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INTRODUCTION

Flavor aversion learning (FAL) is a modality of 
learning in which animals associate a flavor with nox-
ious, habitually visceral stimuli (Lamprecht and Dudai 
2000). The amygdala has been related to various types 
of aversive learning (for review, see Everitt et al. 2003, 
LeDoux 2007) and has been considered, along with 
other anatomically related centers, as a potential vis-
ceral-sensory convergence area that could sustain FAL 
(Coil et al. 1978, Ottersen 1982, Yamamoto et al. 1994, 
Sakai and Yamamoto 1999, Barot et al. 2008, 
Desgranges et al. 2010). In fact, it has been found to be 
involved in the processing of both gustatory and vis-
ceral information (Norgren 1976, Fulwiler and Saper 
1984, Cechetto 1987, Jhamandas et al. 1996, Barot 
et al. 2008) as well as olfactory stimuli (Powell et al. 
1965, Scalia and Winans 1975, Ottersen 1982, Price 
1990, Desgranges et al. 2010), sensory components 
that are essential to establish FAL.

However, researchers have reported contradictory 
results on the relevance of the amygdala in FAL. Some 
studies showed that lesions of the whole amygdala 
interrupt FAL (Nachman and Ashe 1974, Aggleton 
et al. 1981, Yamamoto and Fujimoto 1991, Sakai and 
Yamamoto 1999, Rollins et al. 2001) and some observed 
attenuating effects (Fitzgerald and Burton 1983, Gallo 
et al. 1992), whereas others found no effects (Lasiter 
1982, Simbayi et al. 1986, Simbayi 1987, Dunn and 
Everitt 1988, Bermúdez-Rattoni and McGaugh 1991). 

These discrepancies in results may be explained by 
differences in the flavor stimuli, lesioned amygdala 
subnuclei, and tests used (Schafe et al. 1998, Lamprecht 
and Dudai 2000, Spray et al. 2000, Touzani and 
Sclafani 2005, Miranda 2012; for review, see Reilly 
and Bornovalova 2005). Thus, the taste and smell sen-
sations of a flavor (the combined effects of gustatory 
and olfactory information) can be individually associ-
ated with visceral malaise, generating taste and/or 
olfactory aversion learning (Capaldi et al. 2004).

With regard to the different subnuclei of the amygda-
la, there is evidence of the sensory processing of gusta-
tory (Norgren 1976, Bernard et al. 1993) and visceral 
information (Saper and Loewy 1980, Cechetto 1987, 
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Bernard et al. 1993) in both the central nucleus (CeA) 
and basolateral nucleus (BLA) (Fulwiler and Saper 
1984, Karimnamazi and Travers 1998, Barot et al. 
2008). For its part, olfactory information projects 
towards the CeA (Ottersen 1982) but mainly towards 
the centromedial subnuclei of the amygdala (Scalia and 
Winans 1975, Price 1990, Wójcik et al. 2013) and BLA 
(Powell et al. 1965).

The BLA has long been considered the most impor-
tant amygdala subnucleus in FAL processes (Nachman 
and Ashe 1974, Aggleton et al. 1981, Yamamoto et al. 
1994, Morris et al. 1999, Rollins et al. 2001, St Andre 
and Reilly 2007, Barot et al. 2008, Wheeler et al. 2013). 
Thus, some studies showed that lesions of the BLA, 
but not of the CeA, interrupt olfactory aversion learn-
ing without affecting conditioned taste aversion 
(Bermúdez-Rattoni et al. 1983, 1986, Hatfield et al. 
1992, Ferry et al. 1995, Slotnick et al. 1997, Miranda 
et  al. 2007, Desgranges et al. 2008, Sevelinges et al. 
2009) or the sensory processing of olfactory informa-
tion per se (Bermúdez-Rattoni et al. 1986, Hatfield 
et  al. 1992, Ferry et al. 1995, 1999, Hatfield and 
Gallagher 1995, Ferry and Di Scala 2000). Although 
most studies have ruled out the relevance of the CeA in 
FAL, some authors have shown that protein synthesis 
inhibition in the CeA can block conditioned taste aver-
sion memory (Lamprecht and Dudai 1996, Lamprecht 
et al. 1997, Bahar et al. 2003).

