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INTRODUCTION

Brain activity can be studied using various experi-
mental techniques which allow for imaging in differ-
ent spatial and temporal scales (Sejnowski et al. 
2014). Among those techniques electrophysiology, 
that is recording of electric fields in neurons and 
brain tissue, is particularly important when studying 
information processing in the brain. Electrophysiology 
offers excellent, sub-millisecond temporal resolution, 
which is orders of magnitude better than most other 
techniques (Sejnowski et al. 2014). This allows for 
precise study of intricate brain phenomena, such as 
the order of activation of brain structures when pro-
cessing sensory stimuli. Moreover, electrophysiology 
allows for studies across many spatial scales, from 
parts of a single neuron (patch clamp techniques), 
through the registration of spiking activity of single 
and multiple units, local field potentials (LFP) reflect-
ing population activity, to the activity of the whole 
brain (electroencephalography, magnetoencephalog-
raphy).

Lately, due to technological advances, there is a new 
wave of interest in recording and analysis of LFP, that 
is, the low-frequency part of the electric potential 
recorded extracellularly, often at multiple sites simul-
taneously (Einevoll et al. 2013). LFP allows for long-
term stable recordings of brain activity at the popula-
tion level. On the other hand, the interpretation of such 
recordings is often difficult. Two main problems while 
interpreting LFP are (1) localizing the sources, and (2) 
decomposing the signal into functional components 
which could be attributed to separate cell populations.

The first problem is a direct consequence of the 
laws governing the propagation of electric field in the 
tissue. The extracellular field in the tissue is generated 
by electric currents flowing across cellular membranes 
(both ionic and capacitive currents), that is, by charges 
flowing into or out of the cells. The potential from a 
point source decays as the inverse of distance, hence 
even a well-localized source (such as a single synapse) 
generates electric field of large, theoretically infinite, 
spread. That causes spatial blurring of the active 
region of the tissue: the activity of cells (that is, locally 
non-zero net transmembrane current) can be detected 
even millimeters away, which makes precise localiza-
tion hard. To deal with this problem one can use 
Current Source Density (CSD) analysis, which uses 
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LFP values to estimate the distribution of transmem-
brane current sinks and sources, that is regions in 
which charges flowing into the cells and out of the 
cells, respectively, dominate.

Even if we solve the first problem by reconstructing 
the underlying configuration of sinks and sources 
from the LFP, the resulting distribution will still repre-
sent a number of different, possibly overlapping cell 
populations. To understand information processing in 
the brain we would like to decompose the current 
source density into meaningful components. There are 
several methods which allow to do it, and they all rely 
on supplementing the recorded LFP with additional 
constraints or information.

This paper is organized as follows: first, the relations 
between the neural activity and the extracellular electric 
field are presented. Then I review the various CSD meth-
ods for reconstructing the transmembrane currents from 
the recorded potentials. Finally, methods for decompos-
ing neural activity into components are discussed.

SOURCES OF EXTRACELLULAR 
POTENTIAL

In the simplest formulation, the extracellular elec-
tric potential Φ in neural tissue is related to the volume 
density C of transmembrane currents via the Poisson 
equation: 

(1)

where σ is the conductivity of the tissue, and Δ stands 
for the Laplace operator (which in Cartesian coordi-
nates x, y, z is the sum of second derivatives with 
respect to all the coordinates). This equation holds 
under several assumptions: (1) quasi-static approxima-
tion, (2) spatial homogeneity and isotropy, (3) purely 
resistive medium. Some of the assumptions can be 
relaxed, for example one can consider models of tissue 
in which the conductivity is neither homogenous nor 
isotropic. In that case σ becomes conductivity tensor, 
with components possibly dependent on the position.

Solving equation (1) for a point current source of 
magnitude I, with the boundary conditions Φ=0 at 
infinity, yields 

(2)

where r is the distance to the source, that is, the poten-
tial is inversely proportional to the distance. Because 

of linearity of the Poisson equation this solution can be 
used to calculate the extracelluar field stemming from 
an arbitrary configuration of the sources. This proce-
dure is called ‘forward modelling’. One has to simply 
add a number of terms of the form (2):

(3)

or, in the continuous limit, perform an integral: 

(4)

It is sometimes of interest to study the relation 
between the extracellular potential Φ and the current-
source density C under different assumptions than 
those leading to Equation 1. For example, the spatial 
homogeneity assumption has to be relaxed in order to 
study extracellular field in thin slices of brain tissue 
(Ness et al. 2015). 

