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INTRODUCTION

The results of several experiments show that behav-
ior of rodents, particularly rats and mice and of the 
laboratory opossum (Monodelphis domestica) differs 
significantly (Wesierska et al. 2003, Blaszczyk and 
Turlejski 2005, Klejbor and Turlejski 2012). The opos-
sums are more curious and active, showing lower level 
of anxiety-driven behavior than rats. They preferen-
tially use the active exploration strategy, with a sacrifice 
of safety precautions, thus showing a natural tendency 
for risky strategies in behavior. This strategy may be 

advantageous for an animal feeding preferentially on 
small invertebrates that are moving fast and hiding.

Such distinct behavioral strategies may depend on dif-
ferences in morphology and function of the brain systems 
that are involved in the integration of behavior. Both the 
motor system and the stress-related defensive behavior are 
influenced by the mesencephalic noradrenergic and dop-
aminergic neurons (Tzschentke 2001, Seamans and Yang 
2004). Dopaminergic neurons are widely distributed in 
the several midbrain structures such as the ventral teg-
mental area (VTA), substantia nigra (SN) and periaque-
ductal gray (PAG). 

Dopaminergic cells of these nuclei do not form a 
homogenous population, but belong to several neuronal 
types, form differing connections, have a variable content 
of neurotransmitter and also differ in expression of some 
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calcium binding proteins (González-Hernández and 
Rodríguez 2000, Klejbor et al. 2006). Calcium binding 
proteins are thought to play multiple roles in regulation of 
neuronal functions (Li et al. 1995, Rintoul et al. 2001, 
Camp and Wijesinghe 2006, Burgoyne 2007, Todkar et 

al. 2012) and may be involved in synaptic plasticity, for 
instance in modulation of the long-term potentiation 
(DeFelipe 1997, Caillard et al. 2000, Edmonds et al. 2000, 
Nägerl et al. 2000, Schwaller et al. 2002). Moreover, dis-
turbances in the intraneuronal Ca2+ levels are implicated 

Fig. 1.  Distribution  of TH-immunoreactive cells and fibers within midbrain nuclei of the opossum. (VTA) ventral tegmen-
tal area; ( PBP) parabrachal pigmented nucleus; (IF) interfascicular nucleus;  (RLi) rostral linear nucleus; (SN) substantia 
nigra; (SNc) substantia nigra pars compacta; (SNl) substantia nigra pars lateralis; (SNr) substantia nigra pars reticulata 
(PAG) periaqueductal gray; (PAGd) dorsal periaqueductal gray; (PAGv) ventral periaqueductal gray. The scale bar in 
micrometers refers to all pictures.
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in the pathogenesis of various neurodegenerative diseases 
like Parkinson, Alzheimer, amyotrophic lateral sclerosis, 
Huntington, epilepsy or brain ischemia (Heizmann and 
Braun 1992, Tsuboia 2000, Mattson 2007, Bezprozvanny 
2009, Surmeier et al. 2010). Calcium binding proteins 
expression patterns have been widely used as neuronal 
markers to identify different cell types, especially 
interneurons (Celio and Heizmann 1981, Celio 1990).  
One of the calcium binding proteins, calretinin (CR), is 
distributed in various brain structures (Rogers 1992). In 
the VTA and SN of the midbrain structures CR is 
expressed (among others) in dopaminergic neurons.

In the present study we investigated distribution and 
morphology of tyrosine hydroxylase (TH) and CR 
expressing neurons in the midbrain nuclei (VTA, SN 
and PAG) of the adult, grey short-tailed opossums. We 
determined the correlations between expression of CR 
and TH in neurons of these nuclei.

METHODS

Animals

Nine adult, one year old grey short-tailed opos-
sums were used. All animals were bred in the ani-
mal house of the Nencki Institute of Experimental 
Biology. The opossum is a solitary species, there-
fore the animals were kept in individual cages 
equipped with a small hiding place. Their environ-
ment was regulated as follows: light/dark cycle 
14:10 (lights on at 08:00 am), temperature 26°C and 
humidity 40–50%. They were fed dry food for kit-

tens, canned meat for cats, fresh fruits and vita-
mins. The care and treatment of animals were in 
accordance with the guidelines for laboratory ani-
mals established by the National Institute of Health. 
The experiments were approved by the Local Ethics 
Committee for Animal Experimentation in 
Gdansk.

