent food 
intake modifications can be prevented or attenuated by 
vagotomy (Smith et al., 1981; Ritter et al., 1994; Li and 
Rowland 1995; Horn et al., 2001; Yang et al., 2004; Ab‑
bott et al., 2005). Thus, the LPbNe subnucleus appears 
to be one of the various areas at which these substanc‑
es act (Li and Rowland, 1994; 1995; Li et al., 1994; Rit‑
ter et al., 1994; Elmquist et al., 1997, 1998; Rowland et 
al., 2000; Trifunovic and Reilly 2001). It has also been 
confirmed that neurons of the LPbN subnucleus, which 
apparently includes the LPbNe, can be activated by vis‑
ceral interventions such as gastric distension (Suemo‑
ri et al., 1994; Baird et al., 2001a; b). This information 
appears to be processed and sent to the brain via the 
vagal pathway (Mei, 1983; Cervero, 1994; Sengupta and 

Gebhart, 1994) and has frequently been related to the 
regulation of short‑term food intake (Deutsch, 1985; 
Phillips and Powley, 1996, 1998; Powley and Phillips, 
2004; Berthoud 2008). 

Previously published results indicate that animals 
with vagal deafferentation would have larger initial in‑
takes on their first exposures to food because they lack 
the necessary vagal visceral‑sensory fibers responsible 
for short‑term satiety processes. Later, however, there 
may be a  subsequent compensatory effect if food re‑
mains available via complementary regulatory mecha‑
nisms that remain intact or even via vagal pathway fi‑
bers resistant to capsaicin treatment (Deutsch and Jang 
Ahn, 1986; Furness et al., 2001; Zafra et al., 2003; Hamr 
et al., 2015).

Considering this background, and given the connec‑
tions between the vagus nerve and LPbNe, the objective 
of this study was to examine and compare the short‑term 
solid and liquid food intake of animals subjected to ei‑
ther vagal deafferentation induced by local treatment 
with capsaicin or lesioning of the LPbNe subnucleus. 

The study hypothesis was that if these two struc‑
tures participate in the same pathway for processing 
nutritional information of gastrointestinal origin, an‑
imals with lesions of the LPbNe, one of the brainstem 
nuclei that processes information from vagal viscer‑
al‑sensory afferents (Loewy, 1990; Bernard et al., 1993; 
Saper, 1995), may exhibit intake behavior analogous 
to that of vagotomized animals (Castonguay and Bell‑
inger, 1987; Chavez et al., 1997; Phillips and Powley 
1998; Kelly et al., 1999; Zafra et al., 2003; 2004), with 
a  short‑term but not long‑term increase in solid and 
liquid food intake.

METHODS

Subjects

This study consists of two experiments that used 42 
Wistar rats (weighing 279-302 g at baseline) randomly 
distributed into four groups: capsaicin-treated group 
(n=12) and its control group (n=10), and LPbNe-le‑
sioned group (n=10) and its sham lesion control group 
(n=10).

Animals were individually housed in methacry‑
late cages (30x15x30  cm) in which the experiments 
were also carried out. The laboratory was maintained 
at 22‑24°C with a  12:12 light/dark cycle (lights on at 
8 am). Experiments were performed during light peri‑
ods with white noise. Food and water were available to 
the animals ad libitum.

All surgical techniques and behavioral proce‑
dures complied with Spanish legislation [Royal Law 
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(1201/2005)] and the European Community Council Di‑
rective (86/609/EEC).

