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Repetitive transcranial magnetic stimulation (rTMS) is a popular and effective treatment for drug resistant depression. However, there
is considerable variability in clinical outcomes, in previous studies and between patients. Because of high requirements for the use of
fMRI based neuronavigation, many practitioners of rTMS still choose to use a standard 5 cm rule for rTMS coil placement which leads to
large variations in which brain regions are being stimulated. We decided to test the possibilities of a MNI based MR-less neuronavigation
system in rTMS depression treatment, by comparing the physiological effects and clinical outcomes of 3 distinct stimulation targets.
Forty-six patients (thirty-three female, thirteen male) from the Republican Vilnius psychiatric hospital, all with drug resistant depressive
disorder, participated in the study. All patients received high frequency (10 Hz) stimulation for 10 to 15 daily rTMS sessions. However,
before the treatment they were randomly sorted into 3 groups according to stimulation target in MNI map: Group 1 received rTMS
at point -40; 48; 35; Group 2 received rTMS at point -46; 45; 38; Group 3 received rTMS at point -38; 44; 26. Electroencephalography
(EEG) recordings and clinical tests were obtained the day before the rTMS course and after the last session. There were some notable
differences in physiological changes between the groups, with the largest EEG band spectral power increases found in Group 1 patients
and the lowest in Group 2 patients. There was a significantly larger decrease of the Hamilton Depression Rating Scale (HAM-D) scores in
the Group 3 (66.94%) compared to Group 1 (57.52%) and Group 2 (56.02%). This suggests it is possible to achieve higher clinical efficacy

and less physiological impact on the brain when using different targets in a neuronavigated MNI based MR-less rTMS system.
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INTRODUCTION

According to the World Health Organization around
350 million of people suffer from depression world-
wide (Morvai et al. 2016). However, less than one third
of depression patients reach remission after 12 weeks
of initial pharmacological treatment (Trivedi et al.
2006), some produce unwanted side effects (Teng et al.
2017), whilst around 30% of major depressive disorder
patients are diagnosed with drug treatment resistant
disorder (Bewernick and Schlaepfer 2015, Fitzgerald
et al. 2003, Silverstein et al. 2015). Currently, depres-
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sion which fails to find a pharmacological treatment is
treated with repetitive transcranial magnetic stimula-
tion (rTMS), which has proven itself to be clinically ef-
fective in drug resistant depression therapy, surpassing
the placebo effect (Avery et al. 2006, Blumbergeret al.
2016, Concerto et al. 2015, Filipcic et al. 2017, Fitzger-
ald et al. 2003, Kito et al. 2016, O'Reardon et al. 2007,
Sehatzedeh et al. 2016, Teng et al. 2017). However, the
therapeutic effect of rTMS therapy tends to vary sig-
nificantly between studies and between individuals,
even when similar protocols are applied, so there is
a strong need for better optimization of rTMS parame-
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ters as well as better insights into possible therapeutic
markers (Kobayashi et al. 2017, Luber et al. 2017, Zyss
et al. 2015).

With rTMS pulse parameters being standardized
and easily replicated in multiple cases, and with stimu-
lation intensities being tailored to the individual motor
threshold values, most technical variability should arise
from differences in coil placement over the brain. Since
its origin as a treatment for depression, the coil place-
ment in the clinical rTMS application has been a stan-
dard or blind protocol which attributes left hemisphere
prefrontal dorsolateral cortex (DLPFC) to a fixed point
5 to 6 cm anterior of a right hand thumb muscle mo-
tor area (Ahdab et al. 2010). However, since individual
brain size and shape can vary significantly, this method
leads to a great dispersion of actual stimulation targets
(Luber et al. 2017, Mir-Moghtadaei et al. 2015, Pommier
et al. 2017) and therefore can severely limit efficacy.
Studies have shown that when using 5 cm standard coil
positioning rule, up to 68% of patient cases might actu-
ally result in a miss of the DLPFC area, instead hitting
the dorsolateral premotor cortex or orbitofrontal cor-
tex (Herwig et al. 2001, Luber et al. 2017). Based on the
fact that the focality of a typical figure of eight TMS
coil is modeled to be around 5 cm? (Deng et al, 2013,
Thielscher and Kammer 2004), it could be that the ap-
plication of a standard 5 cm anterior to the motor cor-
tex rule yields a great variety of clinical responses in
different patients and studies as it does not take in ac-
count absolute differences in head anatomy (George et
al. 2013) and thus results in administering the most ef-
fective stimulation to different cerebral areas for each
patient. Currently the highest precision in anatomical-
ly and physiologically based stimulation targeting can
be achieved when using findings of functional brain
imaging studies together with precision neuronaviga-
tion tracking (Luber et al. 2017, Mir-Moghtadaei et al.
2015). The best results can be achieved with individual
measurements and better insights into antidepressant
rTMS mechanisms through research.