Experimental procedures

Animals were deeply anesthetized with lethal doses 
of Nembutal (80 mg/kg body weight) then perfused 
transcardially with a 0.9% solution of saline with 
heparin, followed by 4% paraformaldehyde solution in 
the 0.1M phosphate buffer (pH 7.4). The collected 
brains were post-fixed in 4% paraformaldehyde fixa-
tive for 3–4 hours. Then, they were placed in 15% 
sucrose solution (overnight at 4°C) followed by 30% 
sucrose solution until they sunk. After this, the brain 
coronal 40 µm-thick sections were cut on cryostat 
(Leica, Germany).

The series of sections were single or double-stained 
by standard immunohistochemical protocols using 
antibodies against calretinin and tyrosine hydroxylase. 

The sections were washed three times in 0.01M 
phosphate buffered saline (PBS) followed by 2.5 h 
blocking in 10% normal goat serum and 0.3% 
Triton X-100 at room temperature. Then, the sec-
tions were incubated for 48 hours in 4°C with the 
primary antibodies: anti-calretinin (1:1 500, 
Millipore) or anti-tyrosine hydroxylase (1:1 000, 
Millipore). Afterward, sections were washed 3 

Fig. 2. Percentages of different types of TH-immunoreactive cells in the midbrain nuclei of the opossum
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times in PBS and incubated for 2.5 h with the sec-
ondary antibody: 1:600 goat anti-rabbit antibody 
conjugated with Cy3 (111-165-144 Jackson 
ImmunoResearch Laboratories), for both calretinin 
and tyrosine hydroxylase. In case of double-stain-

ing the sections were incubated in a cocktail of 
primary antibodies: 1:1 500 rabbit anti-calretinin 
polyclonal antibody and 1:1 000 mouse anti-tyrosine 
hydroxylase monoclonal antibody. The sections 
were washed 3 times in PBS and incubated for 2.5 

Fig. 3. Distribution  of CR-immunoreactive cells and fibers within midbrain nuclei of the opossum. The scale bar in microm-
eters refers to all pictures.
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h in room temperature in the mixture of secondary 
antibodies: 1:600 goat anti-mouse Cy3 (Jackson 
ImmunoResearch Laboratories), and goat anti-rab-
bit Alexa Fluor 488 (Molecular Probes). The sec-
tions were then washed, mounted on slides and 
cover-slipped with Kaiser’s Glycerol gelatine for 
microscopy (Merck).

Quantitative analysis

Classification of cells morphological parameters 
containing TH and/or CR within the mesencephalic 
nuclei was analyzed with a LaserPix v.2.0 (Bio-Rad, 
UK) on CSLM images obtained with a 40× lens and 

zoom set to 1.9. The testing area size was 165×165 
µm. At least five areas in every nucleus from each 
animal were evaluated. The first test area was cho-
sen randomly and the remaining ones were selected 
by systematic random sampling. Neurons’ profiles 
containing only TH, only CR and both TH and CR 
were counted and outlined. For each studied nucle-
us, the values of the polygonal area of cell profiles 
were obtained from the total of 25 areas in five 
opossums, which were then averaged, yielding the 
mean standard deviation (SD). The percentages of 
cells colocalizing and non-colocalizing TH and CR 
were estimated in reference to the total numbers of 
labeled cells counted in the areas described above.

