
Research paper� Acta Neurobiol Exp 2014, 74: 424–432

© 2014 by Polish Neuroscience Society - PTBUN, Nencki Institute of Experimental Biology 

INTRODUCTION

Interleukin 6 (IL-6) is a cytokine commonly known 
for proinflammatory functions, but accumulating evi-
dence points it’s pivotal role in the central nervous 
system physiology and pathology (for review, see 
Spooren et al. 2011). In recent years studies have 
shown that various cells of nervous tissue, including 
different brain structures and the cerebrospinal fluid 
of healthy subjects express IL-6 (Van Wagoner and 
Benveniste 1999, Carpenter et al. 2004, Lindqvist et al. 
2009). The results from our laboratory indicate that in 
the brain the highest expression of IL-6 is present in 
astrocytes placed close to the border zone of the brain 
ventricles while its low level in neurons is observed in 
the hypothalamus, hippocampus, cerebral cortex, 
olfactory bulb and cerebellum (Aniszewska et al. 
2014). Microglial cells also expressed IL-6 but its level 
is very low under normal physiological conditions. 
However, in numerous brain pathologies both neurode-

generative diseases and psychiatric disorders IL-6 
levels become increased, which may be causative for 
the disease, but also could be considered as a side-ef-
fect of pathological processes not connected with etiol-
ogy (Blum-Degen et al. 1995, Garver et al. 2003, Sun 
et al. 2003, Carpenter et al. 2004). In addition, the level 
of IL-6 expression increases not only in response to 
various stimuli, but also during normal aging pro-
cesses. The level of IL-6 expression increases with age 
and susceptibility to this increase may affect longevity 
(Wei et al. 1992, Ershler et al. 2000,  Bonafe et al. 
2001, Goodbout and Johnson 2004).  In healthy aged 
subjects elevated level of IL-6 may be a risk factor in 
subsequent cognitive decline (Weaver et al. 2002). 

Studies evaluating influence of IL-6 on learning and 
memory in mice are less conclusive. In experiments 
performed by Baier and colleagues (2009) mice with 
IL-6 deficiency displayed impairments on hippocam-
pus independent learning, as measured with novel 
object recognition memory test and in hippocampus 
dependent learning evaluated by Morris water maze. 
IL-6 deficient mice had significantly lower recognition 
index, which indicates that they were not able to distin-
guish between previously presented and novel objects.  
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Fig. 1. Duration of inactivity (in seconds) during 22 hours of the recording period. Comparison of inactivity between aging 
(A) and young mice (B). Bars represent duration of inactivity during each hour of registration (average form three days). (C) 
comparison between experimental groups in inactivity during whole registration period (average from three days). Mean ± 
SEM). *P<0.05.
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Additionally, in water maze their escape latency was 
significantly longer, than that of WT controls, in both 
the acquisition and reversal phases of the study (Baier 
et al. 2009). These findings are consistent with our 
unpublished results from Morris water maze, per-
formed on identical, commercially available strain of 
IL-6 deficient mice. Interestingly, Braida and cowork-
ers (2004)  who used his independently created IL-6 
deficient mice, found that they perform better than WT 
in the radial maze test with positive reinforcement. 
Percentage of animals reaching the criterion was sig-
nificantly higher in IL-6 deficient animals, both young 
and aging, and the number of days needed to reach the 
criterion was higher in WT, but only in the aging group 
(Braida et al. 2004). One possible explanation of these 
discrepancies is that in the radial maze mice from all 
groups needed at least 15 days of acquisition to reach 
the criterion, whereas Baier and others (2009) tested 
mice after only two days of acquisition in the Morris 
water maze. In our unpublished study mice were 
trained in this test for 4 days, with test at the 5th day, 
therefore it is possible, that IL-6 influence may be too 
subtle to be revealed after short learning in this test and 
it showed only in case of longer learning. What more it 
is possible that using learning paradigm with positive 
reinforcement (like in Braida et al. 2004) may lead to 
different results, than Morris water maze test involving 
negative reinforcement.

