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Differentiation of glia-committed NG2 cells:
The role of factors released from hippocampus
and spinal cord
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The NG2-positive cells are the oligodendrocyte precursors, which, when terminally differentiated, are capable of myelinating
the central nervous system. There is however an ever-growing list of evidences that NG2 cells actually possess an intrinsic
neurogenic potential and they are capable of neuronal differentiation in response to environmental stimuli. To address the
question, we have established a model of an indirect co-culture system of the freshly isolated rat neonatal NG2 cells and
organotypic slices derived from two distinct CNS regions (hippocampus and spinal cord) to mimic the nervous tissue
microenviroment. The cell differentiation in microenvironment of OGD-injured hippocampal slices has been studied as well.
The molecular analysis of selected trophic factors has been performed to determine the patterns of their expression. Indeed,
the comparison of the cell commitment and development in various microenvironments has pointed to significant
dissimilarities. First of all, the medium being continuously conditioned by the hippocampal slices efficiently promoted
neurogenesis. The effect has been significantly abolished in co-cultures with the injured tissue. The less pronounced
susceptibility to adopting neuronal phenotype and the considerable slowdown of oligodendroglial development was observed
in the co-cultures with the spinal cord slices. The role of BDNF in oligodendroglial progenitor commitment and development
has been investigated proving that it is one of the key players in the examined processes. The specificity of the instructive
clues cocktail might module the fate choice of mobilized endogenous or transplanted cells, which should be taken into
consideration while planning neurorepair strategies.
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IINTRODUCTION population of dividing cells in both young and adult

CNS (Horner et al. 2002, Dawson et al. 2003).

The NG2 proteoglycan-expressing cells (Stallcup
2002) are the oligodendrocyte precursors, which ter-
minally differentiated, are capable of myelinating the
central nervous system (CNS). They constitute up to
5% of total cells in mammalian CNS (Dawson et al.
2000) and have been shown to gather their migratory
and proliferative potential throughout the lifespan
(Nait-Oumesmar et al. 1999, Chari and Blakemore
2002, Tamura et al. 2007, Magnus et al. 2008).
Actually, they represent the main, abundant (~70%)
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Recently, Ge and coworkers (2009) have reported their
observation of the proliferative capacity of the NG2
cells characterized by multiple, branched processes.
Those desirable, uncommon features point to these
oligodendroglial precursors as the valuable candidates
in neurorepair strategies.

Furthermore, numerous in vivo evidences show that
these cycling cells are mobilized and expand in response
to various chemical, immunological or traumatic inju-
ries (Keirstead et al. 1998, Reynolds et al. 2002,
Watanabe et al. 2002, Liu and Shubayev 2011, Lee et al.
2013). They have been shown to repopulate the dam-
aged area replenishing a cellular deficit and eventually
to develop into myelinating oligodendrocytes with
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regenerative potential efficiently contributing to CNS
remyelination (e.g. Lytle and Wrathall 2007, Kerr et al.
2010, Zawadzka et al. 2010). Even if the failure in oli-
gogliogenesis has been noted, the local improvement
has been often observed owning probably to the trophic
support provided by the precursors. A spectrum of
active compounds (complements, cytokines, chemok-
ines, trophic factors) expressed by neural stem cells/
progenitors could significantly modify local microen-
vironment making it more permissive to restorative
processes (Ubhi et al. 2010, Cao et al. 2010).

The oligodendrocytes are known to be a source of
trophic factors (e.g. IGF-1, GDNF, BDNF, NGF, NTF-3)
that could eventually influence the adjacent cells
(Wilkins et al. 2001, Dai et al. 2003, Zhang et al.
2006). Presumably, their precursors also express
numerous factors which vary during cell development
providing temporal instructive signals.

Over the past decade, it has therefore been debated
whether the NG2 cells are indeed lineage restricted
precursors. Until recently they have been regarded as
the gliogenic (astro- and oligodendroglial) progenitors.
There is however an ever-growing list of evidences
that NG2 cells actually possess an intrinsic neurogenic
potential and they are capable of neuronal differentia-
tion in response to environmental stimuli (Belachew et
al. 2003, Gaughwin et al. 2006, Sypecka et al. 2009).

