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Autism is characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social communication. 
The genetic and environmental factors play roles in the pathogenesis of autism. It was recently shown that the genes involved in 
the folate/homocysteine pathway may be risk factors for autistic children. One of the genes that may be the risk factor for autism 
is Methionine synthase (MTR). MTR is responsible for the regeneration of methionine from homocysteine. The aim of this study 
was to analyze the association of MTR A2756G gene polymorphism (rs1805087) and the risk of autism in a population in northern 
Iran. The prevalence of MTR A2756G polymorphism was determined in 108 children with autism and 130 controls in northern Iran. 
Genotypes and allele frequencies were determined in patients and controls by polymerase chain reaction‑restriction fragment length 
polymorphism (PCR‑RFLP). The prevalence of genotype frequencies of AA, AG and GG in autistic children were 57.41%, 22.22% and 
20.37%, respectively, while in controls were 61.54%, 32.31% and 6.15%, respectively. There was significant difference between the MTR 
polymorphism distribution in control and patient groups. The prevalence of allele frequencies of A and G in autistic children were 0.69 
and 0.31, respectively and in controls were 0.78 and 0.22, respectively (P=0.03). The MTR G allele conferred a 1.6‑fold increased risk to 
autism relative to the A allele (95% CI=1.06–2.41, P=0.02). The present study suggests that the G allele of MTR A2756G polymorphism is 
associated with an increased risk of autism. 
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INTRODUCTION

Autism spectrum disorders (ASDs) are a collection 
of neurodevelopmental conditions that are usually of 
prenatal origin and can be diagnosed in early childhood, 
when it is severe (Gillberg 2010). The prevalence of ASDs 
in the United States is currently 1 in 68 children (Centers 
for Disease Control and Prevention 2014). ASDs affect 
mainly males, with an estimated 4:1 ratio between males 
and females, which might be partly related to hormonal 
involvement in the development of the disease (Lombardo 
et al. 2012). Although the etiology of ASDs is unknown, 
many theories support an interaction of environmental 
and genetic factors (Smalley et al. 1988). The genetic 
variants participated in ASDs and inherited from parents 
to affected individuals have been estimated to explain 
~40% of ASDs risk. De novo mutations in the patients are 
thought to contribute to 15–20% of cases (Hallmayer et al. 
2011, Devlin and Scherer 2012). Despite the un‑success in 
identifying the candidate genes that are responsible for 
the most of ASDs cases, epigenetic dys‑regulation of genes 

necessary for normal brain development and growth and 
cognitive function and behavior are associated with the 
etiology of ASDs (Liu et al. 2011). Autism is the most severe 
symbol of a group of neurodevelopmental disabilities 
known as ASDs and was first described by Leo Kanner 
(Baird et al. 2006, Kanner 1968). Autism is a heterogeneous 
neurological disorder defined by three core behavior 
impairments – for example, fractions in verbal and 
nonverbal communication, deficits in social interaction, 
and severe stereotyped behaviors that appear after a period 
of relatively normal development (American Psychiatric 
Association 2000). Individuals with Idiopathic autism (IA) 
have major deficits in temporal information processing 
(TIP) (Szelag et al. 2004). It has been shown that the genes 
participated in the folate/homocysteine pathway may be 
the risk factors for autistic children. Methionine synthase 
(MTR), methylenetetrahydrofolate reductase (MTHFR), 
and methionine synthase reductase (MTRR) are key 
enzymes participated in the folate‑mediated one‑carbon 
metabolism, and involves in DNA synthesis, methylation, 
and repair (Xu et al. 2004). MTR is consisted of five 
important regions, including homocysteine (HCY) ‑binding, 
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5‑methyltetrahydrofolate (5‑methylTHF) ‑binding, cap, 
cobalamin‑binding and SAM‑binding domains (Evans 
et al. 2004, Leclerc et al. 1998). MTR gene is located on 
chromosome 1q43. MTR, a vitamin B12‑dependent enzyme 
involved in the folate‑mediated one‑carbon metabolism. It 
catalyzes the methylation of homocysteine to methionine 
with simultaneous conversion of 5‑methyl‑tetrahydrofolate 
(5‑methyl‑THF) to tetrahydrofolate (THF). THF is 
essential for nucleotide synthesis. Methionine is essential 
for S‑adenosyl‑methionine (SAM) synthesis and DNA 
methyltransferases (DNMTs) transfer the methyl group 
from SAM to the DNA (James et al. 1999). It is reported 
that a polymorphism in MTR A2756G (rs1805087) leads to 
a change from aspartic acid to glycine at codon 919 (D919G) 
and it was initially thought to be associated with the lower 
enzyme activity followed by homocysteine elevation 
and DNA hypomethylation (Chen et al. 1997, 1996). 
However, some other studies revealed a modest inverse 
association between GG genotype (A2756G MTR) and HCY 
levels, indicating an increased enzymatic activity of the 
variant genotype (Goode et al. 2004). The polymorphism 
in many genes including Forkhead Box P3, SHANK and 
Vitamin D receptor were shown to be associated with the 
susceptibility of autism (Safari et al. 2016, Mashayekhi et 
al. 2016, Schmidt et al. 2015). The aim of this study was to 
investigate the impact of MTR A2756G gene polymorphism 
on the risk of autism in Iran. 