Fig. 4. Percentages of different types of CR-immunoreactive cells in the midbrain nuclei

Table I

Percentage of colocalization  TH- and CR-immunoreactive neurons in the midbrain nuclei of the opossums

CR-immunoreactive cells TH-immunoreactive cells

CR+ [n]* % of CR** % of CR/TH** TH+ [n]* % of TH*** % of TH/CR***

IF 100 68 32 82 61 39
PBP 100 68 32 78 58 42
RLi 100 92 8 25 68 32
SNC 100 75 25 69 65 35
SNL 100 81 19 66 73 27
PAGd 100 99 1 6 91 9
PAGv 100 93 7 19 64 36

* Numbers of CR- or TH-immunoreactive cells; **Percent estimation of CR-only  and CR/TH cells in CR-immunoreactive 
population of cells; ***Percent estimation of TH-only and TH/CR cells in TH-immunoreactive population of cells
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RESULTS

The distribution and density of cells stained for 
TH and CR in the VTA, SN and PAG were exam-
ined using immunohistochemistry. We were able to 
distinguish three major morphologic types of 
labeled cells in the opossums’ midbrain according 
to soma size and the shape of dendritic tree. Type I 
neurons were cells with medium size (square area 
between 100–200 µm²) fusiform or oval cell body, 
with dendrites emerging from the opposite poles. 
Type II neurons had a large soma (area over 200 
µm²) and polygonally shaped cell bodies with a few 
thin and intensely stained dendrites. Type III neu-

rons had small soma (area less than 100 µm²), ovoid 
or round cell bodies with a few thin and poorly 
stained dendrites.

Distribution of tyrosine hydroxylase in the 
opossum midbrain

The majority of TH-immunopositive neurons and 
fibers were located in the VTA and in the SN (Fig. 1). 
In the opossum we found that the VTA contained the 
medial nuclei: the rostral linear nucleus (RLi) and the 
interfascicular nucleus (IF)  as well as the more later-
ally located parabrachial pigmented nucleus (PBP) 
and the SN subdivided into the pars compacta (SNC), 

Fig. 5. Photomicrographs showing cells double immunolabeled for tyrosine hydroxylase (TH) and calretinin (CR) in the ventral 
tegmental area (PBP, IF and Rli). The scale bar in the upper right picture refers to all pictures and equals 20 μm.
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Fig. 6. Photomicrographs showing cells double immunolabeled for tyrosine hydroxylase (TH) and calretinin (CR) in the 
substantia nigra (SNC, SNL) and periaqueductal gray (PAGd and PAGv). The scale bar in the upper right picture refers to 
all pictures and equals 20 μm.
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pars reticulata (SNR) and pars lateralis (SNL). In the 
PBP and IF nuclei, numerous and densely packed 
TH-labeled cells were observed, whereas in the RLi 
density of TH-labeled cells was lower (Fig. 1). In the 
PBP most of TH-stained cells belonged to type I (66%) 
and type II (33%) neurons. Only a minor fraction of 
TH-immunoreactive cells (1%) showed features char-
acteristic for type III neurons (Fig. 2). The neuropil 
consisted of the dense meshwork of fibers, varying in 
diameter, sometimes with varicosities. Populations of 
TH-labeled neurons in the RLi showed a different pat-
tern, as 41% of its neurons were of type III, 51% of 
type I, and remaining 8% belonged to type II (Fig. 2). 
Within this nucleus TH-labeled cells and fibers were 
arranged ventro-dorsally. In the IF the type I was the 
most abundant (72%), while type III constituted 21% 
and type II was rare (7%) (Fig. 2). 

TH-immunoreactive cells in the SN were large and 
intensely stained (Fig. 1). Within SNC and SNL differ-
ent types of TH-immunopositive neurons were 
observed. In the SNL neurons of type II predominated 
(80%) and the remaining 20% were of type I, while 
neurons of type III were not observed (Fig. 2). In the 
SNC the most common were neurons of type I (57%), 
type II neurons were less frequent (40%) and those of 
the type III were rarely observed (3%) (Fig. 2).  

The low number of TH-immunoreactive cells was 
observed in the PAG, within both its ventral (PAGv) 
and dorsal (PAGd) parts. They constituted approxi-
mately one fourth of the brainstem dopaminergic neu-
rons population. In both PAGd and PAGv subdivisions 
mainly small, round, sparsely distributed cells belong-
ing to type I (80% and 56%, respectively) were 
observed (Fig. 2). In the PAGv the second largest 
population was type III neurons (38%), while only 6% 
belonged to the type II. In the PAGd type II and III 
neurons were present with equal frequency, each type 
constituting 10% of TH-labeled cells (Fig. 2). 

