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The auditory steady-state response (ASSR) is 
observed when stimuli are presented periodically 
resulting in electroencephalographic entrainment 
(Picton et al. 2003). The frequency of the ASSR is close 
to the frequency of stimulation and the greatest magni-
tude is observed when stimuli are presented at 40 Hz 
(Galambos et al. 1981). The source of ASSR has been 
localized in the primary auditory cortex, supratempo-
ral gyrus, brainstem with additional activity arising 
from cerebellum (Makela and Hari 1987, Hari et al. 
1989, Pantev et al. 1996, Pastor et al. 2006). Since its 
discovery in 1981, ASSRs have been employed by 
physiologists, psychologists, and physicians along with 
transient event-related potentials (ERPs); however, both 
types of EEG responses serve different functions.  

Predominately, ASSRs are used for testing hearing 
sensitivity or as a marker of the state of consciousness 

during anesthesia (Picton et al. 2003). But the gamma 
range ASSR (especially in the case of 40 Hz ASSR) 
has also been used as an index of the ability for gamma 
band frequency generation in local cortical networks 
in neuropsychiatric disorders:  schizophrenia (Kwon et 
al. 1999, Hong et al. 2004, Light et al. 2006, Brenner et 
al. 2009, Griskova-Bulanova et al. 2013), bipolar disor-
der (O’Donnell et al. 2004, Rass et al. 2010, Oda et al. 
2012) and Alzheimer’s disease studies (Osipova et al. 
2006, van Deursen et al. 2009). 

Obviously, different groups of patients may substan-
tially differ in their age, and part of the changes 
observed might be age-related. Nevertheless, there is 
no established conclusion on aging effects on ASSRs 
in healthy subjects. Some studies focused on ASSR 
development from childhood to adolescence, reporting 
amplitude increase of ASSR with age (Rojas et al. 
2006, Poulsen et al. 2009, Herdman 2011). Research in 
adult subjects of various age gave inconsistent results, 
some reporting no effect of age on auditory ASSRs 
(Johnson et al. 1988, Boettcher et al. 2001, Rojas et al. 
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2006), other finding ASSR amplitude increase with 
increasing age (Boettcher et al. 2002, Poulsen et al. 
2007). Importantly, various analyses methods and esti-
mated parameters do not allow directly comparing the 
results from various studies. Likewise, phase-locking 
of the 40 Hz ASSR was not evaluated in any of the 
studies, although this measure is frequently used and 
has proven to be informative in clinical researches 
(Light et al. 2006, Osipova et al. 2006, van Deursen et 
al. 2009, Rass et al. 2010, 2012, Oda et al. 2012) togeth-
er with amplitude measures. Thus, we aimed to iden-
tify, what are the effects of aging on wavelet extracted 
phase-locking index and amplitude measures of 40 Hz 
ASSRs from healthy subjects.

Forty six male subjects were investigated. Only 
right-handed male subjects were chosen to avoid pos-
sible effects of hormonal fluctuations on the ASSRs. 
The subjects had no history of psychiatric or neuro-
logic disorders and no history of any addiction except 
for tobacco. Subjects were asked to refrain from smok-
ing for two hours before the experiment and do not 
consume caffeine-containing drinks. All subjects 
showed normal binaural auditory thresholds. Informed 
consent was obtained, as approved by the Ethics 
Committee of the Republican Vilnius Psychiatric 
Hospital.

Stimuli were 500 ms trains, consisting of 20 identical 
clicks (1.5 ms burst of white noise) (interspersed with 20 
and 10 Hz stimuli – data not reported here), delivered 
binaurally through headphones (peak SPL of 60 dB). 
The 40 Hz trains were presented sixty times in a pseu-
do-random order with an inter-train interval of 1–1.5 s.

Participants were instructed to let their thoughts 
wander during the presentation of auditory stimuli and 
to fix their gaze at a fixation cross approximately 1.5 
m in front of them. A recording run lasted about 4 
minutes. 