It is worth stressing that – once the geometry of the 
setup and the assumptions are specified – the forward 
model is well defined and poses no conceptual prob-
lems, even if simulating neural activity and calculating 
Φ may in practice require significant computational 
power. On the other hand, the ‘inverse problem’, that 
is, estimating C from measured Φ, is ill-posed in the 
sense that there are many CSD distributions compati-
ble with a given set of recorded potentials. To obtain a 
unique solution to the inverse problem one has to 
assume (explicitly or not) additional constraints, this is 
discussed in the next section. 

CURRENT SOURCE DENSITY ANALYSIS 

In principle to estimate the current source density C 
from the extracellular potential Φ one only needs to 
apply the Laplace operator (sum of the second spatial 
derivatives) to Φ. However, this operation could only 
be performed if one knew Φ at all points in space. In 
practice we only measure Φ in several discrete loca-
tions (electrode contacts).

Approximations of second spatial derivative

One simple way to estimate the current source den-
sity from discrete measurements is to approximate the 
spatial second derivative using differences between Φ 
at neighboring recording points (Pitts 1952). In one-
dimensional case the resulting formula is:
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(5)

where h is the spacing between neighboring recording 
points. This method has been successfully used to ana-
lyze recordings from one-dimensional electrodes (see 
Mitzdorf 1985 for a review); however, it has certain 
limitations. First, the underlying assumption is that the 
potential is constant in infinite z=const. planes, which 
in case of cortical columns may not be a reasonable 
approximation (Pettersen et al. 2006). Second, the 
method can not be generalized in a straightforward 
way to more complex tissue geometry (e.g. including 
inhomogeneities) nor to cases with irregular electrode 
placement. Third, to estimate C in one point z we need 
the values of Φ also in neighboring points – Φ(z+h) and 
Φ(z−h) – so points at the boundary are lost.

Inverse CSD

The above mentioned problems with traditional 
CSD are partially solved in inverse CSD method 
proposed by Pettersen and coworkers (2006). In this 
method one assumes that the underlying CSD distri-
bution belongs to a family of dimensionality equal 
to the number of recording points. That allows for 
the construction of an invertible linear operator F 
connecting the CSD distributions to the measured 
values. By inverting this operator one can in turn 
estimate the CSD distribution from measurements.

In Pettersen and others (2006) several families of 
CSD distributions were considered. First, the authors 
study the δ-source iCSD. In that method the CSD is 
assumed to be distributed on infinitely thin discs of 
radius R centered at the electrode contacts and perpen-
dicular to the electrode. The contribution from the disc 
centered at i-th electrode (located at zi) to the potential 
on the j-th electrode is found to be 

(6)

The total potential at  zj can be written in the form 
of a linear operator F acting on a vector of CSD values 
at the electrode points: 

(7)

or, in matrix form with

(8)

The matrix F is non-singular, therefore it can be 
inverted, leading to the formula for the CSD estimate: 

(9)

The δ-source iCSD is computationally the simplest 
iCSD method, and therefore we use it here to present 
the iCSD. Also, interestingly, δ-source iCSD converg-
es to the traditional CSD in the R→∞ limit for the N−2 
interior electrode contacts. However, for real applica-
tions different one-dimensional iCSD methods seem to 
be more relevant. In the other two methods proposed 
by Pettersen and colleagues (2006), step iCSD and 
spline iCSD, the CSD distribution is again parame-
trized by CSD values at the electrode contacts. 
However, as opposed to δ-source iCSD, the currents 
are distributed in the whole volume surrounding the 
electrode, and not only on discrete discs; between the 
electrode contacts the density of transmembrane cur-
rents is given by interpolating the values at the con-
tacts either using nearest-neighbor interpolation (step 
iCSD) or spline interpolation (spline iCSD). In that 
way more physiologically plausible distributions are 
obtained, as opposed to the unphysiological, discrete 
distribution assumed in δ-source iCSD. 

One notable feature of one-dimensional iCSD is that 
the N parameters of the CSD distribution only specify 
how CSD changes along the line given by electrode 
contacts. The distribution of CSD in the perpendicular 
plane has to be assumed. One possibility is to assume 
homogeneous CSD within each infinitely thin disc of 
radius R (free parameter of the method), but one could 
for example assume Gaussian profiles, or include a 
priori knowledge about the sources. Additionally, one 
can specify how the CSD distribution along the line 
behaves outside the first and the last contacts; in 
Pettersen and colleagues (2006) it was assumed that 
CSD vanishes one interelectrode distance beyond the 
edge contacts.