Evidence on the participation of the amygdala and 
its various subnuclei in the acquisition, consolidation, 
and expression of aversive conditionings (Davis et al. 
2000, Borszcz and Leaton 2003, Koo et al. 2004, 
Fanselow and Poulos 2005, Schafe et al. 2005, Wilensky 
et al. 2006; for review, see LeDoux 2007) prompted the 
present investigation into the specific involvement of 
the CeA area in gustatory-visceral associative learn-
ing, using bulbectomized animals in which gustatory 
cues alone would appear to intervene in FAL (Alberts 
and Galef 1971, Bell et al. 1979, Miranda 2012). 

In this study, a concurrent discrimination task was 
used in which two flavors were simultaneously pre-
sented in each session, one associated with the intra-
gastric administration of a noxious stimulus and the 
other with the administration of physiological saline 
(PS) (Arnedo et al. 1990; for review, see Mediavilla 
et  al. 2005). Previously, olfactory information was 
interrupted by lesion of the olfactory bulbs, and the 
intragastrically administered noxious substance was 
hypertonic NaCl, an appropriate product to induce 

FAL (Arnedo et al. 1990; for review, see Mediavilla et 
al. 2005).

Neurologically intact control animals and anosmic 
control animals can be expected to learn the discrimi-
nation task by preferring the flavor not associated with 
the noxious substance, while animals exclusively 
lesioned in the CeA area can be expected to develop 
olfactory discrimination learning. We hypothesized 
that anosmic animals with bilateral electrolytic lesions 
of the CeA would be unable to learn the discrimination 
task due to their inability to integrate the gustatory-
olfactory and visceral-aversive stimuli required to 
develop this modality of concurrent FAL. In other 
words, by interrupting gustatory-visceral convergence 
(CeA lesion) and blocking the olfactory signal (olfac-
tory bulbectomy), the animals would not be capable of 
discriminating between the two gustatory-olfactory 
stimuli presented, because they would not be able to 
identify the flavor associated with gastrointestinal 
malaise.

METHODS

Subjects

Forty-seven male Wistar rats, weighing 270–330 g 
at the surgery, were randomly distributed into five 
groups: intact control group (Intact, n=8) and sham 
surgery control group (Sham, n=7), which could pre-
sumably discriminate the flavors by some of the sen-
sory cues available in the concurrent FAL task (gusta-
tory, olfactory, visual, propioceptivas, place...); group 
with bilateral electrolytic CeA lesion (CeA, n=11), with 
the same cues available except for those of gustatory 
information; control group with olfactory bulbectomy 
and intracranial electrode without current (Anosmic, 
n=11), with all cues available except for those of olfac-
tory information; and experimental anosmic group 
with CeA lesion (Anosmic-CeA, n=10), with all cues 
available except for those of gustatory and olfactory 
information. Animals were housed in individual meth-
acrylate cages (15×30×15 cm) that also served as train-
ing chambers during the experiment. The sides of the 
cages were black and opaque, and the front and back 
were transparent. The front had two 1.6 cm holes at the 
same distance from the center and edges and at the 
same height above the floor of the cage. These open-
ings allowed the animal access to spouts attached to 
cylindrical graduated burettes through which liquid 
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flavors were delivered (Mediavilla et al. 1998). The 
laboratory was maintained at 22–24˚C with a 12:12 h 
light/dark cycle (lights on at 8 am). Experimental pro-
cedures were conducted during light periods with 
white noise. Animals had free access to food and water 
unless otherwise indicated.