The EEG was recorded with a digital EEG device 
(Galileo Mizar, by EBNeuro, Italy) from F3, Fz, F4,C3, 
Cz, C4, P3, Pz and P4 sites (10/20 International sys-
tem) using Ag/AgCl electrodes. Averaged earlobe 
electrodes served as a reference; the ground electrode 
was attached to the forehead. The impedance was kept 
below 5 kO. Data was digitized at 512 Hz.

Off-line processing was performed in ERPWAVE-
LAB and EEGLAB for MatLab (Delorme and Makeig 
2004, Morup et al. 2006, 2007). Wavelet transforma-
tion (WT; complex Morlet wavelet from MatLab 
Wavelet Toolbox; frequencies represented from 10 to 

80 Hz, 1 Hz intervals between each frequency) was 
performed. The wavelet transformed evoked potential 
measure (evoked amplitude, corresponding to phase-
synchronized WT amplitude measure) and phase-
locking index (phase locking factor of the evoked 
oscillations from trial to trial ranging from 0 (random 
phase) to 1 (nearly identical phase) were analyzed 
(Morup et al. 2006).  Additionally, the average ampli-
tude of the oscillation (both non-phase-locked and 
phase-locked) was investigated to obtain a measure of 
the total intensity increase induced by the stimuli. 
Prior to WT, 10% of the epochs with the largest vari-
ability were rejected in the dataset of each subject/
condition. The baseline correction was made by the 
extraction of random evoked amplitude and phase syn-
chronization activity, which was estimated by calculat-
ing the mean of artificially generated random evoked 
amplitude and phase synchronization samples (Morup 
et al. 2006).

Individual time–frequency representations of evoked 
amplitude, phase-locking index and total intensity 
across all channels were created. It follows that the 
subject-specific strength to the activity that is most 
common across subjects was extracted through non- 
-negative multi-way factorization (NMWF) (Morup et 
al. 2006, 2007). The application of NMWF creates 
time–frequency plots of the evoked amplitude, phase 
locking factor and total intensity at the same time indi-
cating how the parameter varies with experimental 
manipulation. In other words, the multi-subject NMWF 
analysis of the 3-way array of channel × time-frequen-
cy × subject gives the subject-specific strength to the 
activity that is most common across subjects, i.e. cre-
ates a subject-weighted collapse and makes it possible 
to quantify (by giving the single estimation of the mea-
sure of interest) how the measure of interest varies 
with experimental manipulation for all the subjects 
(Morup et al. 2007). This has proven useful in the 
analysis of event-related potentials (Arnfred et al. 
2007, 2008, Griskova-Bulanova et al. 2012) and in the 
analysis of ASSRs (Griskova-Bulanova et al. 2011, 
2013). The window for mathematical decomposition of 
ASSRs was set as 30–46 Hz and 0 to +500 ms. 

In order to evaluate the change in measurements with 
age, linear regression analysis was performed. Further, 
subjects were arbitrary divided into groups based on 
their age in 10 years steps: 20–30 years group (n=13), 
30–40 years group (n=13), 40–50 years group (n=9) and 
50–60 years group (n=11). Univariate analysis of vari-
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ance (ANOVA) was performed, testing the effect of age 
group as a factor. Post-hoc analyzes were performed 
using Least Significant Difference (LSD) test.

ASSRs were detected for all subjects. In line with 
previous studies, the non-negative multi-way factor-
ization decomposition of selected measures of ASSRs 
resulted in the observation of a single component, 
maximal over Cz at about 230 ms and 38–40 Hz fol-
lowing 40 Hz stimulation  (40 Hz ASSR) (Griskova-
Bulanova et al. 2011, 2013).