Surgical procedure: Vagal deafferentation 

Vagal deafferentation was achieved by using capsa‑
icin, one of the most common surgical methods for this 
purpose (Jancsó et al., 1987; Raybould and Taché, 1989; 
Hölzer, 1991; Berthoud and Neuhuber, 2000; Blackshaw 
et al., 2000), following the procedure of Raybould and 
Taché (1989). Animals were anesthetized with sodium 
pentothal (56.3  mg/kg i.p. Sodium Thiopental, Abbot 
Laboratories, Abbot Park, IL, USA), and an incision of ap‑
proximately 3 cm was made in the midline of the abdom‑
inal wall. After exteriorizing the stomach and esopha‑
gus, a paraffin lamina was placed under the esophagus to 
avoid capsaicin (Fluka, 98%) propagation to surrounding 
tissues. The esophagus was then surrounded with cotton 
impregnated with the capsaicin solution [1 mg capsaicin 
dissolved in 1 mL vehicle (10% Tween 80 in olive oil)]. 
The cotton was soaked every 5 min, applying a  total of 
1 mL capsaicin/animal. After the 30‑min application of 
capsaicin, the area was washed with saline solution and 
dried with sterile material. The incision was closed with 
several sutures, and topical antiseptic (Betadine, Sarget 
Lab, Merignac, France) was applied on the wound, fol‑
lowed by intramuscular administration of 0.1 mL peni‑
cillin (1.000.000 IU, Penilevel, Lab. Ern, Barcelona, Spain) 
as a prophylactic measure. The control group underwent 
an identical surgical procedure except for the perivagal 
administration of vehicle alone (10% Tween 80 in olive 
oil), without the application of capsaicin.

Behavioral procedure

The same behavioral procedure was followed in 
both experiments (Fig.  1). The amount of solid food 
consumed during the 24  h before surgery was consid‑

ered to be the baseline solid food intake. The animals 
were returned to their cages immediately after surgery 
with water and solid food ad libitum (Alimento de Lab‑
oratorio. Dietas Panlab. Panlab S.L., Barcelona, Spain), 
and their intake was recorded after 24, 48, 72, and 96 h 
post‑surgery. For this purpose, the animals were of‑
fered a stock diet at the corresponding hour each day, 
and the amount that remained 24  h later was with‑
drawn and quantified to the nearest 0.1 g.

On day 4 post‑surgery, after the last solid food record‑
ing (96 h), animals were deprived of water and food 24 h 
later, on day 5 post‑surgery, they were offered a sucrose 
solution (10% diluted in water) through two graduated 
burettes, and their intake was recorded to the nearest 
0.1 cc at 15, 30, and 60 min. After the last measurement 
(60  min), the sucrose solution remained available to 
the animals until the next day (day 6), when their con‑
sumption was again quantified (sucrose solution intake 
24 h after being offered). On the same day (day 6), after 
withdrawing and quantifying the sucrose, solid food was 
again offered ad libitum to the animals, recording their 
intake to the nearest 0.1 g after 30, 60, and 90 min. 

Two animals in the LPbNe group died during the 
7-day post-surgery recovery period, therefore, this 
group ultimately comprised eight animals.

The body weight of the animals was recorded daily 
during the experimental period (see Fig. 1).

Vagotomy test

After vagal deafferentation, the animals underwent 
the vagotomy test proposed by Martin et al. (1978) 
to establish whether the vagus nerve had accidental‑
ly suffered total section during surgery (afferent and 
efferent fibers), which would exclude the animal from 
the data analyses. The test involved the extraction and 
weighing the stomach of animals after 12 h of fasting, 
and a complete vagotomy was defined when the ratio of 
stomach weight to pre‑fasting animal weight was >0.02.

Fig. 1. Timeline of intake measurements in this study.
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Surgical procedure: Lesion of external lateral 
parabrachial subnucleus (LPbNe)

For the bilateral electrolytic LPbNe lesions, animals 
received general anesthesia with sodium pentothal 
(50 mg/kg i.p. Sodium Thiopental, Abbot Laboratories). 
A stereotaxic device (model SAS‑4100, Bilaney, Dussel‑
dorf, Germany) was utilized [Coordinates: AP=‑0.16 mm, 
L=+‑2.4  mm, V=+3.0  mm, Interaural=‑0.16  mm, accord‑
ing to the neuroanatomical atlas of Paxinos and Watson 
(1998)], and the animals received a  cathodic electric 
current (0.3  mA) for 10  s from a  DCLM‑5 lesion gen‑
erator (Grass Instruments, Quincy, MA, USA) through 
a  monopolar 00 stainless steel electrode insulated ex‑
cept at the tip.

In the sham lesion control group, all of the above 
steps were followed except that the vertical coordinate 
was +3.5 mm (to avoid affecting the LPbNe) and no cur‑
rent was applied.

Histology

Animals in the LPbNe group were anesthetized with 
a sodium pentothal overdose (80 mg/kg ip) and intracar‑

dially perfused with 10% formaldehyde. Brains were re‑
moved and stored in 10% formaldehyde before lamination.