Surgical Procedure

Bilateral electrolytic lesion of the CeA

CeA lesions were made under general anesthesia 
(intraperitoneal sodium pentothal, 50mg/Kg) using a 
stereotaxic device (Bilaney, Mod. SAS-4100) 
[Coordinates: AP=+6.7 mm, L=±4.0 mm, V=+2 mm 
(Paxinos and Watson 1998) (Interaural=+6.7 mm)]. 
Animals received bilateral cathodic electric current 
(1.2 mA) for 20 s, using a DCLM-5 lesion generator 
(Grass Instruments, Quincy, MA, USA). An electrode 
was placed (V=+3.0 mm) in the sham surgery control 
group, but no current was passed. 

Olfactory bulbectomy

Olfactory bulbs were sectioned after amygdala sur-
gery and with the animals still under anesthesia (Van 
Riezen and Leonard 1990). Briefly, olfactory bulbs 
were sectioned by introducing a scalpel through two 
orifices (diameter, 2 mm) made on each side of the 
middle line, 8 mm anterior to Bregma, applying a 
slight pressure to the base of the cranium and avoiding 
damage to the adjacent frontal lobe. The orifices were 
subsequently blocked with bone wax and incisions 
were sutured.

Implant of two intragastric cannulas

After the two surgeries described above and with 
the animal still under anesthesia, two Silastic intragas-
tric cannulas were implanted by making an incision of 
approximately 3 cm along the medial line of the 
abdominal wall and carefully exteriorizing the stom-
ach out of the abdominal cavity. Through a small inci-
sion (2 mm) on the ventral surface of the cardia of the 
stomach, the end of a fistula (1×2 mm) was introduced, 
including a small protuberance made with surgical 
adhesive (Solyplast, Barcelona, Spain) to prevent 
stomach detachment after closure of the incision 
around it (Arnedo et al. 1990).

In a small dorsal opening (immediately behind the 
head), two subcutaneous tunnels were made (one on 
each side) through which the free ends of the cannulas 
were exteriorized, subsequently suturing to close the 
wound. As a prophylactic measure, 0.1 cc penicillin 
(Penilevel retard, Level, S.A., Barcelona, Spain) was 
injected (250,000 UI/ml.). After the surgery, animals 
were returned to their cages, where they remained for 
a recovery period of ≥8 days with food and water ad 
libitum (Arnedo et al. 1990).

All behavioral procedures and surgical techniques 
complied with Spanish legislation [Royal Law 
(1201/2005)] and the European Community Council 
Directive (86/609/EEC).

Experimental Procedure

The experimental procedure comprised two stages:
1) Stage I (pre-training): After the recovery period, 

water was available for the animals for only 10 min 
from graduated burettes. During this three-day stage, 
animals were habituated to take water from the 
burettes on both sides (right and left) to avoid position 
bias. On day 1, the animal was offered two burettes 
with water (left and right), on day 2, one burette with 
water was offered on the left, and on day 3 one was 
offered on the right. The amount of water consumed 
for 10 min was recorded on each day. Burettes were 
removed after the 10 min intake and, after a 30-min 
interval, the animals were offered 15 g of solid food 
(Alimento de Laboratorio. Dietas Panlab. Panlab S.L., 
Barcelona).

2) Stage II (learning): This stage comprised five ses-
sions of a learning task to develop aversion towards a 
flavor associated with an intragastrically administered 
aversive stimulus (5% hypertonic NaCl, 0.85 M). For 7 
min, the animals were offered two burettes with two 
different flavors, strawberry (S) and coconut (C) [0.5% 
S and C extract diluted in water (McCormick Co, INC, 
San Francisco, CAL)], placed in the left and right 
holes, respectively. 

The intake of one of the flavors (50% of animals) 
was associated with the simultaneous intragastric 
administration of hypertonic NaCl (via one implanted 
fistula), whereas the consumption of the other flavor 
was associated with the intragastric administration of 
PS (via the other implanted fistula) (Table I).