Another important piece of the rTMS therapy puzzle
is finding the most suitable biomarkers to help predict
the clinical response and better understand the mech-
anisms underlying antidepressant rTMS treatment.
Suggested markers range from quantitative changes in
brain activity, measured by simple baseline electroen-
cephalography (EEG) or baseline functional magnetic
resonance imaging (fMRI); to specific cognitive priming
or functional connectivity studies, using complex algo-
rithms and integrated systems; to studies of molecular
factors and individual gene polymorphisms (Kito et al.
2016, Kobayashi et al. 2017, Luber et al. 2017, Noh 2016,
Sale et al. 2015, Silverstein et al. 2015). Major depressive
disorder is usually characterized by functional impair-
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ments in the fronto-mezo-lymbic system network (Pulcu
et al. 2014), manifesting itself in asymmetry of activi-
ty in the prefrontal cortex between brain hemispheres
(Henriques and Davidson 1991, Lubar et al. 2003) and an
increase of metabolic activity in the subgenual anterior
cingulate (Mayberg et al. 2000, 2005). Since individual
fMRI is often found to be too expensive and complicated
to be used in a daily clinical rTMS practice, many stud-
ies into the treatment of depression with rTMS mark-
ers are carried out using separate EEG systems or inte-
grated rTMS-EEG systems. Experiments support the use
of EEG in various TMS studies as a reliable indicator of
cortical excitability changes, as EEG activity is a sensi-
tive measure to subtle TMS induced changes (Canali et
al. 2014, Thut and Pascual-Leone 2010), ranging from
short event-related potential (ERP) like phenomenon to
a more robust long-term potentiation/depression (LTP/
LTD) based change, especially in the motor and prefron-
tal cortices (Lioumis et al. 2009). Previously, much em-
phasis was placed on the frontal alpha band asymmetry
theory (Henriques and Davidson 1991). However, later
studies have proved it to be of limited diagnostic value
with a high degree of variability (Funk and George 2008,
van der Vinne et al. 2017). As in the studies examining
the clinical effectiveness of rTMS, studies examining the
effect of rTMS on EEG have also been quite variable, and
are hard to replicate beyond the original study popula-
tion (Widge et al. 2013). When various authors have tried
to measure a basic rTMS effect on EEG profile, many have
failed to find consistent changes in alpha band power,
supporting the alpha asymmetry theory. Some have
found a notable increase of alpha power in the occipital
area (Melnikova et al. 2015), whilst others have observed
no alpha band power change at all (Funk and George
2008, Loo et al. 2001, Spronk et al. 2008). The most ro-
bust baseline EEG findings were an increase in slow delta
wave power after prefrontal cortex rTMS (Griskova et al.
2006, Spronk et al. 2008, Valiulis et al. 2012). Increased
delta band power has also been observed after rTMS ap-
plication over the motor cortex (Assenza et al. 2015) and
after depression treatment with electroconvulsive ther-
apy (ECT) (Sackeim et al. 1996). However, no cases, ex-
cept for the delta increase in the prefrontal cortex after
ECT (Sackeim et al. 1996), have produced significant cor-
relations with clinical changes. It seems that the rise in
delta band power, although not clearly related to any un-
derlying depression mechanisms and therefore of ques-
tionable therapeutic value, can be regarded as a physio-
logical stamp of the impact of rTMS on the brain. While
some EEG variability might arise from differences in the
time between the rTMS procedure and EEG recording
(Thut and Pascual-Leone 2010) (many EEG changes tend
to return to the baseline after 15-70 minutes) the delta
power changes can be very robust and long lasting (Vali-