Distribution of calretinin in the opossum 
midbrain

The majority of CR-labeled neurons and neuropil 
were located in the VTA, mainly in its PBP and IF 
parts (Fig. 3). A few CR-immunoreactive neurons were 
observed in the SNC, SNL, RLi, PAGv and PAGd. In 
the SNR the number of CR-stained cells was low, but 
a dense network of immunopositive dendrites and 
fibers was observed.

Neurons of type I (59%) predominated in the IF 
nucleus, while small, round cells of type III constituted 
36% of the population. Cells with visible processes and 
medium soma size were scarce (Fig. 4). Various types 
of CR-immunoreactive fibers, short and smooth as 
well as long, thin and sometimes with varicosities were 
observed in the IF. 

In the PBP cells expressing CR were approximately 
28% more numerous than cells expressing TH. In this 
area the medium sized, round shaped type I neurons 
predominated (Fig. 4). However, the type II and III 
neurons were also observed (29% and 5%, respective-
ly). Distribution of CR-immunoreactive neuropil in the 
PBP was similar to that in the IF nucleus.

In the RLi, we observed many fusiform and oval 
neurons with long dendrites (Fig. 3). These cells were 
the smallest CR-immunoreactive neurons among vari-
ous nuclei of the VTA. Neurons of type III constituted 
62 % of CR-immunoreactive cells, 35% of those neu-
rons were of type I and neurons of the type II consti-
tuted the remaining 3% of the labeled cells (Fig. 4). 
Interestingly, in the RLi CR-labeled cells and fibers 
showed a vertical (ventro-dorsal) arrangement.

In the SNC the number of CR-immunoreactive cells 
was almost 45% higher than the number of TH expressing 
cells. The majority (66%) of CR expressing neurons in the 
SNC had a polygonal shape with clearly visible dendrites, 
therefore belonging to the type I (Fig. 4). The remaining 
CR-immunoreactive cells belonged to type II (25%) and 
type III (9%). The SNC neuropil contained densely packed 
CR-labeled fibers with varicosities. In the SNL two types 
of CR-immunoreactive cells, large, polygonal type II 
(62%) and medium sized type I (38%) were observed (Fig. 
4). The dense network of long, thin CR-labeled fibers with 
numerous varicosities was also present. In the SN region 
the population of CR-labeled cells dominated over the 
population of TH-labeled cells by 52%. In the SNR the 
CR-immunopositive cells were sparsely distributed, while 
the CR-labeled neuropil was dense.

In both PAGd and PAGv, densely packed small, round 
CR-immunoreactive cell bodies were observed (Figs 3 
and 4). They belonged predominantly to type III neurons 
(PAGd – 84%, PAGv – 68%). The remaining neurons 
were of the type I (PAGd – 16%, PAGv – 32%).

 The number of TH-labeled cells in the opossum 
PAG was very low. Within PAGd CR-labeled cells were 
16 times higher than numbers of TH-immunoreactive 
cells, while in the PAGv cells expressing CR were 5 
times more numerous. 
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Colocalization of TH and CR immunoreactivity

The results of double-labeling immunohistochemis-
try that illustrate the relationships between TH- and 
CR-immunoreactive cells, were presented in Table I.

In the IF nucleus 39% of TH-immunoreactive cells 
expressed also CR (Fig. 5). The cells showing coex-
pression of both proteins belonged to type I neurons. 
Very similar results were obtained from PBP nucleus, 
where TH-immunoreactive cells revealed in 42% colo-
calization with CR. Within the RLi nucleus 32% of 
TH-immunoreactive cells showed colocalization with 
CR. Also in this nucleus the coexisting cells belonged 
to type I neurons (Fig. 5). 

In the SNC 35% of the TH-labeled cells showed 
coexpression of CR (Fig. 6). Colocalizing cells belonged 
to type I (Fig. 6). Within the SNL cells expressing TH 
and CR simultaneously accounted for 73% of the 
population of cells expressing TH. Colocalizing cells 
were among the largest neurons studied, categorized 
as type II. 