The administration rate of both products (hyper-
tonic and isotonic) was 1 cc/cc of liquid, using a Model 
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A-98 infusion pump (Razel, USA) to administer the 
dose at a constant rate. After 7 min, the burettes were 
removed and the consumption of each flavor was 
recorded.

Histology

At the end of the experiment, animals were anesthe-
tized with an overdose of sodium pentothal (80 mg/Kg, 
ABBOTT, Madrid) and intracardially perfused with 
PS and 10% formaldehyde. Brains were removed and 
stored in 10% formaldehyde for at least 48 h before the 
lamination of nervous tissue in 40-μ coronal sections. 
Sections were stained with Cresyl Violet and exam-
ined under an optical microscope (Olympus, CO 11) to 
determine the localization and extension of the lesions 
(Fig. 1).

Statistical analysis

The ANOVA/MANOVA module of statistical soft-
ware (StatSoft, Inc., Tulsa, OK, USA) was used for the 
data analyses. The intake of the two flavors during the 
five days was analyzed by means of repeated-measures 
ANOVAs for each group. All data are expressed as 
means ±SEM, and statistical significance is set at the 
5% level.

RESULTS

Two animals in the Intact Control group and one in 
the Anosmic group were excluded from the study due to 
the detachment of an intragastric cannula during the 

experimental procedure. The final sample sizes for 
these two groups were therefore 6 and 10, respectively.

After the five sessions, no significant differences 
were observed between the control groups (Intact and 
Sham) (F4,44=0.32, P<0.85), which were therefore con-
sidered together as a single group (Total n=13), finding 
that the days x substance interaction among the four 
groups was statistically significant (F12,160=2.23, 
P<0.01). The individual analyses of the repeated-mea-
sure ANOVA (days x substance) of the Anosmic-CeA 
group results demonstrated no statistical significance 
for the interaction (F4,36=1.01, P<0.41). Hence, the anos-
mic animals with bilateral CeA area lesions did not 
develop the visceral-gustatory-olfactory associations 
characteristic of concurrent FAL models (Fig. 2D).

The remaining groups successfully learned the dis-
criminative task, and the days x substance interaction 
was statistically significant in the Total (F4,48=10.79, 
P<0.001) (Fig. 2A), CeA (F4,36=5.76, P<0.001) (Fig. 2B), 
and Anosmic (F4,36=2.75, P<0.04) (Fig. 2C) groups, 
which developed a progressive rejection of flavors 
associated with hypertonic NaCl over five sessions.

DISCUSSION

In this study, groups of rats with CeA lesion alone, 
CeA lesion plus olfactory bulbectomy, and bulbecto-
mized and neurologically intact rats underwent a con-
current FAL task in which a flavor was associated with 
intragastric hypertonic NaCl or PS administration. An 
aversion for the flavor was successfully developed 
within five sessions in all animals except for those 
with CeA lesion plus bulbectomy.

Table I

Diagram showing the balanced experimental conditions in the concurrent flavor aversion learning (FAL) modality 
during the 5 acquisition days in each study group

Day 1 Day 2 Day 3 Day 4 Day 5

50% of animals

Strawberry Left+NaCl
and 
Coconut Right+PS
(7 min)

=Day 1 =Day 1  = Day 1 =Day 1

50% of animals

Strawberry Left+PS
and 
Coconut Right+NaCl
(7 min)

=Day 1 =Day 1 =Day 1 =Day 1
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The amygdala, especially its BLA and CeA subnu-
clei, has been considered a crucial brain region in 
aversive learning (Fanselow and LeDoux 1999, Davis 
2000, Fanselow and Gale 2003, Pare et al. 2004; for 
review, see Maren 2005), and each of these subnuclei 
has been related to specific functions in aversive con-
ditioning (Killcross et al. 1997, Amorapanth et al. 
2000, Kruzich and See 2001, Koo et al. 2004; for 
review, see Sah et al. 2003, LeDoux 2007).