MATERIALS AND METHODS 

Subjects 

All participants have been given their informed 
consent in this study. The current study included 
a total of 108 patients with autism disorder and 130 
disease‑free control subjects. Controls and patients 
were selected from the same population that was 
recruited in 2014. Data on patient characteristics at 
the study entry for each subject were collected from 
the Iran Medical diagnostic Center in Rasht, Iran. 
The diagnosis of ASD was made according to DSM‑5 
criteria for ASD. Children were investigated in terms of 
developing to certain genetic diseases in close relatives, 
neurological disorders and allergy in infancy and 
intestinal bacterial infections. Children with fragile x 
syndrome, tuberous sclerosis, a previously identified 
chromosomal abnormality, dysmorphic features, or any 
other neurological condition suspected to be associated 
with autism were excluded. Each subject donated 2 ml 
blood and drawn into EDTA‑Coated tubes (Venoject, 
Belgium), which was used for genomic DNA extraction. 
This study has been approved by the local ethical 
committee (Protocol number: 1392‑4, Date: 2013).

Genomic DNA extraction

Subjects were genotyped for the MTR 2756 SNP 
using genomic DNA extracted from peripheral blood 
leukocytes. Genomic DNA was extracted from peripheral 
blood samples using the Gpp solution kit (Gen Pajoohan, 
Iran). Extracted DNA was observed and confirmed by 
electrophoresis on 0.1% agarose gel containing ethidium 
bromide.

Analysis of genetic polymorphism

For genotyping of the MTR A2756G polymorphism 
(rs1805087), polymerase chain reaction‑restriction 
fragment length polymorphism (PCR‑RFLP) method was 
used. The PCR primers were synthesized by Shanghai 
Geneway Biotech. China. The forward and reverse primers of 
MTR A2756G were 5’‑CATCTTTTGCTCATCTATGGCTATC‑3’ 
and 5’‑TCTAGCACAGCCCCTAACACCT‑3’, respectively. 
The primers were designed by Oligo7 software (version 
7.54, USA). The amplification procedure was carried out 
in a total reaction volume of 20 μl, containing 10 μl 2X 
PCR Master mix (CinnaGen, Iran), 1 μl forward primer, 
1 μl Reverse primer, 3 μl sterile deionized water and 
5 μl Template DNA. The amplification was performed 
as follows: initial denaturation at 94°C for 5 min, 
amplification for 35 cycles at 94°C for 45 s, 58°C for 45 s and 
72°C for 45 s, followed by a final elongation step at 72°C for 
5 min. The resultant PCR product was visualized on a 2% 
agarose‑ethidium bromide gel under UV illumination. 
To confirm the accuracy of genotyping results, randomly 
in 10% of subjects, genotyping was repeated to obtain 
concordance by minimizing genotyping errors. Then the 
PCR products were digested for 1 hour at 37°C with 2 unit 
of AvaII (Thermo Scientific Eco47I), and the amplified 
fragment of 395 bp was cut into fragments of 280 and 
115 bp and visualized on a 2% agarose–ethidium bromide 
gel under UV illumination. This method is able to detect all 
three possible genotypes for the polymorphism including 
homozygous wild type (AA: 280 and 115 bp), heterozygous 
variant type (AG: 395, 280 and 115 bp) and homozygous 
variant type (GG: 395 bp). 