Electrolytic lesions were localized, and their exten‑
sion was measured on photographs (VMZ‑4F stereo‑
scopic magnifying glass and PM‑6 camera, Olympus, 
Tokyo, Japan) of Cressyl Violet‑stained 40‑micron coro‑
nal sections (1320M microtome‑freezer, Leitz, Wetzlar, 
Germany) (see Fig. 2).

Statistical analysis

STATISTICA version 6.0 (Statsoft Inc, OK) was used for 
statistical analyses. One‑way ANOVA was used to analyze 
the results of the vagotomy tests. The mean body weight 
in both groups before surgery (baseline) and at 24 h were 
analyzed using ANOVA (group x weight), and the mean 
solid food and sucrose solution intakes on all days were 
analyzed using a  two‑way repeated‑measures ANOVA 
(group x session). Values were expressed as means ± SEM. 
Significant effects were evaluated with the post hoc 
TUKEY HSD test, and p<0.05 was considered significant.

RESULTS

Vagotomy test

According to the test results, no animal suffered 
complete vagotomy, and no statistically significant dif‑
ferences were observed between the capsaicin‑treat‑
ed and control groups in the ratio between stomach 
weight and total pre‑fasting body weight (F1,20=0.09, 

Fig. 2. Anatomical localization of the LPbNe electrolytic lesion of the right 
hemisphere [Interaural = ‑0.16 mm according to the neuroanatomical 
atlas of Paxinos and Watson (1998)]. Scale bar is 2 mm. LPbNe: external 
lateral parabrachial subnucleus, MPbN: medial parabrachial nucleus, SCP: 
superior cerebellar peduncle.

Fig. 3. Body weight of capsaicin‑treated (Capsaicin) and Control groups the 
day before surgery (baseline) and 24 h post‑surgery. * p<0.001 Control vs. 
Capsaicin, # p<0.01, ## p<0.001 BL vs. 24 h.
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P<0.76). Accordingly, the data for all animals were in‑
cluded in the statistical analyses.

Pre‑surgical data  
(baseline of solid food intake and body weight)

The capsaicin-treated group and its control group 
did not significantly differ in mean daily solid food in‑
take during the 24  h before surgery (F1,20=0.25, P<0.61) 
or in mean body weight (F1,20=0.06, P<0.80).

The LPbNe-lesioned group and its control group did not 
significantly differ in their daily solid food intake during 
the 24 h before surgery (F1,16=0.03, P<0.84) or in their body 
weight on the day before surgery (F1,16=0.15, P<0.69).

Post‑surgical data

Body weight (baseline vs. 24 h post‑surgery)

The comparison of body weight of the capsa‑
icin-treated group and its control group between the 
day before surgery (baseline) and at 24  h post‑sur‑
gery showed that the group effect was not significant 
(F1,20=0.81, P<0.37) but the session effect (F1,20=69.38, 
P<0.001) and interaction (F1,20=10.04, P<0.004) were. 
Post‑hoc analysis showed a  significant body weight re‑
duction between these time points in both groups (cap‑
saicin group: P<0.005, control group: P<0.001) and a sig‑

nificant difference between the groups at 24 h post‑sur‑
gery (P<0.001) (see Fig. 3).

Analysis of body weight of the LPbNe-lesioned group 
and its control group between the day before surgery 
(baseline) and 24 h post-surgery showed that the ses‑
sion effect was significant (F1,16=68.62, P<0.001) but the 
group effect and the interaction were not (P>0.05), and 
no significant between-group difference in body weight 
reduction was observed on either day.

Solid food intake (24, 48, 72, and 96 h post‑surgery)

Analysis of the solid food intake of the capsa‑
icin-treated group and its control group found that the 
group effect was not significant (F1,20=3.65, P<0.07) but 
the session effect (F3,60=88.49, P<0.001) and the interac‑
tion (F3,60=6.89, P<0.001) were. Post‑hoc analysis showed 
a higher intake in the capsaicin‑treated versus control 
group during the 24 h after surgery (P<0.001), with no 
significant difference between them at 48, 72, and 96 h 
post‑surgery (all P>0.05) (see Fig. 4).

Post‑hoc analysis demonstrated a  significant intake 
reduction in both groups between the day before surgery 
(baseline) and 24 h post‑surgery (control group: 84.33%, 
capsaicin‑treated group: 55.32%) (all P<0.001), with a sig‑
nificantly greater reduction in the controls (P<0.001).