In our previous study we have shown that freshly
isolated, neither propagated nor further stimulated NG2
cells seeded onto hippocampal slices, readily integrated
into tissue and differentiated both into neurons and glia
(Sypecka et al. 2009). Moreover, despite a 7 day long
co-culture, a certain population of NG2 cells retained
nestin expression and proliferative capacity. Those find-
ings contribute to the evidences detailed above suggest-
ing that the NG2 cells are multipotential neural stem
cells rather than lineage-restricted progenitors.

Assuming, that glia and neurons are functionally
interdependent, the cell to cell stimulation is desirable
and highly probable in restorative cascades following
various CNS insults. It remains however to be substan-
tiated that NG2 cells are capable of differentiating in
response to soluble microenvironmental cues that are
thought to play a role in mobilization of the endogenous
NG2 precursors. To address this question, we have
established a model of an indirect co-culture system
(i.e. contact only by the culture medium) of organo-
typic slices to mimic the tissue microenviroment and
the freshly isolated rat neonatal NG2 cells. Additionally,
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two distinct CNS regions (hippocampus and spinal
cord) have been selected for the study with the aim of
examining the potential response of NG2 cell to a dif-
ferent composition of environmental stimuli.

METHODS
NG?2 progenitor cell isolation

Brain cerebral hemispheres from neonatal Wistar
rats, bred in the Animal Care Facility of the Medical
Research Institute (Warsaw, Poland), were used to pre-
pare mixed glial primary cell cultures. All procedures
were approved by IV Local Ethics Committee on
Animal Care and Use (Ministry of Science and Higher
Education). Briefly, isolated tissue was dispersed
mechanically initially with Pasteur pipette and than
with 22-um needle. The resulting cell suspension was
filtered using 41 pm Hydrophilic Nylon Net Filter,
(Millipore, Bedford, MA), spun down (1500xg, 10 min)
and seeded into 75-cm? culture flasks coated with 0.1
mg/ml poly-L-lysine. The culture medium was changed
every second days. After 10-12 days in Dulbecco’s
(Gibco) medium (high glucose) with 10% fetal bovine
serum and supplemented with penicillin-streptomycin,
oligodendrocyte precursor cells were isolated accord-
ing to the modified procedure of McCarthy and de
Vellis (1980), based on different adhesion properties of
particular neural cell types. Cell cultures were rinsed
with complete medium and shaken first for 1 h on an
orbital shaker (180 rpm) at 37°C to remove the micro-
glial fraction, then (after medium replacement) for
additional 1518 h, with the aim of gently detaching the
oligodendrocytes. .Progenitors obtained by this sequen-
tial dislodging method were spun down (1500xg, 10
min), mechanically dispersed with the 22-um needle in
F12/DMEM medium supplemented with Insulin-
Transferrin-Selenium-A Solution (Invitrogen) and then
filtered through 4l-um Millipore membranes. The
population of single NG2 progenitors, suspended in 10
ml of culture medium, was placed in a 75-ml Falcon
flask for 4 h in order to eliminate potentially contami-
nating cells (glia and neurons from the primary cul-
ture). The supernatant was gently collected and, finally,
the purified NG2* population was seeded at 2x10°/cm?
density on poly-L-lysine-coated cover slips placed in
6-well plates (NUNC, Naperville, IL). In control exper-
iments aimed at verification if the examined population
is not getting contaminated with slice-derived cells
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during culturing, the glial progenitors were labeled (30
min at 37°C) with cell tracker CMFDA (Invitrogen)
prior to seeding.

Organotypic hippocampal culture (OHC)

Hippocampi were isolated from 7-8 day-old Wistar
rats according to the method of Stoppini and coworkers
(1991) and used for the organotypic slice preparation.
After brief anesthesia with pentobarbital (Vetbutal,
Sigma, St. Louis, MO, USA), ice-cooled pups were
decapitated with scissors, then brains were quickly
removed and placed into ice-cold HBSS (Gibco).
Hippocampi were cut into 400-pum slices using a Mcllwain
tissue chopper and placed onto Millicell-CM (Millipore)
membranes, four slices per insert. Millicell-CM mem-
branes in 6-well plates were pre-equilibrated with 1 ml
of culture medium (pH 7.2; DMEM 50%, HEPES,HBSS
25%, horse serum 25% (Gibco), 2 mmol/l L glutamine, 5
mg/ml glucose, 1% amphotericin B and 0.4% penicillin-
streptomycin). The serum concentration in culture medi-
um was gradually lowered. From 7th DIV slices were
cultured in the serum-free conditions in DMEM/F12
containing HEPES, HBSS 25%, 2 mmol/I l-glutamine, 5
mg/ml glucose, 1% amphotericin B, and 0.4% penicillin-
streptomycin, N2 (1:10; Gibco) and B27 (1:100; Gibco)
supplements. Cultures were maintained in a moist atmo-
sphere (95%) of air with 5% CO,, at 36°C for 7-14 days
and the medium was changed every second day.