The inverse CSD method can also be applied to 
two-dimensional (Łęski et al. 2011) and three-di-
mensional (Łęski et al. 2007) data. The two-dimen-
sional recordings in particular have gained popular-
ity thanks to the availability of multi-shank elec-
trodes. The core idea of iCSD remains unchanged, 
the CSD distribution is parametrized by the same 
number of parameters as the number of electrode 
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contacts. The parameters are typically CSD values 
at a regular (Cartesian) grid of electrode contacts, 
and CSD is obtained through interpolation, which 
especially in 3D leads to rather complex expres-
sions for the F matrix. In 2D iCSD one has to make 
assumptions regarding the distribution in the per-
pendicular dimension, notably on the thickness of 
the tissue region contributing to the signal (Łęski et 
al. 2011). In 3D there is no need to make such 
assumptions. However, both in 2D and in 3D one 
can (and should) specify the behavior at the grid 
boundary, as this may dramatically improve the 
method’s performance in presence of a distant 
source located beyond the grid (Łęski et al. 2007, 
2011).

One advantage of iCSD over traditional CSD 
which is especially visible in 2D and 3D is that the 
boundary points are not excluded from the analysis. 
This is crucial in 3D, where a large fraction of 
points may lie on the boundary [in Łęski et al. 
(2011) 110 out of 140=4×5×7 recording contacts lay 
on the boundary].

Dealing with missing data in iCSD

The iCSD method in 2D and in 3D is well-suited to 
regular, Cartesian grid of electrodes. The natural ques-
tion is whether the method can still be applied if a 
small number of signals is missing. This problem has 
been considered in Wójcik and Łęski (2010), where 
two different ways of dealing with missing data have 
been studied. The first method is to simply replace the 
missing data with the average of neighboring signals, 
the second is to estimate a smaller number of param-
eters (using a sparser grid) and use the least-squares 
solution of an overdetermined system of equations. It 
was shown in Wójcik and Łęski (2010) that the first, 
simpler approach leads to better and more stable 
results. Note that this problem disappears in the kernel 
CSD method described below, as kernel CSD works 
for arbitrary distributions of electrodes.

Counter-current model and spike CSD

The iCSD methods utilize models of CSD distri-
bution constructed in such a way that the inverse 
problem (estimating CSD from LFP) becomes well-
posed. Similar model-based methods have been 
devised specifically to analyze extracellular signa-

tures of cortical action potentials (Somogyvári et 
al. 2005, 2012).

The method described by Somogyvári and others 
(2005) uses a counter-current model (CCM) of the 
CSD. The assumption is that the single-cell CSD 
forms a line source parallel to the electrode. Notably, 
it is assumed that only one point current sink (nega-
tive CSD) is present on the cell, corresponding to 
the action potential origin, and the remaining line 
segments contain line current sources (positive 
CSD). The parameters of the CSD distribution are 
the position and amplitude of the current sink, 
amplitudes of the current sources, and the distance 
between the cell and the electrode. The total num-
ber of parameters is smaller than the number of 
recordings and the model is fit to the data using 
numerical optimization (direct inversion or pseudo-
inversion is not feasible because of non-linear 
dependence of potentials on the distance parame-
ter).

The spike CSD method (sCSD), presented in 
Somogyvári and coauthors (2012), builds upon CCM. 
Because of the constraints imposed by CCM on the 
distribution of transmembrane currents, the CCM 
method is valid only until the largest extracellular 
amplitude of the action potential (Somogyvári et al. 
2012). The sCSD method aims to remove this restric-
tion and to allow for analysis of extracellular spikes 
throughout their whole duration. The idea is the fol-
lowing: with distance d between the cell and the 
electrode fixed, an invertible forward model T(d) is 
constructed assuming point current sources and 
sinks located along the cell, as in 1D iCSD method. 
Next, one takes the time point in the recorded poten-
tials corresponding to the highest amplitude of the 
negative peak of an action potential. CSD is then 
reconstructed using  T−1(d) inverse matrices for d 
ranging from 1 to 200 microns. The optimal distance 
dopt is then chosen as that for which the reconstructed 
CSD is a sharp peak surrounded by smooth back-
ground (technically, this is done by maximizing a 
goal function S(d) which is a measure of ‘spike-
likeness’ of the CSD). Finally, T−1(dopt)  is used to 
calculate the CSD at every time point.