In the PAGd cells expressing TH and CR consisted 
of 9% of TH-labeled cells and belonged to the type III 
neurons, whereas 32% TH-labeled cells coexpressed 
CR (Fig. 6).

DISCUSSION

The present data show that dopaminergic cells 
expressing TH are located in the VTA, SN and PAG 
regions of the midbrain in the gray, short-tailed opos-
sum (Monodelphis domestica). We found that in all 
three dopaminergic nuclei of the midbrain, neurons 
immunoreactive for either TH or CR belonged to one of 
three morphological types. The distribution and mor-
phology of TH- and CR-immunoreactive cells in the 
mesencephalic dopaminergic nuclei of the opossum is 
generally similar to its distribution in rodents, such as 
the rat or mouse (Résibois and Rogers 1992, Rogers 
1992, Isaacs and Jacobowitz 1994, Liang et al. 1996).

In the opossum we found that large TH-immuno-
reactive neurons were mainly located in the dorsal tier 
of the SNC, whereas smaller, densely packed 
TH-immunoreactive cells were placed in the IF. These 
findings are consistent with the distribution and types 
of dopaminergic neurons in the midbrain nuclei of the 
rat (Isaacs and Jacobowitz 1994). In contrast to this 
similarity of histological features of the dopaminergic 
nuclei in rodents and marsupials, dopaminergic cell 

groups in the human midbrain show somewhat differ-
ent features. For example, humans have a more exten-
sive ventral tier of the SN, smaller proportion of 
TH-immunoreactive neurons in the IF and larger pro-
portion in the PBP than rats (McRitchie et al. 1996). 
Functional significance of these species-specific dif-
ferences is yet unknown.

Our study revealed that dopaminergic midbrain 
structures are characterized by the high level of CR 
protein expression. We observed many 
CR-immunoreactive cells in the VTA, including PBP 
and IF and in the adjacent SNC brain region. CR 
immunolabeling of neuropil (dendrites, axons and end-
ings) was intense in all of the midbrain nuclei. 
Interestingly, in the opossum CR-immunoreactive 
cells were found in both dorsal and ventral regions of 
the PAG (PAGd and PAGv, respectively). These round 
cells were among the smallest cells in these structures. 
The pattern of distribution of the CR perikarya and 
fibers in the SN/VTA complex observed in the opos-
sum is similar to that present in rodents (Garcia-Segura 
et al. 1984, Hokfelt et al. 1984, Résibois and Rogers 
1992, Rogers 1992), squirrel monkey (Fortin and 
Parent 1996, Parent et al. 1996) and humans (McRitchie 
et al. 1996). The morphology of CR-immunoreactive 
cells in all of the midbrain nuclei is similar to those 
described by Résibois and Rogers in the rat brain 
(Résibois and Rogers 1992). The degree of colocaliza-
tion of TH and CR in the midbrain neurons did not 
differ between the opossum and rat. In the SN of the 
opossum, the percentage of CR/TH cells is slightly 
lower than in the rat but in other structures the percent-
age of double-labeled TH and CR cells was the same 
as in the rat (Garcia-Segura et al. 1984, Hokfelt et al. 
1984, Résibois and Rogers 1992, Rogers 1992, Isaacs 
and Jacobowitz 1994). 

Functional implications of expression of CR in 
midbrain neurons.

Management of intracellular Ca2+ signaling is essen-
tial for a cell’s ability for continuous dynamic adapta-
tion to changes of its activity evoked by external fac-
tors. Therefore, it is an important factor in reaction of 
animals to external stimuli and adaptation to its envi-
ronment. 

According to our observation in the opossum, as 
well as in the rat and mouse (Liang et al. 1996, 
Alfahel-Kakunda and Silverman 1997), CR is pres-
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ent in both dopaminergic and non-dopaminergic 
neurons in the VTA and SN (probably GABA-ergic 
in the SN and GABA-ergic or glutaminergic in the 
VTA). Furthermore, a substantial proportion of 
dopaminergic neurons in the SN and VTA do not 
contain CR.