Organotypic spinal cord culture (OSC)

The spinal cords were extracted from the same ani-
mals used for the hippocampi isolation. After dissec-
tion, 10 mm longitudinal sagittal slices of spinal cord
were cut using a tissue chopper (Mcllwain) at a thick-
ness of 350 um and transferred onto a permeable
Millicell-CM (4 slices per membrane) and cultured
according to the protocol used for OHC.

Oxygen-glucose deprivation injury to OHC

Oxygen glucose deprivation (OGD) was performed
on 7 DIV OHC. The slices were transferred to an
anaerobic chamber and placed in Ringer solution con-
taining 10 mM mannitol, saturated with a mixture of
95%N.,/5%CO, for 40 min Cell death in the organo-
typic cultures was evaluated 24, 48, 72 h, and 7 days
after OGD to estimate the degree of tissue damage.

Evaluation of cell death

Quantification of cell death was performed as previ-
ously described (Pozzo Miller et al. 1994, Cavaliere et
al. 2005). The fluorescent cell death marker Propidium
iodide (PI) was added to the medium 24 h prior to the
experiments and throughout the recovery period.
Fluorescent images were acquired using a confocal
microscope (Carl Zeiss LSM 510), equipped with ZEN
2008 software. The Pl-based examination was per-
formed prior to OGD for selecting the undamaged slices,
while after OGD the slices with a similar, high degree of
tissue damage were chosen for co-culture experiments.

Damage was detected only in the cornu ammonis
(CA) area for evaluation of the neuronal damage.
Number of dead cells was calculated for each stan-
dardized CA region as follows: % of dead cells =
(experimental fluorescent intensity (FI) — background
FI) / (maximal FI — background FI) x 100.

Co-culturing of NG2 cells with organotypic
slices (OHC/OSC)

The freshly isolated and purified NG2 population
was seeded at 2x10%cm? density on poly-L-lysine-
coated cover slips placed in 6-well plates (NUNC,
Naperville, IL) and left to adhere for approximately
1 h. Then the Millicell-CM membranes containing
either hippocampal intact slices (OHC), OGD-subjected
hippocampal slices (OHC/OGD) or spinal cord slices
(OSC) were transferred to the plates with NG2 pro-
genitors and closely co-cultured for the 5 following
days in serum-free DMEM supplemented with antibi-
otic solution AAS (Gibco). The culture medium was
changed every second day. On the 5 DIV, the cell cul-
tures were treated for 20 min with 4% PFA for immu-
nocytochemical studies or gently tripsynized (Sigma)
for 5 min and stored for RNA isolation. Organotypic
slices (OHC, OHC/OGD, OSC) were also collected for
RNA extraction and either used immediately or kept in
RNAlater Solution (Applied Biosystems) in 4°C.

Endogenous BDNF neutralization

In blocking experiments, the anti-BDNF antibody
(Millipore) was added in an excessive amount (10 pg/
ml) to the media at the time of the co-culture set-up
and at every 24 h. At 7 DIV, the cultured cells were
processed for immunocytochemistry.



Cell treatment with the exogenous BDNF

For analysis of the potential effects of exogenous
BDNF on the NG2 cell differentiation, the BDNF
(Sigma) at concentration of 20 ng/ml was added to the
culture medium at the time of plating and after 48
hours.

Estimation of BDNF concentration in
organotypic slices and co-culture media

Culture media were collected and then concentrated
by a factor of 30 X and desalted by centrifugation at
3000xg (30 min) using Spin-X UF concentrator
(Corning) filter (molecular weight cutoff 10 kD).
Organotypic (hippocampal and spinal cord) slices
were transferred to CelLytic™ MT cell lysis buffer
(Sigma) supplemented with protease inhibitor cocktail
(Sigma) and gently homogenized. Protein concentra-
tion was determined by the modified Lowry method
(Lowry et al. 1951). BDNF concentrations were evalu-
ated by ChemiKine Brain Derived Neurotrophic
Factor, Sandwich ELISA (Millipore), according to the
supplier’s instructions. After the reaction had been
stopped, the plate was read at 450 nm using a spectro-
photometric plate reader Fluorostar Omega (BMG
LabTech).