Kernel CSD

The kernel Current Source Density (kCSD) 
(Potworowski et al. 2012) is a method based on kernel 
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techniques known in machine learning. Similarly as 
iCSD, the kCSD method looks for solutions in a pre-
defined space of functions. However, the dimensional-
ity M of this space need not be equal to the number N 
of recordings, but is typically much larger. The unique-
ness of solution in such a broad family is guaranteed 
by a minimum-L2-norm constraint (Potworowski et al. 
2012, p. 546), which also results in ‘smoothing’ the 
solution.

From practical point of view the main advantage of 
kCSD over iCSD is that kCSD does not require the 
recording points to be arranged in a Cartesian grid. 
In fact, it is equally easy to use kCSD for any con-
figuration of electrodes of given spatial dimensional-
ity.

Another advantage is that kCSD – thanks to the 
method being rooted in well-studied kernel theory – 
requires little modifications to deal with noisy data.

The kCSD methods works in the following way. 
First, we choose a basis, =1…M, in the space of 
possible CSD distributions. The basis is usually chosen 
so as to admit a large family of functions, that is, with 
large M. Then, we construct a corresponding basis 
bi(x) in the space of voltage distributions (potentials). 
In the space of potentials we perform kernel interpola-
tion of the measurements. Such an interpolation is 
given as 

(10)

where K is the kernel function, 
, xi are the positions of the 

electrode contacts, and βi are the coefficients obtained 
from Φi, i = 1…N, the N measurements of extracellular 
potential Φ: 

(11)

In the final step we go back from the space of poten-
tials to the space of CSD distributions and obtain the 
estimated CSD as 

(12)

where  is the cross-kernel function, 
.

For the case with noisy measurements we want to 
avoid overfitting, so we no longer require the estimated 
potential function Φ*(xi) to match the measurements Φi 

exactly. Instead, we minimize the cost function 

(13)

where λ controls how much the solution will be regu-
larized. The estimated CSD is in given by the same 
formula as in the noise-free case, but now 

. The regularization con-
stant  λ can be chosen for example through cross-vali-
dation.

Recently, in Ness and coworkers (2015), the kCSD 
method has been adapted to a setup where activity 
from a slice of brain tissue is recorded using (two-di-
mensional) micro-electrode array. That variant of 
kCSD employs a modified forward model, which takes 
into account the geometry of the slice. However, the 
conclusion of Ness and others (2015), was that while 
the correct forward model is crucial for forward mod-
eling of the extracellular potentials, its inclusion in the 
kCSD method results in only a very minor correction. 

Tools for Current Source Density analysis

A number of software tools is available for per-
forming the CSD analysis. CSDplotter, a tool accom-
panying the paper by Pettersen and colleagues (2006), 
is a graphical application for MATLAB and allows 
for iCSD analysis of one-dimensional data, possibly 
with a conductivity jump in the tissue (e.g. at cortical 
surface), and is available through the INCF Software 
Center (http://software.incf.org). MATLAB scripts 
have been made available for 3D and 2D iCSD, 
together with a GUI tool for 2D iCSD (also available 
from the INCF Software Center as ‘iCSD 2D’). The 
software for kCSD method includes MATLAB tools 
for 1D and 2D cases (INCF Software Center, ‘kCSD’), 
and recently a Python implementation for 1D, 2D, and 
3D has been developed as a project in Google Summer 
of Code 2014 (https://github.com/INCF/pykCSD).

DECOMPOSITION OF NEURAL ACTIVITY 
INTO COMPONENTS

Several different techniques have been used to 
extract components from multielectrode recordings of 
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neural activity. In general, to decompose LFP into 
meaningful parts one has to supplement the recordings 
with some additional information, or to make assump-
tions about the origin of the signals. In case of 
Independent Component Analysis (ICA) the assump-
tion is that the signals generated by individual popula-
tions are statistically independent, and one looks for 
components which maximize a chosen measure of 
their independence. In Laminar Population Analysis 
the LFP is supplemented with recordings of spiking 
activity (Multi Unit Activity, MUA), and the assump-
tion is that the recorded LFP is the post-synaptic 
response evoked by the recorded firing. Finally, the 
method presented by Gratiy and coauthors (2011) 
assumes that the morphology of the cells contributing 
to the LFP is known, and LFP templates obtained 
through forward modeling using these morphologies 
are used to extract activity of populations.