Linear regression analysis was performed to test 
relationship between subjects’ age and phase-locking 
index values, evoked amplitude values and total inten-
sity values. Curve-fit analyses revealed a small but 
significant linear decrease in the phase-locked 40 Hz 
ASSR measures as a function of age (Fig. 1): R2=0.171, 
F1,44=9.091, P=0.004 for phase-locking index and 
R2=0.151, F1,44=7.820, P=0.008 for evoked amplitude. 
No significant relationship with subjects‘ age for the 
total intensity values was found. Means and standard 
deviations of phase-locking index values, evoked 
amplitude values and total intensity of all four age 
groups are presented in Table I. Univariate ANOVA 
indicated that age group factor was significant for 
phase-locking index values (F3,43=3.595, P=0.021, 
observed power 0.753). Post-hoc testing revealed that 
phase-locking index values were significantly larger in 
20–30 years old group as compared to other groups 
(P<0.05). Head plot of phase-locking index collapsed 
across subjects for the 40 Hz ASSR, time-frequency 
plots as a weighted collapse across subjects and elec-
trodes for the 40 Hz ASSR  and means and standard 
deviations of NMWF scores of phase-locking index 
for the 40 Hz ASSR   in 20–30, 30–40, 40–50 and 
50–60 years old age groups are presented in Figure 2.

 As revealed by univariate ANOVA, age group fac-
tor was significant for evoked amplitude measures 
(F3,43=3.685, P=0.019, observed power 0.764).  As indi-
cated by post-hoc testing evoked amplitude values 
were significantly larger in 20–30 years old group as 
compared to all other groups (P<0.05). No effect of age 
group on total intensity values was found (F3,43=1.739, 
P=0.174). 

The major finding of the current study is that phase-
locked measures of 40 Hz ASSR – phase-locking 
index and evoked amplitude – are diminishing with 
age. To our knowledge, this is the first study imple-
menting routinely used phase-locking measures and 
assessing their relationship to subjects’ age. 

Fig. 1. Scatter plots of 40 Hz ASSR phase-locking index, 
evoked amplitude and total intensity values versus subjects’ 
age
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Functionally, pronounced effect of aging has been 
shown on ERPs, increasing amplitudes of P1–N1–P2 
sensory complex (Anderer et al. 1996, Bertoli and 
Probst 2005), reducing amplitudes of cognitive com-
ponents and elongating latencies (Knight 1987, Gaeta 
et al. 1998, Gall et al. 2007). 

In the past years, ASSRs received much attention as 
an index of brain ability to synchronize to external 
stimulation; with synchronization reaching maximum 
at about 200 ms post stimulus at the frequency of 40 
Hz (Rojas et al. 2006, Griskova-Bulanova et al. 2013). 
However, studies, addressing age-related changes of 
brain ability to synchronize to external stimulation in 
healthy adult subjects are relatively sparse, presenting 
inconclusive results. In the first study by Johnson and 
coworkers (1988), no significant differences in phase 

or amplitude of the 40 Hz ASSRs between the two age 
groups – younger (38 years) and elderly (70 years) were 
found; however, very small samples (7 and 5 subjects) 
were investigated (Johnson et al. 1988). Similarly, no 
age effect on the amplitudes and phases was found by 
Boettcher and colleagues (2001) when amplitude-
modulation rate was 40 Hz and on amplitudes in the 
study by Purcell and others (2004) when  white noise 
was modulated at frequencies  from 30 Hz to 50 Hz. 
Rojas and coauthors (2006), applying MEG, showed 
that 40 Hz ASSR power related to age and this rela-
tionship was best described by exponential regression. 
However, Rojas and colleagues (2006) included sub-
jects from 5 to 52 years old. Relationship between 
ASSR relative power and age between 20 to 50 years 
was stable, indicating no changes in power with 

Fig. 2. (A) Head plot of phase-locking index collapsed across subjects for the 40 Hz ASSR. (B) Time-frequency plots as a 
weighted collapse across subjects and electrodes for the 40 Hz ASSR  in 20–30, 30–40, 40–50 and 50–60 years old age 
groups. (C) Means and standard deviations of NMWF scores of phase-locking index for the 40 Hz ASSR  in 20–30, 30–40, 
40–50 and 50–60 years old age groups. *P<0.05.