Analysis of solid food intake of the LPbNe-lesioned 
group and its control group showed that the session ef‑
fect was significant (F3,48=16.66, P<0.001) but the group 
effect (F1,16=0.14, P<0.70) and the interaction (F3,48=0.026, 

Fig. 4. Solid food intake of capsaicin‑treated (Capsaicin) and Control groups 
in sessions of 24, 48, 72, and 96 h post‑surgery. BL: Baseline solid food 
intake. * p<0.001 Control vs. Capsaicin, # p<0.001 BL vs. 24 h. 

Fig. 5. Solid food intake of the LPbNe and Control groups in sessions of 24, 
48, 72, and 96 h post‑surgery. BL: Baseline solid food intake. # p<0.001 BL 
vs. 24 h.
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P<0.99) were not, and no differences between groups 
were observed in any session (see Fig. 5).

Post-hoc analysis showed a significant intake re‑
duction in both groups between the day before sur‑
gery (baseline) and 24 h post-surgery (control group: 
47.01%, LPbNe group: 50.88%) (all P<0.001), with no 
significant difference in this reduction between the 
groups (P<0.75).

Sucrose solution intake (Day 5: 15, 30, and 60 min)

Analysis of the sucrose solution intake of the cap‑
saicin-treated group and its control group showed that 
the session effect (F2,40=54.52, P<0.001) was significant 
but the group effect (F1,20=0.074, P<0.78) and the inter‑
action (F2,40=0.075, P<0.92) were not, i.e., there were no 
differences between the groups in any session. 

Analysis of the sucrose solution intake of the 
LPbNe-lesioned group and its control group showed 
that the group effect was not significant (F1,16=1.12, 
P<0.30) but the session effect (F2,32=11.30, P<0.001) and 
the interaction (F2,32=6.33, P<0.004) were. Post‑hoc anal‑
ysis revealed a  higher sucrose solution intake by ani‑
mals with LPbNe lesions in a 60‑min test after 24 h of 
water and food deprivation (P<0.005), but not at 15 or 
30  min (all P>0.05) after the presentation of food and 
water (see Fig. 6).

Sucrose solution intake (Day 6: 24 h)

No significant differences in sucrose solution in‑
take of the capsaicin-treated (F1,20=0.12, P<0.72) and 

LPbNe-lesioned (F1,16=0.001, P<0.97) groups with their 
respective control groups on day 6 (24 h period). 

Solid food intake (Day 6: 30, 60, and 90 min)

Analysis of solid food intake of the capsaicin-treated 
group and its control group showed that the session ef‑
fect (F2,40=46.49, P<0.001) was significant but the group 
effect (F1,20=1.34, P<0.25) and the interaction (F2,40=0.65, 
P<0.52) were not, with no differences between groups 
in any session. 

Analysis of solid food intake of the LPbNe-lesioned 
group and its control group showed that the group 
effect (F1,16=7.80, P<0.013), session effect (F2,32=19.09, 
P<0.001), and their interaction (F2,32=3.76, P<0.034) were 
all significant. Post‑hoc analysis of solid food intake be‑
tween groups in each individual session showed that, 
although there were no differences at 30 (P<0.38) and 
60  min (P<0.14) after solid food presentation, a  larger 
amount was consumed by the LPbNe group than by the 
control group in the 90‑min test (P<0.001) (see Fig. 7).

DISCUSSION

This study demonstrates that an initial increase in 
food intake is induced in rats both by vagus nerve de‑
afferentation with perivagal capsaicin administration 
and by lesioning of the LPbNe subnucleus, one of the 
projection centers of the vagus in the brainstem.

The results confirm previous findings by our group 
that capsaicin‑treated animals consume larger amounts 

Fig. 6. Sucrose solution intake of the LPbNe and Control groups in sessions 
of 15, 30, and 60 min of day 5. * p<0.01 Control vs. LPbNe.

Fig. 7. Solid food intake of the LPbNe and Control group in sessions of 30, 
60, and 90 min on day 6. * p<0.001 Control vs. LPbNe.
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of solid food than their controls during the first 24  h 
post‑surgery but not after 48, 72, or 96  h (Zafra et al., 
2003, 2004, 2007, 2017a). Other authors have also demon‑
strated a transient food intake increase in animals treat‑
ed with capsaicin (including when i.p. administered). 
This effect is particularly marked when the solid or liq‑
uid food offered is not familiar to the animals (Chavez et 
al., 1997; Kelly et al., 1999, 2000) or when complete diets 
are offered (Zafra et al., 2003, 2017a).