Acta Neurobiol Exp 2018, 78: 271-280

ulis 2014), even after a complete therapy course. There-
fore, the question remains; could delta power changes
also be influenced and probably minimized by TMS coil
placement precision?

If we assume that rTMS can restore or optimize neu-
ral activity from a pathological state (Paus and Barret
2004, Sale et al. 2015) by hitting the right target with the
right stimulus parameters, we should at all costs avoid
oversimplification of our therapeutic models and always
take into account, not just the activity of a target region,
but rather the state of the whole neural network (Fox et
al. 2012). Although traditional rTMS coils are unable to
reach and therefore alter the activation of subcortical
areas relevant for depression treatment like the subgen-
ual cingulate directly, this could be achieved in an effec-
tive manner when targeting cortical network areas with
the strongest possible connectivity. Generally, left hemi-
spheric prefrontal cortex areas have a notable function-
al connection to the fronto-mezo-limbic system, includ-
ing deeper limbic areas (Padberg and George 2009). How-
ever, not all rTMS therapy neuroimaging studies show
equal strength of this connection measured by changes
in the subgenual cingulate (Kito et al. 2011). It puts an
additional interest in high precision rTMS targeting,
based on individual cortical-subcortical connectivity
evaluation. Since neuronavigated rTMS coils theoreti-
cally can be placed with an accuracy of less than 1 mm
over the cortical target, it would makes sense to find an
exact point of the left DLPFC with the strongest connec-
tion to the subgenual cingulate (Fox et al. 2013).

Literature provides several brain coordinates to be
used as precise rTMS targets in left DLPFC to be used
in depression therapy. SPECT studies have provided us
with possible rTMS stimulation target areas based on
blood perfusion differences (Jha et al. 2016, Teneback
et al. 1999), by distinguishing blood flow patterns in
left prefrontal dorsolateral cortex areas of responders
(-40; 48; 35;) vs. non responders (Teneback et al. 1999).
Other possible precise rTMS targets (-46, 45, 38) can be
averaged from empirical clinical effectiveness when
using fMRI based rTMS neuronavigation (Fitzgerald et
al. 2009b). Fox et al. (2012) argue that the differences
in clinical effectiveness when stimulating left PFDLC
might arise from differences of connection strength
to the subcortical areas. fMRI studies have shown that
when comparing stimulation of different left DLPFC
targets to the activity changes of the subgenual cin-
gulate, the highest negative correlation is found when
using rTMS target coordinates of -38; 44; 26 (Fox et al.
2013). As such, stimulation placement so to achieve in-
direct subgenual cingulate activity alteration should
provide the best clinical results.

However, despite the enormous potential of neu-
roimaging studies, the biggest drawback of applying
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ultra-precise individual fMRI based neuronavigated
rTMS in clinical practice is the high monetary and time
costs, given it would require sophisticated equipment
and solid neuroanatomical skills for operators to iden-
tify individual targets for each patient (Pommier et al.
2017). This results in most clinical practitioners still
using a standard, highly imprecise rTMS coil place-
ment method, instead of incorporating neuroimaging
research data findings into their practice. Optional
Beam F3 method, although more adaptive to head size
differences, also proves to be less precise than neuro-
navigation as it is based entirely on head landmarks,
rather than functional connectivity data (Mir-Moghta-
daei et al. 2015, Pommier et al. 2017). Mir-Moghtadaei
et al (2015) found that a discrepancy of coil placement
between MRI-Guided placement and Beam F3 scalp site
can vary between 0.65 cm and 1.36 cm for most patients,
and in some cases this can reach close to 2 cm. Anoth-
er benefit of neuronavigation systems is an ability to
accurately track coil positions during the procedure
in real time. Possible upgrades in this situation could
be the use of MR-less MNI model based neuronaviga-
tion systems, which enable practitioners to place the
rTMS coils over an exact brain coordinate without the
need of an individual MRI scan, thus providing less dis-
persion of stimulation targets than previous methods
(Pommier et al. 2017) and enabling easy incorporation
of functional connectivity study findings into a stan-
dardized semi-blind design. However, such applications
are still quite rare. Therefore, in our study we decided
to compare how different rTMS targets, provided by
previous neuroimaging studies and applied in the MNI
model based MR-less neuronavigation system, would
affect basic physiological EEG changes in the brain, as
well as how they would affect clinical outcomes.