Independent Component Analysis

Independent Component Analysis (ICA) is an algo-
rithm for decomposing a multichannel signal into compo-
nents. ICA is often introduced as a solution to the ‘cock-
tail-party problem’: imagine several audio sources active 
at the same time, such as several people speaking simul-
taneously at a party. How can you separate the different 
sources?  ICA can perform this task if the composite sig-
nal (mixture of voices) is recorded through several micro-
phones scattered in the room. Each of the signals contains 
the original voices weighted with different mixing coef-
ficients depending on the distance between the source 
and the microphone (assuming no propagation delays). 
The core idea, and the basic assumption of ICA, is that the 
composite signals – being mixtures of statistically inde-
pendent sources – are more Gaussian than the originals. 
ICA scans the possible unmixing coefficients trying to 
maximize non-Gaussianity of the recovered signals. The 
situation where multiple neural sources are recorded 
through a number of electrode contacts resembles this 
canonical presentation very well, hence the idea to use 
ICA for analysis of neural recordings.

ICA was used in Łęski and others (2010) to separate 
components in LFP evoked by whisker deflection and 
recorded in thalamus of anesthetized rat. The data 
consisted of average evoked potentials recorded at 140 
spatial locations on a three-dimensional grid. After 
low-pass filtering of potentials CSD analysis was per-
formed (using 3D iCSD) and ICA was further per-

formed at the level of CSD. In result we were able to 
identify two components repeating across animals, 
corresponding to two pathways conveying the sensory 
information; the components had consistent spatial 
locations (in five out of seven animals), and consistent 
time delay between them.

The workflow (CSD estimation followed by ICA) 
was tested in Łęski and colleagues (2010) on simple 
artificial data. More thorough study of the proper-
ties of this approach has been recently published 
(Głąbska et al. 2014). There the method is applied to 
simulated activity of a large-scale model of thal-
amocortical column (Traub et al. 2005), and iCSD is 
replaced by kCSD. The study confirmed that the 
recovered components actually correspond to the 
activity of specific populations of model cells. 
However, it also showed that the activity of a popu-
lation is not always well described by a product of a 
spatial distribution of sources and a time-dependent 
activation function, which is a standard assumption 
in ICA. Some populations exhibit clearly non-prod-
uct spatiotemporal activation pattern and need more 
product components to be represented faithfully. In 
such cases the components obtained with ICA cor-
respond well to principal components of the popula-
tion’s activity.

ICA was also used to analyze extracellular activity 
in CA1 (Makarov et al. 2010). In contrast to Łęski and 
coworkers (2010) ICA was applied to voltages, not 
CSD, but still the volume-conducted potentials coming 
from extrinsic sources were first filtered out. The 
recorded spiking activity turned out to have higher 
coherence with the extracted independent components 
than with the raw signal, which suggests that the com-
ponents correspond to different synaptic activation 
patterns of a population of pyramidal cells. The results 
were supported by a model of a single population of 
pyramidal cells driven by three differently distributed 
inputs.

Laminar Population Analysis

This method has been presented by Einevoll and 
coauthors (2007). The premise is that in addition to the 
LFP, the low-frequency component of extracellular 
field assumed to represent synaptic input to neuronal 
populations, we also know the total spiking activity by 
extracting the MUA (high-frequency) signal from the 
recordings.
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LPA is performed in two steps. In the first step the 
MUA ΦM is assumed to be a sum of contributions from 
neuronal populations: 

(14)

where Mn are parametric, trapezoidal spatial profiles, 
fully described by three parameters per population, 
and rn stand for the population firing rate relative to 
baseline. The parameters are obtained through a 
numerical optimization procedure which minimizes 
the deviation from experimental data.

In the second step, which employs the population-
specific firing rates from the first step, the LFP ΦL is 
cast in the following form: 

(15)

where Ln are non-parametric LFP spatial profiles, and 
hn are temporal coupling kernels which describe the 
temporal and spatial profiles of synaptic response. The 
assumption here is that all the recorded LFP is caused 
by firing of the recorded populations. Again, the 
parameters are obtained through numerical optimiza-
tion. The spatial profiles Ln can further be subject to 
CSD analysis.