Immunofluorescent staining

Blocking solution containing 10% normal goat
serum in PBS, was applied for 1 h at 25°C (RT). For
cytoskeletal markers, cells were permeabilized for 20
min in PBS containing 0.01% Triton and 5% normal
goat serum in PBS. Immunostaining with primary
antibodies was carried out by overnight incubation at
4°C. After rinsing the cells with PBS, they were incu-
bated for 1 h at room temperature with an appropriate
secondary antibody conjugated to either Alexa-488 or
Alexa-546 (1: 1000, Molecular Probes). Controls for
specific immunostaining were stained omitting either
the primary or the secondary antibody. Markers for
different stages of oligodendrocyte development were
used: rabbit polyclonal anti-NG2 (1:200, Chemicon,
Temecula, CA) and monoclonal anti-mouse against O4
(1:200, Sigma), CNP-ase (Sigma, 1: 500), GalC (1:200,
Chemicon) and MBP (1:100, Sigma). To identify dif-
ferentiating neurons, the following monoclonal anti-
mouse markers were applied: anti-NF200 (1:200,
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Sigma), TUJ1 (B-tubulin II) (1:500, Sigma) and anti-
MAP2 (1:500, Pharmingen, San Diego, CA).
Additionally, Ki67 — the indicator of proliferating cells
(1:100, Novocastra, Newcastle Upon Tyne, UK) and
nestin — a marker of neural stem cells (1:250, R&D
Systems) were used. Precursor characteristic of the
cells was verified by applying rabbit polyclonal anti-
PDGFRa (1:100, Santa Cruz Biotechnology, Santa
Cruz, CA, USA) and mouse monoclonal antibody anti-
A2BS5 (1:1000, Chemicon). Cell nuclei were visualized
by incubation with 5 pm Hoechst 33258 (Sigma).
Labeled oligodendroglial cultures were examined
using an Axiovert 25 fluorescence microscope. Images
were captured by the Videotronic CCD-4230 camera
(Carl Zeiss, Jena, Germany) and processed by the
Axiovision (Carl Zeiss) image analysis system.
Confocal microscope along with LSM 510 software
package version 3.2 (Zeiss) was used to analyze the
immunohistochemical images (labeled OHC and OSC).
The argon laser (488 nm) and helium-neon laser (543
nm) enabled visualization of Alexa-stained cells.

Cell counting

Each experiment was repeated four times and 3
representative slides with immunolabeled cells have
been selected for determination of distribution of both
cell type and maturation stage specific markers. The
cells were manually counted in four randomly selected
fields within each of the three slides. The number of
the marker-positive cells was calculated against the
total number of Hoechst-stained cell nuclei within the
examined field (considered as 100%). Since the mark-
ers attributed to the sequential stages of the either oli-
godendroglial or neuronal differentiation were often
overlapping, the quantities of populations determined
by the applied markers were not the additive values.

Reverse transcription and quantitative real-time
RT-PCR analysis

Total RNA was extracted by Trizol reagent (Invitrogen)
and 1 pg of each sample was used for reverse transcrip-
tion reaction High Capacity RNA-to-cDNA Kit (Applied
Biosystems), according to the manufacturer’s instruc-
tions. Real-time PCR analyses were performed in ABI
Prism 7500 Sequence Detection System using 50 ng of
cDNA, designed specific primers (listed in Table I) and
SYBR Green PCR Master Mix (Applied Biosystems).
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Fig. 1. Differentiation of NG2 precursors in co-culture with the organotypic slices of either hippocampus or spinal cord dur-
ing 5 DIV. (A) Immunocytochemical analysis of cells differentiated in co-culture with hippocampal (left panel) and spinal
cord (right panel) slices. Cell nuclei are visualized by Hoechst 33258 immunostaining (blue). The photos of double-staining
show the expressions of neuronal marker TUJ (red) and oligodendroglial marker MBP (green) expressions, respectively.
Scale bar is 50 pum. (B) Comparative analysis of major neural markers and Ki67 expression in 5 DIV cell co-cultures (with
hippocampal slices vs. spinal cord slices). All values on the graphs were expressed as mean + SEM. Differences were con-
sidered significant if: *P<0.05; **P<0.01
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Table I

A list of designed primers used in reverse transcription and quantitative real-time RT-PCR analysis