METHODS
Subjects

46 inpatients (33 female, 13 male, mean age
51.28 years, SD=12.62 years) from the Republican Vil-
nius psychiatric hospital with drug resistant depres-
sive disorder (without anxiety symptoms) participated
in the study. Before the treatment each patient signed
a written consent. During the rTMS course, previously
unsuccessful pharmaceutical treatment was continued
at steady stable doses. None of the patients were treated
with tricyclic antidepressants.

Patients were randomly assigned to three groups
according to stimulation site in the MNI map: Group
1 (20 patients); Group 2 (11 patients); Group 3 (11 pa-
tients).
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All the patients were treated with high frequency
(10 Hz) rTMS over the left PFDLC. Procedures were car-
ried out daily, five days per week, for two to three weeks
(10-15 procedures overall).

Equipment and procedure

TMS procedures were applied using MagVenture
Magpro X100 TMS stimulator with MagVenture Cool Coil
B65 liquid cooled figure eight coil. During the stimula-
tion 280 us biphasic impulses were used. The rTMS pro-
tocol consisted of 20.8 second trains of 10 Hz frequen-
cy impulses, applied at 100% motor threshold intensity
(1600 impulses overall).

For neuronavigated coil placement, the Localite
TMS Navigator MR-less system was used. This neu-
ronavigation system utilizes a standard the Montreal
Neurological Institute (MNI) (MNI ICBM152 non-linear
symmetric T1 Average Brain) brain map. MNI brain
map deformations for each patient head are calculat-
ed using anatomical markers and points from the head
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surface: 1) root of the nose (nasion); 2) left corner of
the eye (left exocanthion); 3) right corner of the eye
(right exocanthion); 4) anterior point on the left audi-
tory canal (left preauricular point); 5) anterior point
on the right auditory canal (right preauricular point);
6) occipital prominence (inion); 7) surface at the back
of the head from the most posterior point; 8) surface at
the top of the head from the most superior point. Left
PFDLC targets were placed in the MNI map according to
these coordinates: 1) Group 1 -40; 48; 35; (Teneback et
al. 1999); 2) Group 2 -46; 45; 38 (Fitzgerald et al. 2009b);
3) Group 3 -38; 44; 26 (Fox et al. 2014) (Fig. 1).

EEG measurement

For EEG recording, EBNeuro Galileo Mizar apparatus
was used. EEG was recorded before the rTMS course and
20-30 minutes after the last procedure in an electrically
shielded booth. Over the head of the patient, 20 round
bridge type Ag/AgCL electrodes were placed according
to international 10-20 system and secured with a cap.

Fig. 1. TMS target coordinates in the MNI brain model for three patient groups.
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Fpz electrode was used as a ground, ear electrodes act-
ed as a reference.

Electrode impedance was maintained lower than
5 kQ. Resting state EEG was recorded for 10 minutes
with the patient sitting eyes closed. EEG recordings
were filtered using low frequency (0.53 Hz), high fre-
quency (70 Hz) and notch (50 Hz) filters. Data was dig-
itized at 256 frequency 12 bit rate. For further analysis
30 second EEG intervals without artifacts were used.
Hanning window was applied for 2 second epochs. EEG
spectrum S (w) mean power values (uV?2) were calculated
by fast Fourier transformation (FFT) method. Absolute
power values were calculated for delta (1.00-3.50 Hz),
theta (3.50-8.00 Hz), alpha (8.00-12.00 Hz) and beta
(12.00-32.00 Hz) frequency band intervals.

