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The gut microbiota in neuropsychiatric disorders
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The purpose of this review is to summarize current knowledge about the gut microbiota in neuropsychiatric disorders. It is estimated 
that the human gut is colonized by up to 1018 microorganisms, mostly anaerobic bacteria. The gut microbiome is responsible for 
multiple functions, e.g. tightness of the intestine barrier, digestion and absorption. The correlation between gut dysbiosis and 
development of psychiatric, autoimmune and allergic diseases as well as bidirectional communication between brain and gut 
microflora have been shown. Recent findings suggest that specific bacteria can be involved in the development of clinical conditions, 
such as Autism Spectrum Disorders, depression and schizophrenia, and microbiota may be a  target for therapeutic intervention 
providing novel treatment strategies. 
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INTRODUCTION

The gut microbiota is composed of thousands of bac‑
teria species weighting together up to 2 kg (Thomas et 
al. 2015). It is estimated that the human gut is occupied 
with up to 1018 microorganisms: bacteria (1014, mostly 
anaerobic), viruses, yeasts, and fungi (Turroni et al. 
2008), some of them are unculturable or uncharacter‑
ized (Turroni et al. 2008). The intestinal microbiome 
contains approximately 150  times more unique genes 
than the human genome (Qin et al. 2010) and the in‑
testinal microflora represents over 200,000 to 1,000,000 
bacterial genes (Thomas et al. 2015). The microbio‑
ta can be described as metabolic ‘organ’ representing 
functions that humans have not evolved on their own 
(Backhed et al. 2004, Bocci 1992). It can communicate 
with the host, repair itself through self‑replication 
and perform a  lot of functions: consuming, mediating 
chemical transformations, storing and redistributing 
energy (Backhed et al. 2005). 

Microbiota represent an important protection sys‑
tem of the gastrointestinal (GI) tract against harmful 
pathogens and external factors (Mangiola et al. 2016). 

Bacteria living in the human intestine achieve the high‑
est documented cell concentration for any ecosystem, 
1011‑1012 per mL (Hu et al. 2016, Hugenholtz et al. 1998). 
The most common phyla in the small intestine are Fir‑
micutes and Bacteroidetes, whereas Proteobacteria, Ac‑
tinobacteria, Fusobacteria, Archea and Verrucomicrobia 
are represented in smaller quantities (Grenham et al. 
2011, Sartor 2008). 

The relationship between human and gut microbi‑
ota was described as ‘commensal’ (one partner bene‑
fits when another is unaffected), which shows that our 
knowledge is insufficient (Backhed et al. 2005). The gut 
microbiota is responsible for maturation of the immune 
system (Kau et al. 2011) in particular of GALT (gut‑asso‑
ciated lymphoid tissue) through stimulation of local and 
systemic immune responses (Nell et al. 2010). The con‑
tinuous stimulation of the immune system by intestinal 
bacteria generates a  “low‑grade physiological inflam‑
mation”, which is a rapid and effective defence against 
pathogens (Fond et al. 2015, Rakoff‑Nahoum et al. 2004). 
The microbiota communicates with the immune system 
and vice versa (Elson and Alexander 2015) thus dysbiosis 
defined as shift of microbial composition and beneficial 
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functions (Fond et al. 2015) can result in immune‑medi‑
ated inflammatory disorders, such as celiac disease (El‑
son and Alexander 2015).

Microflora is responsible for digestion of meals and 
drugs, absorption and distribution of fat (Backhed et 
al. 2004, Serino et al. 2012). It is involved in vitamin K 
synthesis (Backhed et al. 2005), the production of mucus 
by secreting the short chain fatty acids (SCFAs). It caus‑
es epithelial regeneration consequently increasing the 
tightness of the intestine barrier (Burger‑van Paassen et 
al. 2009), and stimulation the angiogenesis (Stappenbeck 
et al. 2002).

The gut microbiota is relatively stable after the 
age of 3 years and tends to lose diversity in the elder‑
ly (Salazar et al. 2014). Microbial colonization begins 
shortly after birth, but some studies show the existence 
of microorganisms in placenta, amniotic fluid, umbili‑
cal cord blood, and meconium (Aagaard et al. 2014, DiGi‑
ulio 2012, Moles et al. 2013). In the newborns the gut is 
colonized by facultative anaerobes which create a more 
suitable environment for the strict anaerobes (Fanaro 
et al. 2003). It is accepted that the gold standard micro‑
biota in infants is that of full‑term vaginally delivered 
breast‑fed babies (Salazar et al. 2014). Consequently 
the composition of microflora in this stage of life is in‑
fluenced by many factors, e.g. type of feeding, delivery 
mode, and use of antibiotics (Penders et al. 2006). The 
intestine of children fed by breast milk is dominated by 
Proteobacteria (Fan et al. 2014). It was observed that 
breast fed infants have higher amounts of bifidobacte‑
ria, Bacteroides spp., more varied microbiota and a lower 
level of potential pathogens than formula‑fed babies 
(Bezirtzoglou et al. 2011, Fallani et al. 2010). Weaning 
stimulates growth of Bacteroidetes and Firmicutes, and 
decreases growth of Bifidobacteria and Proteobacteria 
(Fallani et al. 2011). The induction of solid foods shifts 
towards bacteria typical for ‘adult’ microbiota (Palmer 
et al. 2007). This type of gut microflora is dominated by 
Bacteroidetes and Firmicutes (Arumugam et al. 2011). 
The ‘adult‑like’ intestinal microbiota in the absence of 
significant ecological stressors represents a  high sta‑
bility and homeostasis (Salazar et al. 2014). Intestinal 
microbiome diversity is higher among infants than 
adults (Koenig et al. 2011, Kurokawa et al. 2007). In the 
elderly, the microbiota represents reduced species di‑
versity causing it less resistant to major fluctuations 
in response to environmental factors. These changes 
induce decrease of beneficial bacteria and availability 
of total SCFA, increase of facultative anaerobes (Salazar 
et al. 2013, 2014). It was shown, using a mouse model, 
that adolescence and early adulthood are the critical 
periods when perturbations in the intestinal micro‑
flora and dysregulation of microbiota‑gut‑brain axis 
can influence brain development and animal behavior 