Gene  Accession No. Forward primer sequence

Actb NM 031144 TCTTGCAGCTCCTCCGTCGC
BDNF NM 012513 CGGCTGGTGCAGGAAAGCAA
CNTF NM 013166 CACCGCCGGGACCTCTGTAG
GDNF NM 019139.1 AAGGTCGCAGAGGCCAGAGG
IGF-1 NM 1788664 CAGCATTCGGAGGGCACCAC

Reverse primer sequence Product length
(bp)
ACGATGGAGGGGAAGACGGC 150
TCAGGTCACACCTGGGGCTG 136
GCTTGCCACTGGTACACCATCC 147
TCTCGGCCGCTTCACAGGAA 144
CATGTCAGTGTGGCGCTGGG 145

The NGF level was determined by application of RT?
Profiler™PCR Array forratneurotrophins (SA Bioscience)
following the manufacturer’s instructions. Reaction
parameters were as follows: 2 min at 50°C, 10 min at
95°C, 40 cycles of 15 s at 95°C and 1 min at 60°C. The
dissociation curve was plotted to determine the specific-
ity of amplification. The products were separated against
Low Range DNA Ladder (Fermentas) in 1.5% agarose
gel to verify their size. The samples were collected in at
least four independent experiments. Each sample was
tested in triplicate during three analyses. The fluorescent
signals from specific transcripts were normalized against
that of the B-actin gene and threshold cycle values (ACt)
were quantified as fold changes by the 2*“ method
(Livak and Schmittgen 2001).

Statistical analysis

The data gathered in experiments comparing the
three experimental groups and control were subjected
to statistical analysis with one-way analysis of vari-
ance (ANOVA) followed by post-hoc Fisher’s test. A
non-paired student #-test (GraphPad PRISM 5.0) was
applied in order to analyze differences between a given
group and the control. All values on the graphs were
expressed as mean £ SEM. Differences were consid-
ered significant if: *P<0.05; **P<0.01.

RESULTS

Neurogenic effect of microenvironments on
progenitor fate-choice

The aim of the present work was to investigate the
influence of distinct neural microenvironment on the

naive NG2 precursor development. To avoid any addi-
tional stimuli, the cells were isolated (~97-98% viability
at the end of the procedure), shortly purified and immedi-
ately used for the co-culture experiments. As in our previ-
ous study (Sypecka et al. 2009), the simple protocol aimed
at minimal manipulation of the cells before their seeding,
allowed us to obtain a homogenous population (98 =+
3.31%) of NG2* glia-committed (95 + 2.78% PDGFRa'; 96
+ 5.25% A2B5*; 7948 + 2.78% CNP*) progenitor cells,
with a diameter of about 9-11 um. After 5 DIV in co-
cultures, the cell differentiation was assessed by immuno-
cytochemical and molecular analyses. In control experi-
ments, the freshly isolated progenitors were labeled with
CMFDA prior to setting up the co-cultures with the aim
of verifying whether the developing NG2'* population was
not contaminated with the slice-derived cells. The cells
cultured without organotypic slices differentiated within 7
DIV into monoculture of mature oligodendrocytes, lack-
ing any neuronal marker expression.

The comparison of the cell commitment and devel-
opment in the microenvironments provided by tissue
derived from distinct neural regions (Fig. 1A,B) showed
significant dissimilarities. First of all, the medium con-
tinuously conditioned by the hippocampal slices effi-
ciently promoted neurogenesis, resulting in a sizeable
fraction of TUJ-positive cells (31.6 + 6.7%) accompa-
nied by a marginal fraction of NF200" (1.36 £+ 0.6%)
early neurons. The medium conditioned by the spinal
cord slices had also neurogenic effect, yet to much a
lesser extent (20.3 £ 4.1% of TUJ-positive cells) when
compared to that observed in co-cultures with hip-
pocampal slices. It is worth noting, that the number of
neurons at the primary stage (NF200") of maturation,
although still marginal, was twofold higher though
(3.75 £ 1.4%) in this microenvironment (Fig. 1B).
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Influence of both types of co-cultures on
oligodendroglial development of NG2 cells

The examination of oligodendroglial markers attrib-
uted to sequential developmental stages also revealed
substantial distinctions. First of all, no significant
decrease in the total cell number was observed in co-
cultures with the OGD-subjected slices in comparison