Electrolytic lesions were used in this study, because 
they provide greater anatomical specificity (although 
less cellular specificity) for a small nucleus such as the 
CeA. Hence, it appears likely that lesions of the CeA 
area interrupted gustatory-visceral convergence (but 
not FAL), given that both sensory systems are pro-
cessed in this region of the amygdala (Saper and 
Loewy 1980, Cechetto 1987, Bernard and Besson 
1990, Bernard et al. 1993). These lesions may not have 
interrupted olfactory-visceral associative learning 
(CeA-lesioned group). This is because, although direct 
olfactory connections have been identified between 
the olfactory bulb and the CeA (Ottersen 1982), the 
main projections of this sensory system are towards 
the centromedial subnuclei of the amygdala (Price 
1990, Scalia and Winans 1975; Wójcik et al. 2013) and, 
via the piriform cortex, towards the BLA (Powell et al. 
1965). One possible explanation for the attenuated 
effect on FAL observed in some experiments with CeA 
lesions (Fitzgerald and Burton 1983) is that the main 
associative afferent connection (gustatory) is inter-
rupted but the olfactory information remains intact 
and available for utilization by other neural systems to 
sustain this learning.

In the present experiment, the neurologically intact 
group had two sensory indexes (gustatory and olfac-
tory) (Fig. 2A); however, the Anosmic (Fig. 2B) and 
CeA (Fig. 2C) groups possessed only one (gustatory 
or olfactory, respectively), although it appeared to be 
sufficient for association with the noxious visceral 
stimuli (Capaldi et al. 2004). In contrast, the animals 
in the Anosmic-CeA group (Fig. 2D) lacked the sen-
sory cues (chemoreceptors) necessary to acquire this 
learning and, importantly, they did not appear to use 
the propioceptive, place, or space information avail-
able to carry out the discriminative task. This appears 
to confirm previous observations in which gustatory-
olfactory stimuli seem to be particularly essential in 
concurrent FAL (García et al. 1974, Mediavilla et al. 
2001). 

In summary, CeA area lesions in bulbectomized 
animals may have blocked the acquisition of the gusta-
tory-visceral associative learning in a concurrent FAL 
task, given that the gustatory and visceral sensory cues 
involved in this learning modality are known to con-
verge in this brain area (Saper and Loewy 1980, 
Cechetto 1987, Bernard and Besson 1990, Bernard et 
al. 1993).

Previous studies have reported that the CeA, as is 
the case in other related nuclei (Arnedo et al. 1990, 
Mediavilla et al. 2000, Hurtado et al. 2014), is involved 
in aversive conditionings that involve visceral-sensory 
associations, whereas the BLA is relevant in the oro-
sensory relationship (Bernal et al. 2009, Dwyer 2011). 
Likewise, Nakagawa and others (2003) analyzed the 
involvement of the different amygdala subnuclei in 
noxious stimulus processing and concluded that the 

Fig. 1. Anatomical localization of the CeA electrolytic lesion, using the neuroanatomical atlas of Paxinos and Watson (1998) 
(Interaural=+6.7 mm).
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CeA is relevant in processing noxious chemical vis-
ceral stimuli (acetic acid) and the BLA in processing 
somatic stimuli (formalin). These findings are compat-
ible with observations that intragastric hypertonic 
NaCl administration activates the neurons of the CeA 
but not those of the BLA (Michl et al. 2001, Mediavilla 
et al. 2004). 

Furthermore, intragastric hydrochloric acid (HCl) 
administration, which induces FAL (Ervin et al. 1995), 
produces CeA cell activation and this effect is blocked 
by vagotomy (Michl et al. 2001), as in concurrent FAL 
tasks (Arnedo et al. 1993). 