Capsaicin is a  neurotoxin whose perivagal admin‑
istration selectively affects visceral‑sensory afferents 
(Hölzer, 1991; Ritter and Dinh, 1992), which are import‑
ant in processes related to short‑term satiety (Snow‑
don and Epstein, 1970; Mordes et al., 1979; González 
and Deutsch, 1981; Deutsch, 1990; Phillips and Powley, 
1998; Zafra et al., 2003, 2004).

However, in contrast to these studies, our exper‑
iment showed no differences between the capsa‑
icin‑treated and control groups in the intake of non‑fa‑
miliar sucrose solution offered on day 5 post‑surgery. 
Besides the utilization of different capsaicin adminis‑
tration pathways (perivagal in the present study), this 
discrepancy may be attributable to other factors, such 
as (1) our use of a 60‑min test for the first exposure to 
the non‑familiar sucrose solution in comparison to the 
test duration of up to 180 min in the above studies, or 
(2) the nature of the food (carbohydrates vs. fats) and 
its complexity (complete/fats vs. disaccharide).

The results showed that larger amounts of sucrose 
solution and solid food were consumed by LPbNe‑le‑
sioned animals than by controls at 60 min and 90 min 
(see Figs  6 and 7, respectively) but that their intakes 
were similar after longer periods (≥24 h) (see Fig. 5 and 
day 6 of experiment 2). These findings are consistent 
with the hyperphagic behavior observed after lesions 
of the whole parabrachial complex (Yamamoto et al., 
1995) or large lesions of the LPbN area (Nagai et al., 
1987; Takaki et al., 1990; Zafra et al., 2005). Thus, more 
specific lesions of one of the subnuclei (LPbNe) mean 
that the effect described can be reproduced, allowing 
a  more precise anatomical localization of the parab‑
rachial substrate involved in short‑term food intake. 
Our results are also in line with recent reports that 
meal size is increased by the inhibition of calcitonin 
gene‑related peptide‑expressing neurons in the outer 
external lateral subdivision of the parabrachial nucleus 
(Carter et al., 2013; Campos et al., 2018).

Given that most of the food appears to remain in the 
gastrointestinal tract at the end of each intake session 
(McHugh et al., 1975), it has been proposed that food 
intake cessation would depend on the rapid processing 
of gastrointestinal sensory signals (Davis and Campbell, 
1973; McHugh et al., 1975; Kraly and Smith, 1978; Wirth 
and McHugh, 1983), in which the vagus nerve appears 

to participate (Phillips and Powley, 1998; Zafra et al., 
2003, 2006, 2007, 2017a). In this regard, various studies 
have proposed that gastric distension, which is mainly 
transmitted by the vagal pathway (Mei 1983; Cervero, 
1994; Sengupta and Gebhart, 1994), participates in sati‑
ation control (Deutsch, 1985; Phillips and Powley, 1996, 
1998; Powley and Phillips, 2004; Berthoud, 2008). In 
fact, it has been observed that neurons of the LPbN nu‑
cleus, which apparently includes the LPbNe subnucle‑
us, are especially sensitive to gastric distension (Sue‑
mori et al., 1994; Baird et al., 2001a, b). Consequently, 
the interruption of these or other signals by the lesion 
may have caused the increased solid and liquid food in‑
take observed in our study. 

The LPbNe is involved in processing information on 
taste (Yamamoto et al., 1994; Di Lorenzo et al., 2009), 
and it is possible to imagine that our results are attrib‑
utable to the lesion‑induced blocking of this informa‑
tion; however, this seems to be unlikely. First, because 
the taste information processed by this subnucleus ap‑
pears to be negative in character (HCl, quinine) and 
to involve more areas of the subnucleus that are more 
caudal than the rostral region lesioned in the present 
study. Indeed, when sucrose is used as a taste stimulus, 
the central lateral and central medial subnuclei are the 
most intensely activated and there is virtually no ac‑
tivation of the external subnucleus (Yamamoto et al., 
1994). Furthermore, if lesioning of the LPbNe had af‑
fected the processing of hedonically positive taste in‑
formation, our animals would have consumed a small‑
er amount of sucrose solution, which was not the case. 
It is more likely that the lesion eliminated visceral sig‑
nals of satiation, given that the rostral region of the 
LPbNe subnucleus appears to be more involved in pro‑
cessing information of gastrointestinal origin (Yama‑
moto et al., 1994). 