A- OLS control

co-culture OLS/hippocampus

with both control oligodendrocyte monoculture, as
well as with control co-cultures. What is strikingly
noticeable is that the fraction of the multibranched
NG2 cells was relatively high (55 = 14.2%) in the
microenvironment provided by spinal cord slices in
comparison with that created by hippocampal slices
(29.8 £ 9.8%). The marker of immature oligodendro-
cytes O4 was also significantly elevated, while MBP
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Fig. 2. Differentiation of NG2 precursors in co-culture with either control or OGD — subjected hippocampal organotypic
slices during 5 DIV. (A) Immunocytochemical analysis of oligodendroglial cell development: control (left), co-culture with
control hippocampal slices (middle) and co-culture with OGD-subjected hippocapmpal slices (right panel). Cell nuclei are
visualized by Hoechst 33258 immunostaining (blue). Scale bar is 50 um. (B) Comparative analysis of oligodendroglial
markers relevant to sequential stages of the cell maturation in 5 DIV cell co-cultures (contol hippocampal slices vs. those
subjected to OGD procedure). All values on the graphs were expressed as mean + SEM. Differences were considered sig-

nificant if: *P<0.05; **P<0.001.



expression characteristic for matured cells was down-
regulated in cells differentiating in the vicinity of the
spinal cord slices (Fig. 1B). Taken together, the results
point to considerable slowdown of oligodendroglial
differentiation in co-culture with spinal cord slices
when compared both with control cells and those dif-
ferentiated in the vicinity of hippocampal slices.

Progenitor differentiation in co-cultures with
OGD-subjected hippocampal slices

Since the hippocampal microenvironment is very
potent in modifying cell capacity to differentiation,
subsequently we examined the influence of ischemi-
cally injured hippocampal slices on the cell develop-
ment. The OHC was subjected to temporal oxygen/
glucose deprivation to mimic in vitro a neurodegenera-
tive insult. After staining with propidium iodide to
evaluate cell death, a degree of tissue damage was
calculated for each experiment in order to make the
comparison and verification of the severity of the
insult possible. This allowed us to confirm, that the
tissue used for the co-culture experiment was severely
injured. The results obtained from the comparison of
progenitor differentiation in co-cultures with either
intact or OGD-subjected hippocampal slices point to
diminished neurogenic effect of the latter, accompa-
nied by delayed maturation of oligodendrocytes (Fig.
2A). The immunocytochemical analysis of sequential
stages of development (Fig. 2B) shows that the imma-
ture O4-positive cells predominate, although distinctly
differentiated branched GalC-expressing oligodendro-
cytes are also numerous in cells differentiating in
vicinity of OGD-subjected slices.

The differences in cell development and amount are
also reflected by relative levels of trophic factors,
IGF-1 (Fig. 3A) and GDNF (Fig. 3B) expressed by con-
trol oligodendrocytes (OLS) and the cells co-cultured
with organotypic slices of spinal cord (OLS/OSCC),
hippocampus (OLS/OHC) and OGD- injured hip-
pocampal slices, respectively. Data are quantified as
fold changes by the 24 against the P-actin as the
housekeeping gene.

Effect of BDNF on fate-decision and
differentiation of NG2 progenitors

The potential involvement of BDNF in regulating
NG2 cell differentiation has been investigated in dual
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approach. On one hand, neutralizing (confirmed by
ELISA assay) of the endogenous neurotrophin secreted
to media in co-cultures resulted in significant slowing
down of progenitor maturation, estimated by the
expression of the myelin components, and nearly
resembled the cell differentiation in co-cultures with
the OGD-subjected hippocampal slices. On the other
hand, treatment of the developing population of NG2
cells with the exogenous BDNF resulted in the increased
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Fig. 3. Relative level of trophic factors (A.IGF-1; B.GDNF)
expressed by control OLS and the cells co-cultured with
organotypic slices of spinal cord (OLS/OSCC), hippocam-
pus (OLS/OHC) and OGD- injured hippocampal slices,
respectively. The observed changes in oligodendroglial fac-
tors reflect differences in the cell commitment and growth,
depending on the co-culture microenvironment. Data are
quantified as fold changes (244“") against the P-actin as the
housekeeping gene.
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Fig. 4. Concentration of BDNF in the cultured organotypic
slices. Differences were considered significant if: *P<0.05;
**P<0.001.
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Fig. 5. Decrease in level of trophic factor mRNA observed
in hippocampal slices 7 days after OGD procedure. (A)
Control and OGD-subjected hippocampal slices stained with
PI for cell death evaluation. (B) Relative expression of
trophic factors: data are normalized against the f-actin gene
as the endogenous control (ACt), compared to the intact
control slices ((AACt) and shown as the fold changes (244")
in the mRNA levels.