(Desbonnet et al. 2015). These changes can lead to al‑
tered cognitive functions and anxious phenotypes in 
adulthood. 

Until recently the relationship between gut microflo‑
ra and health was largely unknown, mainly due to the 
lack of methods to study unculturable microorganisms 
(Salazar et al. 2014). Currently, two methods are com‑
monly used to investigate the relationships between 
diet, gut microbiome and gut‑brain axis: metagenomic 
(involving culture‑independent methods for describing 
microorganisms) and gnotobiotic (the raising of animals 
in germ‑free conditions at various stages of life and dif‑
ferent microflora compositions) (Kau et al. 2011, Turn‑
baugh et al. 2009, Wikoff et al. 2009). 

Our knowledge about the composition and function 
of intestinal microflora is still unsatisfying (Arumugam 
et al. 2011) because of dramatic changes in cultural tra‑
ditions, the growth of population, social and economic 
status, and agriculture affecting the diet modification. 
Understanding how these dietary changes affect human 
gut microflora represents an area of scientific need and 
challenge (Kau et al. 2011). Advances in modern life such 
as use of antibiotics, vaccination, high‑calorie diet and 
cleaning products bring significant changes (Flint 2012). 
Furthermore, the personal profile of the microbiome is 
continually influenced and changed by diet, genetics, 
sex and age (Jumpertz et al. 2011, Kau et al. 2011). The 
microbiota profile might be a valuable representation of 
the personal environmental history: its dynamic nature 
and diversity determined to date extends far beyond 
what researchers expected (Zhou and Foster 2015).

The main diseases investigated in the context of 
a correlation between gut dysbiosis and development of 
diseases are: inflammatory bowel disease (IBD), irritable 
bowel syndrome (IBS), Crohn’s disease, autoimmune and 
allergic diseases, obesity, neurological and psychiatric 
disorders (Andoh and Fujiyama 2006, Dash et al. 2015, 
Elson and Alexander 2015, Fond et al. 2015, Garrett et al. 
2007, Ley et al. 2005, Macdonald and Monteleone 2005, 
Macpherson and Harris 2004, Mangiola et al. 2016, Mayer 
et al. 2014, Principi and Esposito 2016, Serino et al. 2012, 
Turnbaugh et al. 2006, Zhou and Foster 2015).

The neuronal gut‑brain communication 
in neuropsychiatric disorders

Bidirectional communication between brain and gut 
microflora has been reported by many authors (Critch‑
field et al. 2011, DellaGioia and Hannestad 2010, Forsythe 
et al. 2010, Grenham et al. 2011, Mayer et al. 2014, Mes‑
saoudi et al. 2011). Not only physical and psychological 
stressors may affect the composition and metabolic ac‑
tivity of the gut microbiota, but it is also suggested that 
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the intestinal microbiome affects the brain by the hu‑
moral and neuronal mechanisms with particular atten‑
tion to the vagus nerve (Dash et al. 2015). Signals from 
the brain may influence sensory, motor, and secretory 
modalities of the GI tract, and signals from the GI tract 
influence brain functions, however, the exact mecha‑
nisms are not well understood (O’Mahony et al. 2011, 
Principi and Esposito 2016). 

The existing brain‑gut axis is further supported by 
using antibiotics and usually probiotics (defined as living 
organisms, which taken in appropriate amounts cause 
health benefits to the host (Bravo et al. 2012) as a treat‑
ment for many diseases. Administration of probiotics as 
food ingredients or supplements can be beneficial for 
the host. They consist primarily of lactic acid‑produc‑
ing bacteria, such as lactobacilli, lactococci, bifidobacte‑
ria and yeasts (e.g. Saccharomyces boulardii) (Critchfield 
et al. 2011). Probiotics restored gut physiology in stress 
caused by neonatal maternal separation model by regu‑
lating the interaction between mucosa and bacteria and 
reducing hypothalamic–pituitary–adrenal axis (HPA) 
hyperreactivity in rats (Gareau et al. 2007).