Taken together, the results of both experiments 
indicate that animals with lesions in the vagal‑parab‑
rachial axis do not adequately regulate the satiation 
process (Phillips and Powley, 1998; Zafra et al., 2003, 
2004, 2016, 2017a). This is presumably due to the ab‑
sence of the necessary afferent vagal signals or the 
impairment of more rostral components of this pro‑
cessing pathway. 

However, this disruption is subsequently compen‑
sated for in both cases, either by a conditioned satiety 
mechanism (Treit and Spetch, 1986) or by the partic‑
ipation of alternative biological mechanisms that are 
initially non‑essential in the short‑term control of 
food intake. Thus, these mechanisms may include vagal 
pathways that are resistant to the action of capsaicin 
(Berthoud et al., 1997; Berthoud and Neuhuber, 2000). 
On the other hand, given that this compensatory ef‑
fect was also observed to a certain extent in complete‑
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ly vagotomized animals (Phillips and Powley, 1998), 
it may be produced by the action of systems that are 
independent of vagus nerve action, e.g., the humoral 
system or splanchnic nerves of the sympathetic sys‑
tem (Deutsch and Jang Ahn, 1986; Furness et al., 2001; 
Chavez et al., 1997; Kelly et al., 1999; Zafra et al., 2003; 
Hamr et al., 2015). 

It could also be argued that the transient nature of 
the effect on solid food intake and the lack of effect 
on the intake of sucrose solution (10%) in the capsa‑
icin‑treated animals may result from a transient neu‑
rodegenerative effect of capsaicin. In fact, recent stud‑
ies reported the regeneration of vagal fibers in both 
capsaicin‑treated and vagotomized animals (Czaja 
et al., 2008; Gallaher et al., 2011; Peters et al., 2013). 
However, this interpretation appears unlikely because 
the regeneration of vagal afferents is observed from 
30  days post‑surgery onwards, much later than the 
7‑day period covered by the present study. 

Likewise, it is possible that brain centers other 
than the LPbNe may be involved in counteracting the 
effect induced by the lesion. In theory, these alter‑
native nuclei could receive information from vagal 
and non‑vagal pathways (visceral spinal nerves of 
the sympathetic and/or humoral system). However, 
according to the present results, it appears unlike‑
ly that these alternative nuclei participate in initial 
short‑term food intake. If this were the case, the 
LPbNe‑lesioned animals would not have shown the 
intake increase observed in the 60‑ and 90‑min tests, 
which provide sufficient time for activation of the 
brain structures involved.

Our experimental data suggest that the vagus nerve 
and LPbNe are two components of a satiation control 
system, an idea compatible with neuroanatomical and 
neurophysiological studies (Loewy and Burton, 1978; 
Altschuler et al., 1989; Herbert et al., 1990). Howev‑
er, there was no precise time correspondence in the 
effect observed after interrupting these two compo‑
nents. Thus, no differences were observed between 
the capsaicin‑treated and control groups during the 
early intake periods analyzed (15, 30, 60  min of su‑
crose solution intake on day 5, and 30, 60, and 90 min 
of solid food intake on day 6). However, the intakes 
of the parabrachial animals were increased during 
60 min of sucrose solution intake on day 5 and during 
90 min of solid food intake on day 6. We consider that 
the absence of an early effect in the capsaicin-treat‑
ed group may be related to the unpleasant effects of 
the noxious surgery itself, given that the vagal action 
of capsaicin does not appear to block either nocicep‑
tive processes or the anorexic effect induced by im‑
mune mediators that can be processed by non‑cap‑
saicin fibers of the vagal pathway (Bret‑Dibat et al., 