(by 8.9 % 2.31%) number of the MBP-positive cells at
5* DIV. While manipulating the BDNF content in cell
culture influenced the maturation of the oligodendro-
glial progenitors, it however had no significant effect
on their neural commitment.

BDNF concentration in CNS-region specific areas
revealed significant disparity: in spinal cord slices its
level reached only 50% of that estimated in hippocam-
pal slices (25. 95 + 5.42 pg/mg proteins versus 52.69 +
2.36 pg/mg protein). After OGD procedure, the BDNF
concentration drops about 20% (to 41.08 + 1.78 pg/mg
proteins) (Fig. 4). Taken together, it seems that the
BDNF might be considered as one of the key factors
regulating maturation of the oligodendroglial progeni-
tors.

Down-regulation of trophic factors expression in
OGD-injured hippocampal slices

Comparison of normal and traumatized hippocam-
pal slices (Fig. 5A) pointed to striking decrease in
expression of the selected factors which are crucial for
cell commitment and differentiation: BDNF, CNTF,
GDNF and NGF (Fig. 5B). Their relative levels, nor-
malized against B-actin and calculated as fold-changes
in comparison to control slices, turned out to be sig-
nificantly down-regulated, especially in case of BDNF
(3.23 £ 0.59).

DISCUSSION

The local microenvironment serves as a reservoir
of extracellular signals which regulate the cell
physiology and sustain tissue homeostasis. Since
neurons and glia are functionally interdependent,
numerous molecules must participate in coordinat-
ed cell response (Lim and Alvarez-Buylla 1999,
Bhat et al. 2001, Allen and Barres, 2005, Goritz et
al. 2007). The microenvironment is therefore
dynamic, multicomponent and depends on brain
regions. Presumably, its composition in gliogenic
regions is distinct from that of neurogenic regions
owing to both different types of secreted molecules
and their reciprocal proportions and interactions.
On one hand, this dynamism is essential not only
for the regulation of tissue functionality but also
makes it possible to respond peculiarly to patho-
logical conditions (Lobjois et al. 2008, Wojcik-
Stanaszek et al. 2011a, Zhao et al. 2011). On the



other hand, the specificity of instructive clues cock-
tail might module the fate choice of mobilized
endogenous or transplanted progenitor cells, which
should be taken into consideration while planning
neurorepair strategies (Nakatomi et al. 2002, Sellers
and Horner 2005, Karimi-Abdolrezaee et al. 2010,
Kasai et al. 2010, Markiewicz et al. 2011).

Addressing this issue, we examined the differentia-
tion of glia-committed NG2 progenitors in distinct
neural microenvironments provided by either hip-
pocampal (neurogenic) or spinal cord organotypic
slices (as a model of more gliogenic region). The slices
were used to continually condition the co-culture
medium for the purpose of examining the potential
influence of released soluble factors on the develop-
ment of co-cultured cells.

Glial progenitors are well-known to quickly matu-
rate in vitro (within few days with neither serum nor
other stimulating factors having been added) to form
oligodendrocytes expressing myelin components (Raff
et al. 1983, Trotter and Schachner 1989).
Notwithstanding, it is possible to reprogram their fate
by adding relatively high concentration of various neu-
romorphogenes. This observation points to the general
susceptibility of NG2 progenitors to influence of bio-
logical compounds.

Neurogenesis in hippocampal
microenvironment: Comparison of direct
contact with effect of indirect co-culture

In our previous study (Sypecka et al. 2009), we
showed that the CMFDA-labeled neonatal NG2 pro-
genitors seeded onto the surface of the hippocampal
slices migrated within a few hours into the tissue
and began to differentiate. After being co-cultured
for a week, about one third of the total population
of the transplanted cells adopted neuronal pheno-
types (TUJ', MAP"). A question arises however, if
the observed promotion of neurogenesis is due to
cell to cell contact or rather to instructive extracel-
lular diffusible signals. The results obtained in the
present study revealed similar susceptibility to the
neurogenesis of NG2 progenitors in hippocampal
microenvironment in spite of the absence of direct
cell contacts. These findings lead to the conclusion,
that the orcheastrated influence of instructive para-
crine signals in close to physiological concentra-
tions are potent to induce cell reprogramming.
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NG2 cell differentiation in distinct tissue
microenvironment: hippocampus versus spinal
cord