The present results are in agreement with previous 
reports that FAL, besides establishing a gustatory-
visceral association, also produces an olfactory-viscer-
al convergence, especially in learning in which the 
aversive visceral stimulus is administered contiguous-
ly with the olfactory stimuli (García et al. 1966, 
Rusiniak et al. 1979, Durlach and Rescorla 1980, 
Palmerino et al. 1980, Lasiter et al. 1985, Ferry et al. 
1995, Ferry and Di Scala 1997, Dardou et al. 2006, Inui 
et al. 2006), which is a distinctive characteristic of the 
concurrent modality used in the present experiment 
(Arnedo et al. 1990; for review, see Mediavilla et al. 
2005).

It appears that olfactory stimuli per se may not offer 
an enduring memory trace, or at least one that is strong 
enough to be associated with an aversive stimulus. 
This has led to the proposal that animals acquire a 
strong aversion to the olfactory stimulus associated 
with the aversive stimulus only when the latter is 
related to a gustatory stimulus during the acquisition 
process (Palmerino et al. 1980, Rusiniak et al. 1979, 
Durlach and Rescorla 1980). This modality, taste-po-
tentiated odor aversion learning (TPOAL), seems to 
result from the association between the weak memory 
trace of the olfactory stimulus and the aversive stimu-
lus, using the presence of the gustatory stimulus to 
enhance the memory trace during acquisition (Ferry 
and Di Scala 2000).

The BLA, not the CeA, is considered the essen-
tial amygdala subnucleus in TPOAL (Bermúdez-
Rattoni et al. 1983, 1986, Hatfield et al. 1992, Ferry 
et al. 1995, 1999, Hatfield and Gallagher 1995, 
Ferry and Di Scala 2000, Inui et al. 2006). It is 
believed that the olfactory cues induced by gusta-
tory stimuli are potentiated in this brain subnucleus 
for subsequent association with the visceral conse-
quences (Touzani and Sclafani 2005, Inui et al. 
2006, Desgranges et al. 2010). In fact, despite being 

Fig. 2. Daily mean intake (ml) of the flavor associated with hypertonic NaCl (NaCl) and with isotonic physiological saline 
(PS) in Control (A), CeA (B), Anosmic (C), and Anosmic-CeA (D) group.
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a crucial nucleus in visceral noxious signal process-
ing (Bernard et al. 1993, Michl et al. 2001, Nakagawa 
et al. 2003, Tanimoto et al. 2003, Mediavilla et al. 
2004, Bernal et al. 2009, Dwyer 2011), lesions of 
the CeA do not block TPOAL acquisition (Bermúdez-
Rattoni et al. 1983, Hatfield et al. 1992, Ferry et al. 
1995), presumably because they are not relevant in 
gustatory-olfactory associations (Nakagawa et al. 
2003).

Although most studies using FAL have verified that 
the acquisition process is interrupted by BLA lesions 
but not by CeA lesions (Aggleton et al. 1981, Morris 
et  al. 1999, Nachman and Ashe 1974, Rollins et al. 
2001, Sakai and Yamamoto 1999, Schafe et al. 1998), 
other experiments have shown that the acquisition and 
consolidation of conditioned taste aversion memory 
can also be impaired by administering protein synthe-
sis inhibitors or propanolol in the CeA (Lamprecht 
and Dudai 1996, Lamprecht et al. 1997, Bahar et al. 
2003).

CONCLUSION

The present results suggest that the combination of 
CeA area lesion and olfactory bulbectomy interrupts 
the acquisition of gustatory-visceral associative learn-
ing in a concurrent FAL task in which animals must 
discriminate between two flavors, one of which is 
associated with the simultaneous intragastric adminis-
tration of an aversive substance (hypertonic NaCl). 
This impairment was not observed in animals with 
only one of these structures disabled or in neurologi-
cally intact animals. These results indicate that the 
interruption of gustatory and visceral-aversive conver-
gence prevents FAL only in anosmic animals, i.e., in 
the absence of counteracting olfactory sensory infor-
mation.
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