IL-6 affects also emotionality and stress response 
(Kiecolt-Glaser et al. 2003, Chourbaji et al. 2006). It 
has been reported that IL-6 deficient mice displayed 
abnormal behavior (Armario et al. 1998, Butterweck et 
al. 2003). They spent less time in the open arms of the 
plus maze and the number of entries there is lower 
compared to wild type (WT) mice. These data suggest 
that IL-6 deficient mice show the reduced level of 
exploratory activity. Administration of IL-6 also alter 
behavior of mice increasing exploratory and locomotor 
activity (Zalcman et al. 1998). Interestingly, different 
strains of mice exhibit different locomotor activity, 
even mice from inbred strains differ individually 
(Tang et al. 2002, Tang and Sanford 2005, Zarringhalam 
et al. 2012,  Aniszewska et al. 2014). Based on these 
data we hypothesize that IL-6 could be involved in the 
spontaneous locomotor activity of mice. 

In this study we investigated the spontaneous loco-
motor activity of IL-6 deficient mice and tested wheth-
er IL-6 involves locomotor activity of young and age 
mice of both sexes.

METHODS

Animals

Experiments were performed on 81 wild-type (WT) 
C57BL6/J and 58 IL-6 deficient mice (IL6-/- tmKopf 
on C57BL/6 background) of both sexes. Young mice at 
3 months old and aging mice at 10–16 months old were 
used. Mice were kept in quiet, separate room, at 23°C 
and a 12-hour light-dark cycle. Food and water were 
available at libitum. Experimental procedures com-
plied with the Polish Law on Experimentation on 
Animals that implements the European Council 
Directive of 24 November 1986 (86/609/EEC) and the 
NIH Guide for the Care and Use of Laboratory 
Animals. The experiments were approved and con-
trolled by a local ethics committee in Warsaw.

Spontaneous activity recordings

To record and analyze spontaneous activity of mice 
in their home cages we used the PhenoRack system 
(ViewPoint Life Sciences, Inc.). There were four ani-
mals recorded at the same time in separate cages. 

Each of the four standard home cages (20×36 cm) 
was placed between infrared illuminators and CCD 
infrared video cameras allowing for the recording of 
activity during both light and dark phases of the circa-
dian cycle.

Before the start of recording, mice were housed 
individually in cages for 72 hours (habituation to soli-
tary housing) and then the cages were placed in the 
system for 24 hours (habituation to recording environ-
ment). Afterwards, the behavior of each mouse was 
registered during the following 3 days. Each day, the 
recording was interrupted for 2 hours (from 08:00 am 
to 10:00 am) to allow for the maintenance of the cages 
and room by animal service. Cages containing mice 
during ongoing observation were not interrupted.

The active and passive behaviors of the mice were 
automatically quantified with the PhenoRack software. 
During the inactive period, mice slept and did not 
move most of the time, except for some slow move-
ment prior to sleep. When mice were awake, they 
moved about the cage, ate and drank water; we refer to 
this as moderate activity. When the mice were run-
ning, jumping, digging or hanging from the top mesh, 
we classified their behavior as rapid movement and 
burst activity.
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Fig. 2. Duration of moderate activity (in seconds) during 22 hours of the recording period. Comparison of moderate activity 
between aging (A) and young mice (B). Bars represent duration of moderate activity during each hour of registration (aver-
age form three days). (C) comparison between experimental groups in moderate activity during whole registration period 
(average from three days). Mean ± SEM). *P<0.05.
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Statistical analysis

Behavioral data were analyzed using two or three-
way ANOVA followed by post-hoc multiple pair-wise 
comparisons using the Bonferroni test. Independent 
variables were: sex (males and females), age (young vs. 
aging mice) and genotype (WT vs. IL-6 deficient). The 
statistical significance level was set at P<0.05.

RESULTS

During the 3-day-long test we investigated the 
behavior of WT and IL-6 deficient, young and aging 
mice of both sexes in their home cages. We found that 
during daytime all mice were inactive and slept for 
most of the time. Starting from 10:00 am until 06:00 
pm (light phase), mice were motionless for approxi-
mately 80–85% of each hour (Fig. 1A, B). On the con-
trary, in the dark phase all mice were active for long 
periods of time. We evaluated two types of locomotor 
activity using the PhenoRack software. Grooming, 
eating or walking were classified as a moderate loco-
motor activity, while running, jumping or digging 
were assigned to the rapid or burst activity. We 
observed a bimodal curve of activity in the first few 
hours of the dark phase and found that the majority of 
significant differences between young and aging mice 
occurred at the dark phase (Fig. 2A, B).