The application of LPA to stimulus-averaged data 
from rat barrel cortex allows to estimate the pattern of 
synaptic connections between cortical populations 
from extracellular recordings.

Decomposition using prior knowledge of cell 
morphology

The paper by Gratiy and coworkers (2011) uses a 
model of LFP generation based on known morpholo-
gies of cells in an attempt to replace mathematical 
constraints (such as in ICA) with biophysical knowl-
edge. First, the authors choose specific populations of 
cortical cells (layer 4 spiny stellate cells and two popu-
lations of pyramidal cells, layer 2/3 and layer 5). Then, 
for each population a single representative reconstruct-
ed morphology is used to calculate laminar LFP 
Green’s functions, that is, spatiotemporal LFP respons-
es to unit current inputs delivered at specific time and 
depth. The Green’s functions are obtained through 
numerical simulations of these morphologically-de-

tailed models. Only passive properties of neuronal 
membrane are considered (no voltage-dependent chan-
nels) and synaptic inputs are modeled as currents, not 
conductivities. As a result the model is linear in synap-
tic inputs. The total LFP is assumed to be a sum of 
contributions from the three populations and noise.

This forward LFP model is then inverted to esti-
mate the population-specific and depth-resolved fre-
quency spectrum of input currents from the record-
ings of the LFP. Because the number of recordings is 
typically smaller than the number of points at which 
the synaptic inputs are to be estimated, the solution is 
found by using regularized inverse operators taking 
into account the correlation structure of synaptic cur-
rents and noise. Such a procedure was found to per-
form well on model data, and applied to somatosen-
sory evoked potentials in rat [same data as in Einevoll 
et al. (2007)] gave results consistent with predictions 
of LPA.

Possible future extensions of this method include: 
considering active conductances through linearizaton, 
adding more cell populations, combining LFP record-
ings with voltage-sensitive dye (VSD) data.

CONCLUSIONS

The recent years has seen a new wave of interest in 
the analysis of LFP, and a number of new data analysis 
methods have been developed, usually in response to 
the needs of specific experiments or experimental set-
ups. The methods reviewed above fall into two catego-
ries: source localization methods, that is, variants of 
Current Source Density analysis, and signal decompo-
sition methods, which aim to interpret the experimen-
tal signals in terms of activity of neural populations. In 
the latter case the methods rely on extra information to 
decompose the LFP signal into components: either 
statistical assumptions are made regarding the proper-
ties of the signals, or the morphology of the cells is 
assumed to be known, or spiking activity is included 
in the analysis. 

A common trend in all these studies is to first verify 
the methods on model data where the ground truth is 
known. This is a necessity if we are to believe the 
results of applying a new data analysis method to 
experimental data. In case of extracellular potential 
the link between neural activity and the measured sig-
nals is known, therefore modeling studies can provide 
insights into the properties of LFP (Lindén et al. 2011, 
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2013, Łęski et al. 2013, Hagen et al. 2015). While the 
studies reviewed in this paper aim to give quantitative 
estimates on the precision of the used methods, no 
standard set of test data has emerged which would 
allow straightforward comparison of different 
approaches. One of the reasons might be that the dif-
ferent methods are tailored with specific and different 
experimental situations in mind. 

As the technology continues to progress one may 
expect that new data analysis methods will continue to 
be proposed, for example methods which would allow 
for practical analysis of data coming from arrays of not 
tens or hundreds, but thousands of electrodes. Another 
likely trend is the emergence of methods combining 
different imaging modalities, for example extracellular 
recordings of electric potentials and optical methods 
employing voltage-sensitive dyes.

REFERENCES

Einevoll GT, Pettersen KH, Devor A, Ulbert I, Halgren E, 
Dale AM (2007) Laminar population analysis: estimating 
firing rates and evoked synaptic activity from multielec-
trode recordings in rat barrel cortex. J Neurophysiol 97: 
2174–2190.

Einevoll GT, Lindén H, Tetzlaff T, Łęski S, Pettersen KH 
(2013) Local Field Potentials: biophysical origin and 
analysis. In: Principles of Neural Coding (Panzeri S, 
Quian Quiroga R, Eds.). CRC Press, Boca Raton, p. 
37–60.

Głąbska H, Potworowski J, Łęski S, Wójcik DK (2014) 
Independent components of neural activity carry informa-
tion on individual populations. PLOS ONE 9: e105071.