Diet modification of gut microbiota composition may 
affect the inflammatory mechanisms (Cani et al. 2007) 
and damage the intestinal barrier and consequently fa‑
cilitate the inflow of harmful substances like bacterial 
metabolites from gut to lumen (de La Serre et al. 2015, 
Sen et al. 2017). It was observed that high‑sugar diet in‑
duces gut inflammation and alters vagal gut‑brain com‑
munication (Sen et al. 2017), as well as high‑fat diet caus‑
ing vagal remodeling can be the reason for alterations 
in neuronal signaling (Vaughn et al. 2017). Interestingly, 
it was shown in rats that interferences of vagal affer‑
ent signaling are able to cause obesity in a diet‑induced 
models (de Lartigue et al. 2012, Sen et al. 2017), thus, 
dysregulation of vagal communication between gut and 
brain is hypothesized to play a  role in pathogenesis of 
obesity and related diseases (Sen et al. 2017). Moreover, 
microbiota signals affecting the brain can be changed by 
vagal afferents (Vaughn et al. 2017, Wang et al. 2002). 
These authors found that eating too much sugar can 
cause gut inflammation or diminish gut permeability, 
which combined with dysbiosis may effect endotoxemia 
(defined as too much circulating lipopolysaccharides, 
LPS) (Sen et al. 2017).

LPS, also known as lipoglycans or endotoxins, are 
found in the outer membrane of Gram‑negative bacte‑
ria, which elicit strong immune responses in animals. 
They are the markers showing brain‑gut microflora bi‑
directional communication (Bengmark 2013). Antibiotic 
reduction of luminal LPS concentration attenuates the 
HPA axis stress response and increases hypothalam‑
ic expression of pro‑inflammatory cytokines, such as 
tumour necrosis factor‑α (TNF‑α), interleukin 6 (IL‑6), 

IL‑1β (Ait‑Belgnaoui et al. 2012, Theoharides et al. 2013). 
Even low doses of LPS may cause fatigue, anorexia, de‑
pressed mood and apathy (DellaGioia and Hannestad 
2010) characteristic of depressive disorder (Dunn and 
Swiergiel 2005), and inflammation‑related states such as 
autoimmune disease (Johnson et al. 2005). LPS are a po‑
tent proinflammatory factors able to alter neuronal ac‑
tivity in the limbic system (e.g. it can increase activity of 
amygdala) (Haba et al. 2012), and to activate vagal affer‑
ent neurons (de Lartigue et al. 2012). 

Microbial metabolites are important immunomod‑
ulators (Qiu et al. 2012). SCFAs are the end‑products of 
microbial fermentation of macronutrients and not con‑
stitutively digested by humans. The missing enzymes 
are delivered by bacteria, therefore SCFAs are good 
markers of intestinal microflora composition (Kau et al. 
2011), e.g. Clostridia spp. and Bacteroides spp. are import‑
ant SCFA producers. Major effects of these compounds 
are the modification of mitochondrial functions (by the 
citric acid cycle, carnitine metabolism or epigenetic 
modulation of genes controlling brain function) (Princi‑
pi and Esposito 2016). Gut microflora can also influence 
the central nervous system (CNS) by endocrine pathway 
(corticotropin‑releasing factor, CRF) (Rodino‑Janeiro et 
al. 2015) or by modification blood‑brain barrier (BBB) 
(Braniste et al. 2014). There were observed higher levels 
of these components in the “leaky gut syndrome (LGS, 
the increased gut permeability) (Critchfield et al. 2011). 

The nucleus of the solitary tract (NTS) and dorsal 
motor nucleus of the vagus (DMV) are the first stations 
receiving information about nutrition status from the 
GI tract (Rogers and McCann 1993). It was shown that 
a  high‑fat diet, by changing the gut microbiota com‑
position, is able to cause endotoxemia and neuronal 
damage to the NTS and DMV. This effect includes ac‑
tivation of microglia and vagal remodeling in these re‑
gions (Vaughn et al. 2017). Effective treatment by mi‑
nocycline in rats resulted in normalization of gut mi‑
crobiota composition and protection against neuronal 
damage (Vaughn et al. 2017). 

Autism spectrum disorders 

Autism spectrum disorders (ASD) are defined by im‑
pairments in verbal and non‑verbal communication, 
social interactions, decreased verbal skills, repetitive 
behavior, insistence to routines, and unusual response 
to sensory stimuli (Critchfield et al. 2011, Williams et al. 
2011). Data from the Center of Disease Control in the USA 
indicate that as many as 1/80 children have ASD (Wil‑
liams 2012) and the diagnosis of ASD has increased dra‑
matically over the last  years (King and Bearman 2011). 
Among the potential causes of the rising incidence are 
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broadening of diagnostic criteria and greater awareness 
among health care professionals (MacFabe et al. 2007), 
however, one cannot rule out other causes. The preva‑
lence of ASD is between four and eight times higher in 
males than in females (Bertrand et al. 2001). The lack of 
knowledge on distinct pathogenesis of ASD and specific 
biomarkers are important obstacles in developing effec‑
tive treatments (Theoharides et al. 2013).