The results quantification of inactivity, moderate 
activity and burst activity reveal similar patterns, 
although differences between experimental groups 
were most distinct for burst activity.

The three-way ANOVA was used to compare three 
different parameters of behavior (inactivity, moderate 
activity and burst activity) for three independent factors: 
genotype, sex and age. There was no significant differ-
ence between WT and IL-6 deficient mice in parameters 
of inactivity and moderate activity, while the IL-6 defi-
cient mice engaged in significantly more burst activity 
than WT animals (F1,9055=55.320, P<0.0001). 

The same ANOVA analysis confirmed significant 
differences between sexes for each of the behavioral 
parameters. Female mice were inactive for smaller 
proportion of time than males (F1,9055= 50.949, P<0.0001) 
and spent more time on both moderate activity 
(F1,9055=53.243, P<0.0001) and burst activity (F1,9055= 
24.049, P<0.0001).

Aging mice were generally less active than young 
animals. They spent more time being inactive 

(F1,9055=110.415, P<0.0001), and less time being moder-
ately active (F1,9055=105.980, P<0.0001) or exhibiting 
burst activity (F1,9055=90.541, P<0.0001). 

Aside from the main effects, some of the interac-
tions between genotype, sex and age were significant. 
We found significant interactions of genotype and age 
for the parameters of inactivity (F1,9055=7.074, P<0.008),  
moderate activity  (F1,9055=5.388, P<0.02) and burst 
activity F1,9055=14.960, P<0.0001). The post-hoc analy-
sis confirmed that in both WT and IL-6 deficient mice 
young animals were more active than aging ones 
(P<0.0001; Figs 1–3). Interaction of sex and age for the 
parameters of inactivity and  moderate activity was not 
significant, however there was a strong interaction for 
the burst activity parameter (F1,9055=5.399, P<0.02). 
Interactions of genotype and sex were not significant 
for any of the three parameters of activity.

Finally, interaction of genotype, age and sex was 
significant for inactivity (F1,9055=9.163, P<0.002), mod-
erate activity (F1,9055=6.658, P<0.01) and burst activity  
(F1,9055=22.196, P<0.0001) parameters. Generally, 
females were more active than males (main effect of 
sex) but the post hoc analysis revealed that  this effect 
was not observed in young WT and in aging  IL-6 
deficient mice (there were no significant differences 
between males and females in these groups). 
Additionally, the differences between young and aging 
mice are more profound in WT males than females, 
unlike in the IL-6 deficient mice, where differences 
between young and aging mice were clear in females, 
while males behaved similarly (especially when the 
parameter of burst activity was compared, Fig. 3C). 
Thus, sex differences were distinct in the aging WT 
and young IL-6 deficient mice. This result indicates, 
that the influence of IL-6 on mice activity is strongly 
age- and sex-dependent. 

DISCUSSION

In the present study we evaluated the role of IL-6 in 
the spontaneous locomotor activity of young and aging 
mice. Because of well-known sex differences in mice 
brain and behavior we performed experiments on 
males and females (Chłodzińska et al. 2011, McCarthy 
et al. 2012). We found that the spontaneous activity 
varies between males and females and between young 
and aging animals. Consistently with previous data, 
we observed intensive activity of mice in the dark 
phase and females were more active than males 
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Fig. 3. Duration of burst activity (in seconds) during 22 hours of the recording period. Comparison of burst activity between 
aging (A) and young mice (B). Bars represent duration of burst activity during each hour of registration (average form three 
days). (C) comparison between experimental groups in burst activity during whole registration period (average from three 
days). Mean ± SEM). *P<0.05.
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(Aniszewska et al. 2014). On the contrary, in most 
behavioral experiments locomotor activity (performed 
usually in the open field test and presented as total 
distance travelled in the field) indicates that males are 
usually more active/less anxious than females, or there 
is no sex dependent differences (An et al. 2011, Huynh 
et al. 2011, Ngun et al. 2011, Lin et al. 2011, Van 
Swearingen et al. 2013, Aniszewska et al. 2014). This 
inconsistency suggests that results of locomotor activ-
ity measures based on the open field test are strongly 
affected by stress or anxiety.  