EEG band power averages for particular brain ar-
eas were calculated by combining data from these
electrodes: a) Frontal left (Fp1, F7, F3 electrode aver-
age); b) Frontal right (Fp2, F4, F8 electrode average;
c) Temporal left (T3, T5 electrode average); d) Tempo-
ral right (T4, T6 electrode average); e) Central (C3, Cz,
C4 electrode average); f) Parietal (P3, Pz, P4 electrode
average); g) Occipital (01, Oz, 02 electrode average)
(Fig. 2).

Clinical evaluation

Clinical evaluation was carried out by a psychiatrist
before rTMS treatment and day after the last rTMS ses-
sion. It consisted of the Montgomery-Asberg Depres-
sion Scale (MADRS) (Montgomery and Asberg 1979), the
Hamilton Depression Rating Scale (HAM-D) (Williams
1989) and the Beck Depression Inventory (BDI) scale

Fig. 2. EEG electrodes averaged according to brain areas.
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(Beck et al. 1988). General clinical efficacy was based
on percentage changes of MADRS scale and divided into
three distinct groups: 1) weak effect (<10% decrease);
2) medium effect (10%-50% decrease); 3) significant
effect (>50% decrease) (Fitzgerald et al. 2009b). Remis-
sion was achieved when MADRS score after the therapy
was <10 points (Fitzgerald et al. 2006).

Statistical analysis

Statistical analysis was carried out using Microsoft
Excel 2010 and SPSS statistics v17 software. To measure
the significance of EEG band power spectrum changes
after the therapy course, Wilcoxon test for two related
samples was used. To study the differences of physio-
logical changes between patient groups and brain ar-
eas, additional analysis of variance (ANOVA) for repeat-
ed measures was applied. Within subject variables were
the measurements before the therapy course and after
it (Procedure factor). Between subjects factors were
the Group and brain area. Differences between patient
groups in clinical test reduction were analyzed using
One-Way ANOVA. Correlations between EEG band pow-
er changes and clinical changes were calculated using
Pearson correlation coefficient.

RESULTS

After EEG band spectral power changes were aver-
aged, an increase in delta and theta band power for
Group 1 patients became apparent (Fig. 3). For the same
patients, alpha band power had decreased slightly in
all brain areas except for the left temporal area and oc-
cipital area. Beta power had increased slightly across
the brain, except for the right frontal area (Fig. 3). Wil-
coxon testing showed statistically significant (P<0.05)
changes in the delta band power in both frontal areas,
temporal right, central, parietal and occipital areas

Group 1
= 150.00
g
£ 100.00 uDelta
5 OTheta
g 50.00 @Alpha
S 000 OBeta
8 FrontL FrontR TempL TempR Centr Pariet Occip
w5000 -

Area

Fig. 3. Changes of EEG band power spectrum in Group 1 patients. * P<0.05
in Wilcoxon test.
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Table I. EEG band power spectrum percentage change averages and standard deviations in all patient groups (Group 1 n=20, Group 2 n=13, Group 3 n=13)

* P<0.05 in Wilcoxon test.

Brain Area
Group EEG band

FrontL FrontR TempL TempR Centr Pariet Occip
Delta 44,92+ 73.24+ 63.74+ 65.38+ 34.59+ 53.07+ 90.87+
24.50* 42.53*% 36.00 32.07* 17.48% 26.09* 37.81%*
Theta 27.77+ 25.05% 25.85+ 14.52+ 17.95+ 13.55+ 20.03+
26.72 22.57 19.11 22.22 22.94 20.32 20.23