Gratiy SL, Devor A, Einevoll GT, Dale AM (2011) On the 
estimation of population-specific synaptic currents from 
laminar multielectrode recordings. Front Neuroinform 5: 
32.

Hagen E, Ness TV, Khosrowshahi A, Sørensen C, Fyhn M, 
Hafting T, Franke F, Einevoll GT (2015) ViSAPy: A 
Python tool for biophysics-based generation of virtual 
spiking activity for evaluation of spike-sorting algo-
rithms. J Neurosci Meth 245: 182–204.

Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, 
Diesmann M, Einevoll GT (2011) Modeling the spatial 
reach of the LFP. Neuron 72: 859–872.

Lindén H, Hagen E, Łęski S, Norheim ES, Pettersen KH, 
Einevoll GT (2013) LFPy: a tool for biophysical simula-
tion of extracellular potentials generated by detailed 
model neurons. Front Neuroinform 7: 41.

Łęski S, Wójcik DK, Tereszczuk J, Świejkowski DA, Kublik 
E, Wróbel A (2007) Inverse Current-Source Density 
method in 3D: reconstruction fidelity, boundary effects, 
and influence of distant sources. Neuroinformatics 5: 
207–222.

Łęski S, Kublik E, Świejkowski DA, Wróbel A, Wójcik DK 
(2010) Extracting functional components of neural 
dynamics with Independent Component Analysis and 
inverse Current Source Density. J Comput Neurosci 29: 
459–473.

Łęski S, Pettersen KH, Tunstall B, Einevoll GT, Gigg J, 
Wójcik DK (2011) Inverse Current Source Density 
method in two dimensions: inferring neural activation 
from multielectrode recordings. Neuroinformatics 9: 
401–425.

Łęski S, Lindén H, Tetzlaff T, Pettersen KH, Einevoll GT 
(2013) Frequency dependence of signal power and spatial 
reach of the local field potential. PLOS Comput Biol 9: 
e1003137.

Makarov VA, Makarova J, Herreras O (2010) Disentanglement 
of local field potential sources by independent component 
analysis. J Comput Neurosci 29: 445–457.

Mitzdorf U (1985) Current source-density method and appli-
cation in cat cerebral cortex: investigation of evoked 
potentials and EEG phenomena. Physiol Rev 65: 37–100.

Ness TV, Chintaluri HC, Potworowski J, Łęski S, Głąbska 
H, Wójcik DK, Einevoll GT (2015) Modelling and analy-
sis of electrical potentials recorded in microelectrode 
arrays (MEAs). Neuroinformatics, doi:10.1007/s12021-
015-9265-6.

Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT 
(2006) Current-source density estimation based on inver-
sion of electrostatic forward solution: effects of finite 
extent of neuronal activity and conductivity discontinui-
ties. J Neurosci Meth 154: 116–133.

Pitts W (1952) Investigations on synaptic transmission. In: 
Cybernetics: Circular Causal and Feedback Mechanisms 
in Biological and Social Systems (Transactions of the 
Ninth Conference) (von Foerster H, ed.). Josiah Macy, Jr. 
Foundation, New York, 159–168.

Potworowski J, Jakuczun W, Łęski S, Wójcik DK (2012) 
Kernel Current Source Density method. Neural Comput 
24: 541–575.

Sejnowski TJ, Churchland PS, Movshon JA (2014) Putting 
big data to good use in neuroscience. Nat Neurosci 17: 
1440–1441.

Somogyvári Z, Zalányi L, Ulbert I, Erdi P (2005) Model-
based source localization of extracellular action poten-
tials. J Neurosci Meth 147: 126–137.



Linking LFP to neural activity 125 

Somogyvári Z, Cserpán D, Ulbert I, Erdi P (2012) 
Localization of single-cell current sources based on extra-
cellular potential patterns: the spike CSD method. Eur J 
Neurosci 36: 3299–3313.

Traub RD, Contreras D, Cunningham MO, Murray H, 
LeBeau FEN, Roopun A, Bibbig A, Wilent WB, Higley 

MJ, Whittington MA (2005) Single-column thalamocorti-
cal network model exhibiting gamma oscillations, sleep 
spindles, and epileptogenic bursts. J Neurophysiol 93: 
2194–2232.

Wójcik DK, Łęski S (2010) Current source density reconstruc-
tion from incomplete data. Neural Comput 22: 48–60.