Statistical analysis

Genotype frequencies of MTR polymorphism in 
patient and control groups were analyzed by χ2 test. The 
Hardy‑Weinberg equilibrium assumption was assessed by 
comparing the genotype frequencies with those expected 
on the basis of the observed frequencies. Logistic 
regression approach was used to obtain adjusted odds 
ratio (OR) and 95% confidence interval (CI) for genetic 
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polymorphisms. The results were considered statistically 
significant when p<0.05. 

RESULTS

This study included 108 children with autism 
(20 females and 88 males) and 130 controls (34 female 
and 96 males) in Iran. The undigested PCR product 
size was 395 bp for MTR A2756G (Fig. 1A). Restriction 
digestion for the GG genotype generated 395 bp 
fragment; whereas the AG genotype generated 115, 280 
and 395 bp fragments. Moreover, there were two bands 
(280 and 115 bp) in the presence of homozygous AA 
(Fig. 1B). The frequency of the A2756G polymorphism 
of MTR was also analyzed. All information about allele 
and genotype frequencies and associated ORs (95% 
CI) for patients and controls is presented in Table I. 

There was significant association in MTR 2756 gene 
polymorphism was seen between patients and control 
groups (P=0.002). Moreover, GG genotype (A2756G 
MTR) seems to be the risk factor in our population 
(P=0.004, OR 3.54, 95% CI 1.47–8.50). The A and G allele 
frequencies of this polymorphism were 68.52%, 31.48% 
in the patient group and 77.69%, 22.31% in the control 
group, respectively, which was statistically significant 
(P=0.03). Moreover G allele was shown to be associated 
with the increased risk of autism (P=0.02). 

DISCUSSION

MTR catalyzes the remethylation of homocysteine 
to form methionine using the methyl group bound to 
cbl (Födinger et al. 1999). So Cbl(I) state of cobalamin is 
a very high reactive “supernucleophile”, and acts as an 

Fig. 1. (A) Agarose gel electerophoresis after PCR amplification of MTR A2756G. “M” represents marker. The PCR product size was 395 bp. (B) Gel picture 
showing RFLP fragments for MTR A2756G: “M” represents marker. Enzymatic digestion for the GG genotype generated 395 bp fragment; 115, 280 and 
395 bp fragments for AG genotype, and 115 and 280 bp for AA genotype.
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indicator of the cellular redox environment until it is 
remethylated (Jensen 2005). However, the cap domain 
assumes a position above Cbl(I) and partially protecting 
it from oxidation (Bandarian et al. 2002). Cbl oxidation 
stops enzyme activity and diverts HCY to transsulfuration 
pathway, which in turn, increases glutathione (GSH) 
synthesis until SAM‑dependent reductive methylation of 
Cbl restores MTR activity (Jarrett et al. 1998). Folate and 
methionine metabolism are required for DNA synthesis 
and DNA methylation, also their metabolic pathways 
may play roles in disease susceptibility (Heijmans et al. 
2003). Rare genetic defects of MTR, known as the CblG 
complementation group of cobalamin disorders, which 
cause in hyperhomocysteinemia, homocystinuria, and 
megaloblastic anemia without methylmalonic aciduria 
(Watkins and Rosenblatt 1988). It also indicates that the 
low activity of MTR results in the hypomethylation of DNA. 
The AG heterozygotes of the MTR A2756G polymorphism 
is likely associated with augmented levels of Hcy in 
Alzheimer’s disease and Parkinson’s disease patients 
(Dorszewska et al. 2007). This increase in Hcy is likely 
due to low MTR activity, caused by excessive oxidation 
of cobalamin (McCaddon et al. 2002) related to oxidative 
stress, which is observed in aging and degenerative 
disorders (Rozycka et al. 2013). Increased oxidative stress 
has been diagnosed in autistic patients (James et al. 
2006). It was demonstrated that MTR status might change 
during aging and in neurological disorders related with 
oxidative stress and the level of MTR mRNA revealed 
a considerable age‑dependent decrease. Although MTR 
mRNA levels were lower in autistic subjects, protein levels 
of MTR were similar to control. These findings suggested 
that the prematurely low levels of MTR mRNA in the 
cerebral cortex were associated with autism (Muratore 
et al. 2013). Mohammad and others (2009) examined the 
associations between five gene polymorphisms involved 
in folate pathway including MTR A2756G, MTHFR C677T, 
MTHFR A1298C, SHMT1 C1420T, MTRR A66G, and the risk 
of autism in a cohort of autistic children and nonautistic 
children from the South India. Their studies show that 
MTR A2756G polymorphism was not associated with an 
increased risk of autism (Mohammad et al. 2009). Some 