1
Alpha -1.34+ -2.43+ 23.48+ -6.26% -5.53+ -3.54+ 16.89+
P 14.99 11.95 18.53 12.98 13.37 13.28 18.01
Beta 0.52+ -3.85% 30.14+ 6.97+ 1.59+ 0.73% 0.28+
16.37 14.02 29.76 18.52 15.35 12.60 10.93
Delta 51.14+ 47.87+ 59.62+ 48.10+ 21.42+ 32.01+ 20.61+
41.01 30.47 42.17 33.59 21.46 23.78 23.21
Theta 1.64+ 20.88+ 4.75% 47.22+ 4.92+ 17.41+ 19.16+
10.63 24.46 19.08 54.69 12.39 16.18 17.06

2
Albha 3.80+ 1414+ 4.03+ 30.38+ 10.15+ 15.68+ 31.92+
P 15.96 20.73 21.54 27.43 16.77 17.01 30.50
Beta -16.27+ -12.51% -7.54+ 13.32+ -2.08+ -0.87% 10.91+
10.62 10.12 12.41 17.95 11.59 13.27 19.06
Delta 48.17+ 36.22+ 203.90+ 41.65+ 36.12+ 45.67+ 37.26+
25.39 17.61* 146.36 32.18 14.38 14.87*% 15.16*
Theta 36.21+ 18.90+ 65.30% 3214+ 4114+ 36.53% 40.40+
14.24 13.68 13.74* 29.75 17.97 16.12 17.54

3
Albha 27.70+ 24.01+ 37.68+ 10.67+ 35.54+ 52.43+ 16.73+
P 19.30 17.57 28.43 27.40 17.50 43.07 9.71
Beta 8.60x 19.92+ 16.65% -8.36% 20.69+ 19.96+ 18.55%
11.21 14.22 17.25 13.26 24.31 21.82 9.03

(Table 1). Group 2 patients showed an increase in del-
ta, theta and alpha band power in all brain areas and
a decrease in beta band power across the whole brain,
except for right temporal and occipital areas (Fig. 4).
However, none of these changes were statistically sig-
nificant according to the Wilcoxon test (Table I). Group
3 patients showed an increase in all EEG band powers
across the whole brain, with the only exception being
a beta band power reduction in the right temporal area
(Fig. 5). Statistically significant changes were found in
the right frontal, parietal and occipital areas in delta

band power and in the left temporal area for theta band
power (Table I).

Repeated measures ANOVA’s were carried out to test
the differences in results between the groups and brain
areas, as well as a combined therapy effect for different
EEG bands (procedure factor within groups). This data
showed that ‘everything combined’ rTMS therapy has
an effect on delta, theta and alpha band power and sta-
tistically significant differences can be found between
different areas in each EEG power band (Table I1). There
are also considerable differences between the groups

Group 2
o 150.00
g
g 100.00 w Delta
? i - - T OTheta
g 50.00 @ Alpha
@ 0.00 OBeta
8 FrontL FrontR TempL TempR Centr Pariet Occip
* 50.00

Area

Group 3
g wDelta
5 OTheta
§ @ Alpha
a OBeta
]
e 50.00 J FrontL FrontR TempL TempR Centr Pariet Occip

Area

Fig. 4. Changes of EEG band power spectrum in Group 2 patients. * P<0.05
in Wilcoxon test.

Fig. 5. Changes of EEG band power spectrum in Group 3 patients. * P<0.05
in Wilcoxon test.



Acta Neurobiol Exp 2018, 78: 271-280

Table Il. Repeated measures ANOVA.
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EEG band Factors F Pvalue
Procedure 20.131 0.0001*
Delta Group 5.982 0.003*
Area 2.316 0.034*
Procedure 20.74 0.0001*
Theta Group 4.952 0.001*
Area 2.012 0.064
Procedure 6.7 0.01*
Alpha Group 0.478 0.621
Area 9.112 0.000*
Procedure 0.041 0.839
Beta Group 2.651 0.072
Area 3.955 0.001*

in the delta and theta bands (Table II). The later result,
when taken together with Wilcoxon test findings, sug-
gests that Group 2 patients had the least physiological
changes after the treatment, Group 1 had the most no-
table and widespread increase in the delta band power
whereas Group 3 had a more sporadic increase in del-
ta band power and a slight increase in the theta band
power (Figs 3-5, Table II).