As a component of immune system IL-6 under-
goes processes comprising the immunosenescence, 
which are strongly sex-dependent (Caruso et al. 
2013, Verdecia et al. 2013). It has been shown that 
there are differences in immune function between 
males and females (Scotland et al. 2011, Oertelt-
Prigione 2012, Pennell et al. 2012). Generally, 
females developed stronger proinf lammatory 
response than males in response to immune stimu-
lus, which can be beneficial, because of potentially 
faster pathogen clearance, but it can also be detri-
mental, due to increased susceptibility to autoim-
mune diseases in females (Klein 2012). We found 
that young animals were more active than aging, 
and this effect was profound especially in IL-6 
deficient females. Additionally, aging WT females 
were more active than males while this effect was 
not observed in aging IL-6 deficient mice. It sug-
gests that IL-6 influence on mice activity is differ-
ent in aging mice, especially in aging females, 
which is consistent with findings regarding sex dif-
ferences of cytokine levels due to aging processes 
that lead to increased proinflammatory status in the 
brain and the periphery (Miller et al. 2010, Gano et 
al. 2011, Song et al. 2012, Villar-Cheda et al. 
2012).

The effects of estradiol, a female sex hormone 
actions on behavior have been extensively explored 
(Barha and Galea 2010, Morgan and Pfaff 2002, 
Morgan et al. 2004). Estradiol has been shown to affect 
among others anxiety and fear related behaviors. 
Ovariectomized female mice treated with estrogen 
exhibited increased level of anxiety measured in the 
open field and elevated plus maze test. Interestingly, 
estradiol treatment led to increased spontaneous loco-
motor activity of mice in their home cages (Morgan 
and Pfaff 2001). This finding suggests that estradiol 
interacts with environmental factors in controlling 

behavior. In familiar, non-threatening environment, 
estradiol induces high activity, which explains higher 
spontaneous locomotor activity in females, observed 
in our study. In the brain estrogen is known to act as 
antiinflammatory and neuroprotective factor (Arevalo 
et al. 2010). Estrogen receptors are able to repress the 
expression of many proinflammatory cytokines, 
including IL-6 (Galien and Garcia 1997, Liu et al. 
2005). It is still not thoroughly investigated whether 
and how estradiol level changes in  the aging brain. On 
the contrary to estradiol actions, based on observations 
that an elevated level of IL-6 may lead to decreased 
activity, we hypothesize that spontaneous  activity of 
female mice can be affected by both estradiol and 
IL-6. In young and healthy WT animals estradiol and 
IL-6 determine the basic level of activity, whereas in 
aging animals estradiol level decreases and IL-6 level 
increases, which leads to a reduction of their spontane-
ous activity. This effect is less profound in  IL-6 defi-
cient females, because lack of IL-6 expression (and age 
related increase). Correspondingly, in males, where 
estradiol level is relatively constant, only an influence 
of IL-6 is observed (slightly higher levels of spontane-
ous activity in IL-6 deficient males and its decrease 
due to aging).  

Recent findings have indicated that IL-6 directly 
affects learning and memory processes, as well as 
anxiety-driven behavior (Armario et al. 1998, Braida 
et al. 2004, Baier et al. 2009, Spooren et al. 2011). IL-6 
cross the blood-brain barrier, connects the brain and 
the immune system, carrying the information about 
the inflammatory status from the periphery to the 
brain (Banks and Erickson 2010). Therefore, both IL-6 
produced by brain cells and peripherally derived IL-6 
cells are involved in some brain functions. Additionally, 
Jarskog and coworkers (1997) have reported that IL-6 
regulates survival of the fetal dopamine and serotonin 
neurons in vitro. We suggest that IL-6 through modu-
lation of dopaminergic and serotoninergic systems 
affects the behavior of adult animals. Experiments 
performed on mice with IL-6 deletion targeted only in 
brain cells can give answers to this question. 

CONCLUSION

We conclude that IL-6 plays an important role in 
basic behavioral patterns and that this influence can be 
different in males compared to females and can be 
modified across the lifespan. 
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