Possible risk factors for developing ASD are prena‑
tal exposures to thalidomide, valproic acid, and ethanol 
(Arndt et al. 2005). Although some parents report an asso‑
ciation between abdominal discomfort in their children 
(e.g. constipation, colic, gastroesophageal reflux and 
diarrhea) and the onset of autistic symptoms (MacFabe 
et al. 2007), the prevalence of GI symptoms in autistic 
children is not precisely defined and ranges between 9 to 
70% (Buie et al. 2010). Probably the lower scores are ob‑
tained in population studies, whereas the higher scores 
are defined in specialized GI clinics. Moreover, in these 
children a high frequency of GI dysfunction is usually as‑
sociated with increased irritability, aggressive behavior, 
tantrums, and sleep disturbances (Critchfield et al. 2011). 

Some authors correlate ASD symptoms with im‑
mune dysfunction and increased inflammatory markers. 
Proinflammatory cytokines: IL‑6, TNF and monocyte 
chemotactic protein 1 (MCP‑1) were found in cerebro‑
spinal fluid of ASD patients (Li et al. 2009b, Onore et al. 
2012, Theoharides et al. 2012, Vargas et al. 2005). Meth‑
ods such as histology, immunochemistry and flow cy‑
tometry revealed infiltration of immune cells (e.g. lym‑
phocytes with proinflammatory phenotype CD3+ TNFα+ 
cells or CD3+ IFNγ+ cells, monocytes, NK cells) in the GI 
tract of autistic children (Ashwood and Wakefield 2006, 
Furlano et al. 2001, Torrente et al. 2002). 

It is documented that higher serum LPS levels oc‑
cur in autistic patients with worse social interactions 
in the comparison to healthy controls (Emanuele et 
al. 2010). LPS levels correspond to increased IL‑1β and 
IL‑6 levels, responsible for inflammatory and immune 
dysregulation in autism (Emanuele et al. 2010). LGS is 
responsible for bacteria migration through the intes‑
tinal barrier to blood and increase of LPS serum levels 
in humans (Erridge et al. 2007). Bacterial components 
in the blood may release inflammatory responses and 
consequently affect neuronal signaling (Critchfield et 
al. 2011, Emanuele et al. 2010). 

Diet is also thought to influence children with ASD, 
e.g. a Western diet, depending on inflammatory state, 
can cause anxiety‑like behavior and memory problems 
(Ohland et al. 2013). The high prevalence of ASD in In‑
dia (approximately 2 million) may be correlated with 
typical Indian carbohydrate‑rich diet and consequent‑
ly predominance with of genus Prevotella and Megas‑
phaera (Bhute et al. 2016, Pulikkan et al. 2018). The 

Veillonellaceae family, which were increased in chil‑
dren with ASD in comparison to healthy controls, was 
also associated with a  carbohydrate‑rich diet (includ‑
ing gluten) (Ercolini et al. 2015, Pulikkan et al. 2018). 
These findings confirm the thesis suggesting that diet 
induced dysbiosis may be important in pathomecha‑
nism of ASD. 

Autistic children are characterized by higher levels 
of fermentation products than corresponding healthy 
controls (Wang et al. 2012). Phenols, amines, ammo‑
nia can be toxic to the large bowel suggesting that gut 
microflora and intestinal barrier are important in the 
pathogenesis of ASD (Nowak and Libudzisz 2006). Propi‑
onic acid (PPA) is the end‑product of enteric bacteria in 
the intestine (Shultz et al. 2008) and a common preser‑
vative added to refined wheat and dairy products (Brock 
and Buckel 2004). PPA is able to affect autistic behaviors 
(Critchfield et al. 2011), e.g. higher occurrence of autis‑
tic symptoms shortly after the eating of refined wheat 
and dairy were observed (MacFabe et al. 2007). The au‑
thors report a  significant improvement in child’s be‑
havior following the elimination of these products from 
the diet, especially in speech and communication skills, 
lower hyperactivity, better focusing and night sleep with 
concurrent resolution of GI symptoms (Jyonouchi et al. 
2002). Experimental intraventricular administration 
of PPA in a  rat model demonstrated changes in animal 
behavior (MacFabe et al. 2007, Shultz et al. 2008). PPA 
might be responsible for behavioral, neuropathological 
and biochemical abnormalities observed in autism and 
might represent a connection factor between dietary or 
derived metabolites along with genetic predisposition, 
and subsequent symptoms of ASD (MacFabe et al. 2007, 
Wajner et al. 2004).