Percentage decreases in clinical test scores show
a very similar outcome between Group 1 and Group 2
patients, but Group 3 patients had the largest reduction
in all three (MADRS, BDI and HAM-D) clinical test scores
(Table I1I). Moreover, when ANOVA’s were applied, the
HAM-D test showed statistically significant changes be-
tween the three groups (Table 1V). Pearson correlations
between the EEG power changes and clinical changes
failed to show any significant relationships.

DISCUSSION

After rTMS therapy there was a notable tendency
for a slow EEG wave (delta and theta) power increase

Table Ill. Average decreases of clinical test scores among the patient
groups (Group 1 n=20, Group 2 n=13, Group 3 n=13).

in all study groups which was not limited to specific
brain areas. This coincides with several previous stud-
ies which have showed an increase in slow wave ac-
tivity after electrophysiological antidepressant thera-
py (GriSkova et al. 2006, Spronk et al. 2008). However,
these changes do not correlate to a clinical improve-
ment and tend to show a very basic brain reaction to an
outside electrical stimulation (Valiulis 2014). Alpha and
beta power changes were less pronounced and more
variable. It is important to note that endeavors to find
specific changes in the alpha band frequency, although
initially promising from the clinical point of view, also
failed in a numerous previous studies (Funk and George
2008, Widge et al. 2013, van der Vinne et al. 2017).
Group 1 patients displayed the most widespread in-
crease in delta band power across the brain. This in-
dicates the largest physiological changes of the three
groups. The coordinates for stimulation in this group
were based on Teneback et al. (1999), a SPECT study
which showed an increase in brain activity in that re-
gion after rTMS therapy. Our EEG results did not show
any substantial increase in beta band power in the left
frontal area, or in any brain region for that matter.

Table IV. One Way ANOVA results for clinical test scores.

Group MADRS BDI HAM-D Test F Pvalue
1 54.96% 47.89% 57.52% MADRS 1.675 0.191
2 56.75% 44.14% 56.02% BDI 1.44 0.241
3 62.9% 55.22% 66.94% HAM-D 3.929 0.022"




278 V. Valiulis et al.

Group 2 patients showed the mildest increases in
slow wave EEG band power of all study groups. There
was also no evidence of activation of the left frontal
area from the beta band power standpoint. Fitzger-
ald et al. (2009b), who proposed these coordinates for
rTMS treatment, did not provide EEG activity change
measures in his study. However, an fMRI comparison
highlighted that the Fitzgerald et al. (2009b) target did
show two times stronger anti-correlation with subgen-
ual cingulate cortex activity, when compared to a5 cm
anterior to motor cortex standard rTMS target (Fox et
al. 2012b).

Group 3 patients, whose stimulation targets were
based on the Fox et al. (2012a) study, produced a mid-
dling effect when measuring EEG band power chang-
es. Slow wave power increases were apparent but were
limited to several brain areas when compared to the
Group 1 patients. However, like in previous cases, this
stimulation target provided no benefit when consider-
ing activity increases via the beta band power rise.

As stated in the previous literature, overall delta
power increase is often a consequence of electrophys-
iological brain stimulation, including both rTMS and
ECT (Assenza et al. 2015, Griskova et al. 2006, Sackeim
et al. 1996, Spronk et al. 2008, Valiulis et al. 2012).
Theoretically, it can be regarded as both a marker of
neuroplastic processes and brain lesions (Assenza et
al. 2015). Therefore it makes sense to try and limit its
manifestation where it is not proved to serve a partic-
ular clinical benefit.

Patients in Group 1 and Group 2 displayed a 50% de-
crease in MADRS and HAM-D clinical test scores. This
correlates with data from Teneback et al. (1999), the
study which Group 1 patients rTMS target coordinates
were based on. Similar decrements in clinical test scores
were also found in other studies (George et al. 2013,
Filipcic et al. 2017, Tarhan et al. 2012).