Progenitor commitment and oligodendrocyte matu-
ration require a coordinated spatiotemporal regulation,
based on the sequence of highly integrated events
(Trapp et al. 1997, Yuan et al. 1998, Ono et al. 2001,
Luyt et al. 2006). In highly specialized CNS, different
regions are characterized by unique composition of
extracellular space. The NG2 cells are known to be
scattered throughout the CNS, inhabiting those het-
erogenous microenvironments, which could modulate
either their fate-choice or/and development (Grinspan
and Franceschini 1995, Baron et al. 2002, Aguirre and
Gallo 2004, Rompani and Cepko, 2010, Wang et al.
2011, Wojcik-Stanaszek et al. 2011b). It is therefore
indispensable to learn, how different tissues influence
the cell development for the purpose of planning cell
replacement therapies.

In our experiments, we showed that the cell com-
mitment and development proceed differently in
microenvironments provided by the slices derived
from distinct CNS regions. In spinal cord, slow devel-
opment of glial cells serving for remyelination might
be anticipated, while the neurogenesis should be
enforced, e.g. by sequential administration of specific
pharmacological treatments. Spinal cord microenviro-
ment was also shown to support the proliferative
capacity of the NG2 progenitors which is highly desir-
able for potential tissue restoration. The observed dif-
ferences in cell commitment and maturation, resulting
in the heterogeneity of the populations cultured in
various microenvironments, are also reflected by the
changes in the expression of oligodendroglial trophic
factors: GDNF (Wilkins et al. 2003, Zhang et al. 2009)
and insulin-like growth factor 1 (IGF-1) (Wilkins et al.
2001, Ubhi et al. 2010).

Basing on the molecular analysis that revealed over 3
folds decrease in BDNF mRNA level, it amounts in both
types of the slices has been measured. The data showed
that this protein content is doubled in hippocampal slices,
which presumably significantly contributes to the microen-
vironment heterogeneity and affects biology of oligoden-
drocytes (Van’t Veer et al. 2009, VonDran et al. 2011).
Examination of the effect of BDNF alone on the neuronal
commitment of NG2 progenitors suggests that it might be
rather one of the players in the orchestrated, synergistic
influence of various signals creating the local microenvi-
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ronment. This neurotrophin however seems to be the
potent regulator of the region-specific maturation of the
oligodendroglial progenitors and therefore could be used
in situ to prevent apoptosis and to control cell differentia-
tion (Nakajima et al. 2010, Rosenberg et al. 2006, Chen et
al. 2013).

NG?2 cell development in traumatized
microenvironment

Oligodendrocytes and their progenitors are extreme-
ly vulnerable to cytotoxic compounds (Sypecka, 2003,
Deng et al. 2004, Buzanska et al. 2009, Kuzhandaivel
et al. 2010) and are known to be injured in many acute
and chronic conditions (Dewar et al. 2003, Back et al.
2007, Watzlawik et al. 2010, Watson and Yeung 2011,
Boscia et al. 2013). Their susceptibility to insults
(including those resulting from disturbances in local
tissue homeostasis like hypoxia) is highiest in perina-
tal period when oligogliogenesis is the most intense
(Sypecka 2003, French et al. 2009, Buser et al. 2012).
It seems however that embryonic progenitors or those
generated in early postnatal period still have some
properties of neural stem cells (Zheng et al. 2006, Ju et
al. 2012) and their fate-choice might be modulated by
local endogenous (or possibly) exogenous signals (Jin
et al. 2012, Sypecka 2011, Tuinstra et al. 2012). In this
regard, the hope-rising observation coming from the
presented study concerns progenitor development in
pathological conditions caused by OGD insult.
Although neurogenic effect exerted by the control hip-
pocampal slices is significantly diminished and the
oligodendroglial maturation is visibly slowed down,
nonetheless cell development progresses in such trau-
matized microenvironment. Moreover, the NG2 pro-
genitors are still able to proliferate and to adopt differ-
ent neural phenotypes, most probably thanks to trophic
stimuli provided by the survived neurons. These pro-
cesses might be even enhanced by the injury-evoked
increase in the expression of selected neurotrophins
that govern the cell cycle and development

CONCLUSION

The presented work show a lineage plasticity of the
NG2 progenitors, depending on the tissue local
microenvironment, which might be beneficial for the
strategies promoting the CNS repair based either on
the endogenous cell recruitment or transplantation.
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