Differences in gut microbiota between children with 
autism and healthy controls were described in affected 
children: 10  times higher amount and diversity of Clos-
tridium spp. (Finegold et al. 2002, Parracho et al. 2005, 
Song et al. 2004), changed Firmicutes: Bacteroides ratio 
(the lower levels of Firmicutes and higher of Bacteroi‑
des) (Finegold et al. 2010), the increase of: Bacteroidetes, 
Alcaligenaceae family, Lactobacillus and Sutterella genera, 
and the decreased levels of Prevotella spp. and Bifidobac-
terium spp. (Adams et al. 2011, Finegold et al. 2010, Kang 
et al. 2013). It should be noted that  Bacteroidetes  pro‑
duce PPA and other SCFAs, and experimental injection of 
any SCFA into cerebral ventricles of rats caused typical 
autistic behavior (MacFabe et al. 2007). Williams et al. 
(2011) observed contradictory decreased levels of Bac‑
teroidetes and increased Firmicutes/Bacteroides ratio. 
The explanation for this may be using different materi‑
als: most authors analyzed the fecal samples, whereas in 
this particular study authors investigated ileal and cecal 
biopsies materials.  
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Short‑term improvement was observed after vanco‑
mycin treatment in eight out of eleven children with re
gressive, onset autism, but it largely waned at follow‑up 
(Critchfield et al. 2011, Sandler et al. 2000). Although not 
suggesting the usefulness of therapy, these results sup‑
port a possible gut microflora‑brain connection. 

Treatment of mice exhibiting autistic behaviors by 
Bacteroides fragilis repaired the intestinal permeability by 
tight junction protein expression and production of IL‑6 
(Hsiao et al. 2013). Using probiotics in treatment of au‑
tistic children can improve their behavior, but it needs 
to be established in well‑controlled trials with sufficient 
group sizes (Critchfield et al. 2011). 

Although there is evidence that gut dysbiosis is in‑
volved in pathogenesis of ASD, some studies did not 
show differences in the composition of gut microflora 
between autistic children and healthy controls (Gonda‑
lia et al. 2012). The principal limitations of the studies 
include the number of patients, the differences among 
groups (diverse lifestyles, environmental risk factors, 
habits and diet intake) (Emanuele et al. 2010), some‑
times not properly examined treatment strategies, e.g. 
fecal microbiota transplantation (Evrensel and Ceylan 
2016). Despite these limitations proved changes in gut 
microflora composition, modifications of immunological 
markers and intestinal barrier provide a clue for future 
treatments. 

Depression and anxiety 

Depression is characterized by low mood, low self‑es‑
teem and loss of interest in normally enjoyable activi‑
ties (Kessler et al. 1996, Naseribafrouei et al. 2014), and 
its diagnosis requires the occurrence minimum of five 
symptoms from the APA 2000 list (DellaGioia and Han‑
nestad 2010), whereas anxiety is described as a  com‑
mon form of mood disorder with nervous, endocrinal, 
and immunological pathogenesis (Wang and Kasper 
2014). A  severe bout of depression may lead to death, 
not only by committing suicide (Dome et al. 2009). Sci‑
entist predict that one of six persons will experience 
at least one episode of depression during their lifetime 
(Kessler et al. 2005). 

It is hypothesized that depression may result from 
neuroimmunological dysregulation (Dantzer et al. 
2008, Wang and Kasper 2014). The direct correlation 
between gut microbiota and depression remains un‑
clear, but indirect evidences including inflammatory, 
stress or signaling pathways were described (Dinan and 
Cryan 2013, Foster and McVey Neufeld 2013). Clinically 
minocycline (second generation tetracycline) was suc‑
cessfully tested as a treatment for depression (Soczyns‑
ka et al. 2012).

In rodents acute stress causes increased gut permea‑
bility (Julio‑Pieper et al. 2014), and germ‑free (GF) mice 
exhibit reduced anxiety and increased motor activity 
in a  comparison to specific pathogen free (SPF) mice 
(Neufeld et al. 2011). There is some evidence for the re‑
verse situation, when the increased intestinal permea‑
bility affects psychological stress: the challenge with 
Citrobacter rodentium in mice caused anxiety‑like and 
increased risk assessment behavior (Julio‑Pieper et al. 
2014), supporting the correlation between anxiety‑like 
behavior and gut microbiota composition.

Modifications of traditional lifestyles, among which 
diet is especially mentioned, were correlated with 
many mental disorders, mainly depression (Hidaka 
2012, Selhub et al. 2014). Population studies showed 
that “traditional dietary practice” was related to low‑
er risk of depression and anxiety, e.g. typical for Japa‑
nese fermented soy products (Nanri et al. 2010). These 
findings were confirmed in animals studies: mice fed 
by beef presented higher gut microbial diversity, bet‑
ter reference memory and decreased anxiety in com‑
parison to chow‑fed ones (Li et al. 2009a). Moreover, 
drinking water enriched with Lactobacillus helveticus 
and Bifidobacterium longum can increase nerve cell resil‑
iency during experimental physiological stress in rats 
(Girard et al. 2009).