Table I

Means and Standard deviations of phase-locking index, evoked amplitude and total intensity of the 40 Hz ASSR in 
20–30 years, 30–40 years, 40–50 years and 50–60 years old groups

20–30 years 30–40 years  40–50 years 50–60 years 

Phase-locking index
   Mean 
   SD

0.52 
0.15

0.40 
0.13

0.38 
0.14

0.36 
0.09

Evoked amplitude
   Mean 
   SD

0.82 
0.28

0.57 
0.25

0.57 
0.24

0.52
0.22 

Total intensity
   Mean 
    SD

0.51 
0.11

0.40 
0.16

0.38 
0.13

0.42 
0.16
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increasing age (Rojas et al. 2006). On the contrary, 
Boettcher and coworkers (2002) have shown larger 
amplitudes of 38 Hz frequency-modulated ASSR in 
aged subjects. Poulsen and others (2007), showed a 
small, but significant, linear increase in the amplitude 
of the 40 Hz ASSR as a function of age in adults from 
19 to 45 years of age. This was accompanied by a 
decrease in ASSR variability with age  (Poulsen et al. 
2007).

The results by Boettcher and coauthors (2001) and 
Rojas and others (2006) are partially in line with our 
observation of no significant aging effect on total 
intensity measure. Whereas amplitude measure used 
by Poulsen and colleagues (2007) is different from the 
one we used. Importantly, no of the studies mentioned 
above implemented phase-locking measures that would 
be comparable to widely and routinely used phase-
locking index measure that is the least sensitive to the 
noise (Kalcher and Pfurtscheller 1995, Griskova et al. 
2007, 2009).

Functionally, synchronous oscillations and particu-
larly ASSRs in the gamma frequency range were 
related to GABAergic transmission (Lewis et al. 2008, 
Lewis et al. 2005, Whittington et al. 2000). This pro-
cess is believed to be mediated via both interneuron–
interneuron and interneuron–pyramidal neuron cell 
connections. Synchronization is hypothesized to be 
propagated through networks in a cycle of GABA(A)- 
-mediated inhibition followed by rebound excitation 
and then inhibition (Gonzalez-Burgos and Lewis 
2008). Several pharmacological studies supported 
GABA participation in the regulation of the 40 Hz 
ASSR, as administration of the GABA agonists 
temazepam and propofol attenuates the 40 Hz ASSR 
(Jaaskelainen et al. 1999, Plourde et al. 2008). Moreover, 
GABAerging transmission has shown to be involved 
in conditions where changes in ASSRs occur: reduced 
ASSRs in schizophrenia and bipolar disorder were 
associated with up-regulation of GABAergic system 
(Brambilla et al. 2003, Deng and Huang 2006)  and 
enhanced ASSR in Alzheimer disease were related to 
disinhibition of GABAergic system  (Di Lazzaro et al. 
2004, Limon et al. 2012).  Noteworthy, decrease in 
GABAergic parameters with age has been reported 
(Tohgi et al. 1993, Krzywkowski et al. 1996).  Recently, 
it has been shown that auditory cortex shows age-re-
lated decreases in pre-synaptic markers for GABA. 
Caspary and others (2013), suggested that age-related 
changes in GABA(A)R subunit composition would 

alter the magnitude and temporal properties of inhibi-
tory synaptic transmission and could underpin 
observed age-related functional changes seen in the 
elderly. 

We speculate that diminishing phase-synchroniza-
tion of 40 Hz ASSRs with age might be related to 
changes mediated by GABAergic system. The com-
plexity of the factors modulating the 40 Hz ASSR is 
not entirely solved; nevertheless, the current results 
suggest that the ability to synchronize to high fre-
quency external stimulation diminishes with age. This 
should be taken into account, particularly when ASSRs 
are used in clinical practice, comparing patients and 
healthy subjects.
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