GABA-ergic and dopaminergic midbrain neurons 
have strikingly different firing properties. GABA-
ergic neurons in the SN fire high-frequency, brief 
action potential bursts (Atherton and Bevan 2005, 
Zhou et al. 2006), whereas SN and VTA dopaminergic 
neurons fire low-frequency, long-duration bursts 
(Grace and Bunney 1984a, b, Hyland et al. 2002, Zhou 
et al. 2006). Firing properties of neurons are strongly 
influenced by intracellular calcium transients, whose 
time course and spatial spread are differentially affect-
ed by calcium-binding proteins. The absence of calci-
um binding proteins results in marked differences in 
cell firing properties (Bastianelli 2003). The func-
tional benefits of CR differing distribution of CR in 
different cell populations are not fully understood, nor 
are the precise mechanisms through which CR (or 
indeed all calcium binding proteins), produce their 
diverse effects. Presumably, the presence, absence and 
colocalization of particular calcium binding and other 
proteins contributes to the firing specificity of cells. 
According to Bastianelli (2003), it is possible to 
hypothesize that the differential distribution of calcium 
binding proteins reflects different physiological 
requirements. For example, the stellate and basket cells 
in the cerebellum, that are GABA-ergic interneurons, 
fire in repetitive patches of spikes of very high fre-
quency.

CR may function as a “fast” or “slow” buffer (Gall 
et al. 2003, Faas et al. 2007, Schwaller 2009). The pres-
ence of slow calcium buffers and absence of fast cal-
cium buffers helps to sustain fast firing rates by keep-
ing calcium levels at near resting levels. Interesting, it 
seems that CR might also act as a calcium sensor pro-
teins (Billing-Marczak and Kuznicki 1999, Palczewska 
et al. 2001). It appears that this “multipotency“ of CR 
may explain its presence in differently spiking mid-
brain neurons, providing them with the ability to adapt 
to periodically high loads of activity serving motor 
(SN) and motivation (VTA) functions that may highly 
differ in time.

Physiological function of CR has investigated in 
the cerebellar granule cells which, like SN neurons, 
are engaged in the control of movement (Schwaller 

et al. 2002, Schwaller 2009). Selective knockout of 
CR in mice produces disturbances of motor coordi-
nation and suggests a putative role for CR in the 
maintenance of calcium dynamics underlying motor 
adaptation (Schwaller et al. 2002, Schwaller 2009). 
In null-mutant CR−/− mice, action potentials and 
discharge properties of granule cells are altered 
(Bastianelli 2003, Gall et al. 2003, Camp and 
Wijesinghe 2006). CR is present in presynaptic ter-
minals of granule cell axons (parallel fibers), which 
provide the input to the Purkinje cells. It suggests 
that CR could play a major role in Ca2+ dependent 
plasticity at these synapses (Schwaller et al. 2002). 
It seems likely that similar relationships can exist 
between neurons of the midbrain nuclei. 
Electrophysiological and morphological studies 
have shown that dopaminergic neurons of the SN 
receive a strong input from GABA-ergic neurons. 
Nigral GABA-ergic neurons expressing CR send 
local axon collaterals, which likely underlie the 
intranigral communication between GABA-ergic 
and dopaminergic neurons or among GABA-ergic 
neurons themselves (Carr and Sesack 2000, Lee 
and Tepper 2007, Nair-Roberts et al. 2008). 

The present study shows that the midbrain 
CR-immunoreactive neurons in the opossum are het-
erogeneous in morphology and chemistry. Moreover, 
we found the high degree of CR and TH colocalization 
in the SN, which may give animals the ability to adapt 
to changes in their motor functions.  

CONCLUSION

In spite of substantial differences in the balance of 
emotions and motivations between the opossum and 
rodents, dopaminergic structures of their brains, and 
in particular VTA and PAG seem to have a strikingly 
similar organization of the dopaminergic system. 
Significance of these findings remains to be 
explained.
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