Suggestions that depression is characterized by 
cell‑mediated immune activation and inflammation 
were published by Maes et al. already in early 1990‑ties 
(Maes et al. 1990, 1991, Maes 1993). Investigators have 
observed that depression coexist with other inflam‑
matory diseases (rheumatic diseases, inflammatory 
bowel disease, multiple sclerosis) (Howren et al. 2009, 
Karakula‑Juchnowicz et al. 2014) and abnormalities in 
serum cytokines correlate with depression (Dantzer 
et al. 2008). Higher levels of proinflammatory IL‑6 and 
TNF‑α were found in affected patients as compared to 
healthy controls (Bremmer et al. 2008, Dome et al. 2009, 
Dowlati et al. 2010, Hestad et al. 2003, Sluzewska et al. 
1995, Zorrilla et al. 2001). Moreover, successful antide
pressant treatment for major depressive disorder re‑
duced serum cytokine levels of IL‑1β and IL‑6 (Hannes‑
tad et al. 2011). 

Composition of the gut microflora and its impact on 
symptoms of depression was analyzed (Dash et al. 2015, 
Dinan and Cryan 2013, Mayer et al. 2014, Naseribafrouei 
et al. 2014) and three general mechanisms have been 
proposed: 1) through inflammation directly, 2) through 
the HPA, or 3) through interference with neurotrans‑
mitter signaling (DellaGioia and Hannestad 2010, Foster 
and McVey Neufeld 2013). Importantly, abnormal activ‑
ities of the HPA axis have been diagnosed in patients 
with various mental disorders, such as schizophrenia 
(Walker and Diforio 1997), depression (Holtzheimer 
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and Nemeroff 2006), posttraumatic stress disorder (de 
Kloet et al. 2005). 

As mentioned above, LPS may be an important factor 
contributing to psychiatric disorders (Berk et al. 2013, 
Qin et al. 2007). Endotoxin administration to healthy 
male volunteers caused response with dose‑related el‑
evations in body temperature and heart rate, increases 
in plasma (IL‑6, IL‑10, TNF‑α and IL‑1 receptor antago‑
nist IL‑1Ra), salivary and plasma cortisol, plasma nor‑
epinephrine, and these changes were accompanied by 
dose‑related decreased mood, increased anxiety levels 
and modulations of emotional memory (Grigoleit et al. 
2011). IgA‑ and IgM‑ mediated inflammatory responses 
to LPS have been also shown to be elevated in patients 
with depression (Maes 2011). 

Some authors observed differences in gut microbi‑
ota in patients with depression compared to healthy 
controls: increased levels of Enterobacteriaceae fam‑
ily and Alistipes spp. (Jiang et al. 2015, Naseribafrouei 
et al. 2014), which can be modified by changes in diet 
(Naseribafrouei et al. 2014). Interestingly, Alistipes spp. 
are overrepresented in irritable bowel syndrome (IBS) 
(Saulnier et al. 2011), suggesting a  possible common 
mechanisms (Zhou and Foster 2015). A  higher Firmic‑
utes: Bacteroides ratio in patients with IBS correlated 
with clinically overt anxiety and depression (Jeffery et 
al. 2012), thus supporting a  relationship between de‑
pression and gut microbiota composition. Conversely, 
a negative correlation was shown between the expres‑
sion of Faecalibacterium spp. and Bacteroidetes, and the 
occurrence of depression (Jiang et al. 2015, Naseriba‑
frouei et al. 2014). Similarly to obese patients (Ley et 
al. 2006) these relationships may provide link between 
obesity and depression. 

Experimental studies performed on animals in‑
vestigating the role of gut microbiota composition in 
anxiety, demonstrated increased stress‑reactivity in 
GF mice (Sudo et al. 2004). Interestingly, GF mice are 
smaller and show higher anxiety levels than matched 
SPF ones (Backhed et al. 2004, Luna and Foster 2015). 
GF mice showed increased anxiety‑like behaviors in the 
open‑field and marble‑burying tests than specific patho‑
gen free animals and mono‑association of GF mice with 
Blautia coccoides reduced anxiety‑like behaviors (Nishino 
et al. 2013). The effect is bidirectional since the murine 
gut microbiota can influence emotions, and stress and 
anxiety promote the growth of Odoribacter spp., Alistipes 
spp. and family Coriobacteriaceae (Bangsgaard Bendtsen 
et al. 2012). Separation of rats from their mother showed 
that neonatal stress induces long‑term modifications 
in the intestinal microbiota diversity and composition 
(Garcia‑Rodenas et al. 2006, O’Mahony et al. 2009), e.g. 
causes decrease of Verrucobacteria and increase of Clos-
tridium spp. (Aguilera et al. 2013), but feeding rats with 

B. infantis 35624 normalized immune response, behav‑
ior and noradrenaline concentrations in the brain stem 
(Desbonnet et al. 2010). 

GABA can be synthesized by intestinal bacteria: Lac-
tobacillus brevis and Bifidobacterium dentium (Barrett et al. 
2012). Long‑term administration of L. rhamnosus to rats 
modulates the expression of GABA in CNS, leading to re‑
duced levels in the hippocampus, amygdala and locus 
coeruleus, but increased levels in cortical regions (Bravo 
et al. 2011). Furthermore, GABA decreases the levels of 
corticosterone induced by depression and anxiety‑relat‑
ed symptoms (Mangiola et al. 2016). Mice treated with 
Bifidobacterium longum NC3001 revealed reduced anx‑
iety‑like behaviors (Bercik et al. 2010). The presented 
studies indicate that selected probiotics can be used suc‑
cessfully in treatment of depression and anxiety symp‑
toms (Bravo et al. 2012). 