studies showed that polymorphisms are important in 
different cancers. For example, it was found that the 
MTHFR C677T and MTR A2756G polymorphisms are 
related with breast cancer susceptibility in a Chinese 
population in their case‑control study, and that folate, 
vitamin B6, and vitamin B12 intakes influence these 
associations (Jiang‑Hua et al. 2014). The data of Zhu and 
others (2013) supported the hypothesis that the MTHFR 
677TT polymorphism is associated with an increased 
risk of cervical cancer in Asian females, while reverse 
association applies to Caucasian females. However, 
their meta‑analysis did not support an association of 
the A2756G polymorphism of MTR and MTHFR A1298C 
polymorphism with cervical cancer risk (Zhu et al. 2013). It 
was shown that MTR A2756G polymorphism is a candidate 
gene polymorphism for cancer susceptibility (Yu et al. 
2010). It was demonstrated that the MTHFR A1298C, the 
MTHFR C677T, the MTR A2756G, the MTRR A66G, and 
the thymidylate synthase (TS 2R/3R) polymorphisms 
have consistent roles in the increased risk of sporadic 
colorectal adenocarcinoma (SCA) susceptibility among the 
south and southeastern Brazilian population (Guimarães 
et al. 2011). However, large sample studies are required to 
confirm these associations.

Some potential limitations should be considered in 
this study. First, it was conducted in Iran, and may not be 
representative of other populations. Second, the numbers 
of cases and controls is rather small, which may limit the 
statistical power to detect differences between groups. 
Third, alterations in laboratory procedures such as methods 
of data collection and genotyping, could also clarify the 
inconsistent results. 

CONCLUSIONS

The MTR G allele conferred a 1.6‑fold increased risk to 
autism relative to the A allele (95% CI=1.06–2.41, P=0.024). 
The present study suggests that the G allele of MTR A2756G 
polymorphism is associated with an increased risk of 
autism. Larger studies with more patients and controls are 
needed to confirm the results.

Table I. Allele and genotype frequencies of MTR A2756G polymorphism among patients and controls

controls (n= 65)
n (%)

patients (n= 54)
Pa Pb

n (%) OR (95 % CI)

alleles (A2756G)
A
G

202 (77.69)
58 (22.31)

148 (68.52)
68 (31.48)

1.00 (reference)
1.60 (1.06–2.41)

0.03* –
0.02*

genotypes (A2756G)
AA 
AG
GG

80 (61.54)
42 (32.31)

8 (6.15)

62 (57.41)
24 (22.22)
22 (20.37)

1.00 (reference)
0.73 (0.40–1.34)
3.54 (1.47–8.50)

0.002* –
0.32

0.004*

* – significant at 5% level of significance (P<0.05); a – allele and genotype frequencies in patients and controls were compared using χ2 test; b – significance level for allele and 
genotype frequencies in patients and controls; n – number of subjects.
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