Group 2 patients clinical results in MADRS and BDI
tests have exceeded previous Fitzgerald et al. (2003)
rTMS study results: MADRS - 32.2 + 9.0; BDI - 27.2 + 10.8
(Fitzgerald et al. 2003).

Group 3 patients displayed the largest clinical im-
provement in MADRS and HAM-D clinical test scores,
averaging a 60% decrease. The rTMS target coordinates
used for this group were based on the Fox et al. (2012a)
study, which also showed the highest anti-correlation
to subgenual cingulate, three times larger than using
a standard 5 cm anterior to motor cortex rule and 1.25
larger than when using a target suggested by Fitzgerald
et al. (2003). Our study findings support the rationale
of using the left DLPFC point with the highest anti-cor-
relation to subgenual cingulate in order to achieve the
best clinical results, even when calculated in the aver-
aged MNI map.
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No significant correlations were found between clin-
ical changes and baseline EEG band power changes. This
contradicts the findings of the ECT study conducted by
Sackeim et al (1996), which found prefrontal region delta
power increases, indicative of depressive symptom im-
provement. However, it conforms to previous rTMS re-
search, which reported that delta power had no influence
on the clinical or the neuroplastic improvement (Assen-
za et al. 2015, Spronk et al. 2008, Valiulis et al. 2012). In
our study, EEG spectral power changes can be regarded
as a generalized quantitative measurement of brain reac-
tion to rTMS therapy, without considerable clinical value.
Therefore, in this case, the rTMS influence on slow EEG
band power seems to be relevant only from the perspec-
tive of slight changes the different MNI targets have had
on brain physiology and thus is worth applying when
small disturbances in brain activity would be considered
in the choice of rTMS parameters. For a more detailed
look at clinical rTMS mechanisms, more complex EEG
algorithms involving more specific and immediate brain
excitability changes should be used, including standard-
ized low-resolution brain electromagnetic tomography
(SLORETA) (Canali et al. 2014, Noh 2016, Kito et al. 2016).

To summarize, minute changes in rTMS coil place-
ment when using precision navigation can lead to sig-
nificant differences in physiological and clinical as-
pects. This rule can also be applied when using a MNI
brain model. This supports the use MR-less MNI based
neuronavigation for rTMS coil placement in clinical
practice as a superior option to standard blind or Beam
F3 methods (Mir-Moghtadaei et al. 2015, Pommier et al.
2017). For the best clinical results it is advisable to use
MNI coordinates -38; 44; 26 (Fox et al. 2012a). Howev-
er, these data should be taken with a slight caution, as
the patient groups in this study were rather small and
should be enlarged for the future studies. Also it would
be beneficial to try and recreate the results using dif-
ferent rTMS protocols, like the FDA recommended 120%
motor threshold (MT) intensity 37 minute 10 Hz proto-
col (O’Reardon et al. 2007) or intermittent theta burst
stimulation (iTBS) (Huang et al. 2011). It could be pro-
posed that using longer treatment courses, for example
six weeks instead of three, may highlight differences
between groups. For higher relevance and comparison
purposes in the future it would also be useful to regis-
ter metabolic changes in the DLPFC and the subgenual
cingulate, together with more specific EEG changes. It
would also be interesting to do a direct clinical compar-
ison of MR-less MNI based neuronavigated rTMS and
individual fMRI based neuronavigated rTMS, because
although complicated and expensive, individual fMRI
still provides us with individual brain anatomy and the
possibility to manipulate additional important vari-
ables like cognitive priming (Luber et al. 2017).
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CONCLUSIONS

1. Lowest physiological changes in EEG power spectrum
were observed when using -46; 45; 38 MNI coordinates,
highest - when using -40; 48; 35 MNI coordinates.

2. Highest clinical gain was observed when using -38;
44; 26 MNI coordinates.

3. Considering both physiological imprint and clinical
efficacy it is advised to use -38; 44; 26 MNI coordinates.
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