Dietary factors can be associated with anxiety‑like 
behaviors in mice, e.g. long‑term high fat diet increased 
anxiety levels (Del Rosario et al. 2012). The mice fed with 
beef showed greater bacteria diversity and less anxi‑
ety‑like behaviors in comparison to animals with stan‑
dard chow diet (Li et al. 2009a). 

A double‑blind, placebo‑controlled, randomized clin‑
ical trial with probiotic formulation (L. helveticus and 
B. longum) administered for 30 days  alleviated psycho‑
logical distress in healthy human volunteers (measured 
by the Hopkins Symptom Checklist) (Messaoudi et al. 
2011). In a similar study, healthy female volunteers con‑
sumed fermented milk product with some probiotics for 
four weeks (Bifidobacterium animalis subsp. Lactis, Strepto-
coccus thermophilus, Lactobacillus bulgaricus and  L. lactis 
subsp. Lactis) indicated an influence on brain activity in 
emotion‑related areas, e.g. reduced activity of sensory 
brain network, frontal, prefrontal and temporal cortices 
(Tillisch et al. 2013).

Schizophrenia

Despite over 100‑year history of research, the etiol‑
ogy of schizophrenia is still not fully understood, none‑
theless, an interaction of environmental and genetic 
factors is still strongly considered (Joseph et al. 2017, 
Nemani et al. 2015). Schizophrenia typically develops 
at age between 15–45  years (Crow 1980) and has simi‑
lar prevalence rates worldwide despite the different di‑
agnostic criteria in various parts of the world (Arneth 
2017, Sartorius et al. 1986). Due to the devastating course 
of untreated schizophrenia presenting with characteris‑
tic ‘positive’ (delusions and hallucinations) (Morris et al. 
2013) and ‘negative symptoms’ (apathy, anhedonia, amo‑
tivation) (Rabinowitz et al. 2012) as well as dysfunctions 
in learning and memory (Gold et al. 1997), the patients 



The gut microbiota in neuropsychiatric disorders 75Acta Neurobiol Exp 2018, 78: 69–81

unquestionably require extensive care (Szkultecka‑De‑
bek et al. 2016). 

Epidemiological studies showed that patients with 
schizophrenia, and members of their family, have 
a higher frequency of autoimmune disorders (Benros et 
al. 2012), atopic disease (Hornig 2013), and celiac disease 
(Dickerson et al. 2014). The latter is a risk factor for the 
development of schizophrenia (Severance et al. 2012) 
suggesting that schizophrenia is related to immuno‑in‑
flammatory activity (Karakula‑Juchnowicz et al. 2016). 
The higher CRP serum levels in schizophrenic patients 
were found as a marker of inflammation (Dickerson et al. 
2013), but the origin of inflammatory process is still un‑
clear (Joseph et al. 2017). Polymorphisms in IL‑1β, IL‑6, 
and soluble IL‑6 receptors (sIL6R) are postulated to be 
a risk factor for schizophrenia (Hudson and Miller 2016), 
and the correlation between inflammatory markers level 
and severity of clinical symptoms were recently report‑
ed (Hope et al. 2013). 

Some authors indicate that immunological distur‑
bances may result from a  dysfunction of the brain‑gut 
axis (Karakula‑Juchnowicz et al. 2016) caused by LGS. In‑
dicated evidence of damage to the intestinal barrier is: 
1) histological (in 82 autopsies patients with schizophre‑
nia were diagnosed with: colitis in 92%, enteritis in 88% 
and gastritis in 50% (Hemmings 2004, Karakula‑Juchno‑
wicz et al. 2016), 2) immunological – presence of intes‑
tinal inflammation markers (higher levels of food anti‑
gen antibodies: bovine milk casein and wheat‑derived 
gluten (Severance et al. 2012), increased serum levels of 
proinflammatory cytokines, especially IL‑1β, IL‑6, IL‑8 
(Fillman et al. 2016, Miller et al. 2011), 3) by bacterial 
translocation markers, e.g., elevated serum levels of an‑
tibodies against Saccharomyces cerevisiae (Severance et al. 
2012), serum elevation of bacterial markers, e.g. sCD14 
and lipopolysaccharide binding protein‑ LBP (Severance 
et al. 2013). It was suggested that schizophrenia might 
also be associated with infection of Clostridium difficile 
producing phenylalanine derivative affecting CNS in 
a similar way as in autism (Shaw 2010).

Investigators have found that diet can change human 
behavior. It was shown that fermented foods improved 
cognitive function (Kim et al. 2016, Selhub et al. 2014). 
Moreover, schizophrenic patients present abnormal sen‑
sitivity to gluten and bovine casein (Cascella et al. 2011, 
Karlsson et al. 2012, Severance et al. 2010), and gluten 
free diet improved behavior and increased free L‑trypto‑
phan levels (Jackson et al. 2012) indicating that LGS can 
be responsible for gluten/casein sensitivity (Severance 
et al. 2012). Epidemiological studies show that metabolic 
syndrome is another clinical condition correlated with 
schizophrenia, its incidence is 20% higher than in gener‑
al population (Mitchell et al. 2013). Ketogenic diet may 
improve the clinical course of schizophrenia, like nor‑

malization of behavior (probably by regulation of glu‑
tamate neurotransmission, GABA function and glucose 
metabolism), which supports the existing links between 
schizophrenia and GI tract (Kraeuter et al. 2015, Pacheco 
et al. 1965). 