1995, 1997; Berthoud et al., 1997; Zafra et al., 2004) or 
by splanchnic nerves and the humoral pathway (Cer‑
vero, 1994; Dantzer et al., 2000; Goehler et al., 2000; 
Langhans, 2000; Schwartz, 2002; Zafra et al., 2004). In 
other words, the absence of afferent signals required 
for satiation processes (eliminated by capsaicin) may 
increase food consumption, while the nociceptive in‑
formation derived from the surgery would counteract 
this nutritional effect (Zafra et al., 2004). This could 
inhibit food intake during the initial periods (60 or 
90  min) but would permit a  higher intake over time 
(24 h) (see Fig. 4). In fact, the food intake differences 
observed in the controls for both experiments (cap‑
saicin control, 84.33% vs. LPbNe control, 47.01%) may 
be attributable to the differential effects induced by 
the two surgical procedures (peripheral vs. central). 
Thus, body weight was only decreased in the animals 
that underwent peripheral surgery (capsaicin‑treated 
group and its control group, see Fig. 3). 

The importance of the vagal‑LPbNe axis has been 
demonstrated in relation to other nutritional pro‑
cesses. Some authors reported that the LPbNe, among 
other nuclei, is involved in the nutritional effects gen‑
erated by the peripheral action of cholecystokinin, 
which would act via the vagal pathway (Li and Row‑
land, 1995; Elmquist et al., 1997; 1998; Trifunovic and 
Reilly, 2001). Moreover, LPbNe lesions were found in 
c‑fos studies to significantly reduce the activation of 
prosencephalic structures that process the action of 
fenfluramine, such as the central nucleus of the amyg‑
dala, and to reduce the anorexic effect induced by this 
drug (Li et al., 1994).

In the same line, the activation of LPbNe, among 
other nuclei, has also been reported after the periph‑
eral administration of drugs that generate glucose 
deprivation (e.g. 2,5‑anhydro‑D‑mannitol) and after 
the intraduodenal administration of glucose (Ritter et 
al., 1994; Wang et al., 1999), while vagotomy interrupt‑
ed these effects (Ritter and Dinh 1992; Calingasan and 
Ritter, 1993; Ritter et al., 1994).

In addition, some peptides that regulate macronu‑
trient consumption, such as NP‑Y (carbohydrates), gal‑
anin (fats), and growth hormone releasing factor (pro‑
teins), are processed by the LPbNe, among other nuclei 
(Petrov et al., 1992; Krukoff et al., 1993; Veening et al., 
1998; Koegler et al., 1999; Bray, 2000).

Finally, the vagal‑LPbNe pathway also appears to 
be essential in certain regulatory behavioral manifes‑
tations that require rapid processing of information 
from the digestive system. Thus, in agreement with the 
present findings, vagotomies (Arnedo et al., 1990; Zaf‑
ra et al., 2006, 2007, 2017a), large lesions of the entire 
LPbN area (Reilly and Trifunovic, 2000a; b; 2001), and 
specific lesions of the LPbNe subnucleus (Mediavilla 



Satiation and lateral parabrachial subnucleus 109Acta Neurobiol Exp 2019, 79: 101–111

et al., 2000; Zafra et al., 2002) interrupt discriminative 
taste learning that requires the rapid processing of 
visceral information produced by the intragastric ad‑
ministration of rewarding (Zafra et al., 2002; 2007) or 
aversive (Arnedo et al., 1990; Mediavilla et al., 2000) 
substances. Moreover, the LPbN area is a brainstem re‑
gion that participates in both rewarding (Zafra et al., 
2002) and aversive (Agüero et al., 1993a, b; Carter et 
al., 2015; Mediavilla et al., 2000; Zafra et al., 2005) nu‑
tritional processes.

The vagus nerve is known to project to the nucle‑
us of the solitary tract (NTS), which relays the infor‑
mation to the LPbNe (Herbert et al., 1990). According 
to a  recent report by our group, the gelatinous sub‑
nucleus of the NTS appears to act as an intermediate 
relay between the vagus nerve and the LPbNe (Zafra 
et al., 2017b, c), and therefore may form part of this 
pathway.

CONCLUSION

The results of this study demonstrate that the 
short‑term intake of solid food and sucrose solution is 
increased both by perivagal capsaicin‑induced axoto‑
my of afferent vagal pathways and by lesioning of the 
LPbNe subnucleus, one of the brain centers towards 
which the vagus nerve projects, presumably due to 
interruption of the rapid vagal visceral‑sensory sig‑
nals required for physiological satiation processes.
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