It is documented that gut microbiota affects the CNS 
by modulating: brain‑derived neurotropic factor (BDNF), 
which expression is responsible for cognitive dysfunction 
(Nieto et al. 2013) and its decrease was found in patients 
with schizophrenia, anxiety disorders and Alzheimer’s 
disease (Carlino et al. 2013, Sudo et al. 2004). BDNF ex‑
pression is lower in GF animals correlating with increased 
anxiety behavior and progressive cognitive dysfunction 
(Carlino et al. 2013, Foster and McVey Neufeld 2013). The 
decreased level of NMDA in GF animals is responsible for 
controlling the synaptic plasticity in memory function in 
the cortex and hippocampus (Nemani et al. 2015, Sudo et 
al. 2004). NMDA receptor hypofunction is considered to 
be one of the most important pathophysiology of schizo‑
phrenia (Nemani et al. 2015). The gut microbiota modu‑
lates  synaptophysin involved in the brain development 
(Douglas‑Escobar et al. 2013, Nemani et al. 2015). 

The current opinion suggests that gut dysbiosis may 
exert a harmful influence on brain development and func‑
tioning, regulation of immunology system and metabolic 
function in schizophrenia (Caso et al. 2016, Nemani et al. 
2015), however, to date, there has been no direct evidence 
of dysbiosis in schizophrenia patients (Nemani et al. 2015). 

Animal models are helpful to elucidate the role of gut 
microbiota in the pathogenesis of schizophrenia: it was 
shown that GF mice represent schizoid behavior (Caso et 
al. 2016). Furthermore, the behavioral deficits are more 
severe in males, similarly to human epidemiology of SCZ 
(Dinan et al. 2014). The social behavior in GF mice was 
examined by using classical ‘three‑chamber sociability 
test’ showing that GF animals have problems in commu‑
nication and with emotions recognition (Desbonnet et 
al. 2014).

Oral supplementation of mice by Bacteroides fragilis 
and resulting correction of gut permeability ameliorates 
defects in communication, anxiety‑like and sensorimo‑
tor behaviours (Hsiao et al. 2013). Oppositely, treatment 
with Lactobacillus rhammosus and Bifidobacterium animals 
subsp. Lactis showed no significant effects on psychiatric 
symptoms (Dickerson et al. 2014). 

In a 16‑week clinical trial employing treatment with 
a  second generation tetracycline‑ minocycline showed 
a reduction of negative symptoms in patients with early 
stage schizophrenia in SANS (Scale for the Assessment of 
Negative Symptoms), PANSS (Positive and Negative Syn‑
drome Scale) and CGI (Clinical Global Impression Scale) 
(Liu et al. 2014). 

Antibiotics and probiotics combined with a  gluten 
and casein‑free diet might have a therapeutic potential 
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in some schizophrenia patients (Latalova et al. 2017). To 
make dietary interventions successful support from sci‑
entists, dieticians, family members, and neuropsychiat‑
ric clinicians is necessary (Joseph et al. 2017). Further 
clinical trials are needed to confirm these theses.

CONCLUSIONS

The prevalence of mental disorders is predict‑
ed to increase (Fond et al. 2015) and microbiologists, 
from Louis Pasteur and Ilya Mechnikov to the present, 
have tried to understand the role of microbiota for our 
health and in the pathogenesis of diseases (Backhed et 
al. 2005). Multiple studies, with antibiotic and probi‑
otic treatments, fecal microbiota transplantation, and 
GF animal studies have been used to assess the impact 
of microbiota on brain function demonstrating differ‑
ences between healthy human gut microflora composi‑
tion and that of patients with neuropsychiatric diseas‑
es (Cryan and Dinan 2012, Dinan and Cryan 2013, Zhou 
and Foster 2015). It is well known that gut microbiota 
composition and functioning depends largely on diet, 
which consequently can affect also nervous system 
and metabolism, but these investigations need further 
studies (Moos et al. 2016). Identification of the signal‑
ing pathways between the microbiota and the brain in 
humans is needed to expand our understanding of mi‑
crobiota gut–brain interactions. If confirmed, modula‑
tion of the gut microflora can be a novel target for the 
treatment (Tillisch et al. 2013).

Currently, most data examining brain‑gut relation‑
ships have been collected in experimental animals, but 
they can be considered as valuable for future human 
studies (Principi and Esposito 2016). Although, it is not 
clear whether psychiatric diseases depend on gut micro‑
biota modification or a single bacteria species (Principi 
and Esposito 2016), modification of gut microbiota and 
the gut‑brain communication may be promising treat‑
ment for neuropsychiatric diseases.
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