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INTRODUCTION

There are few drugs to effectively protect or repair the 
central nervous system (CNS) in clinical situation in 
spite of the huge efforts to develop them for longer than 
50 years (Savitz and Fisher 2007). As the results, cell 
therapy has recently been expected as the alternative 
treatment strategy to enhance functional recovery after 
various kinds of neurological disorders, including isch-
emic stroke and spinal cord injury. Previously, a variety 
of cells have been studied as the candidates of donor 
cells for this purpose. These include embryonic stem 
(ES) cells, neural stem cells, induced pluripotent stem 
(iPS) cells, umbilical cord blood cells, and bone marrow 
stromal cells (BMSCs) (Jablonska and Lukomska 2011). 
Of these, the BMSCs may have the most enormous 
therapeutic potential among them, because they can be 
obtained from the patients themselves and easily expand-
ed without posing any ethical and immunological prob-

lems. The BMSCs are non-hematopoietic cells and are 
also known as mesenchymal stromal cells (MSCs). For 
the decades, numerous numbers of studies have indi-
cated that the transplanted BMSCs significantly enhance 
functional recovery after the insults in animal models of 
various neurological disorders. For example, the BMSCs 
significantly enhance the recovery of motor function 
when transplanted into the animal models of cerebral 
infarct, SCI, and TBI (Bliss et al. 2007, Parr et al. 2007). 
More interestingly, the BMSCs have the potential to 
ameliorate cognitive dysfunction under certain condi-
tions. Thus, Wu and coauthors (2007) directly trans-
planted the BMSC into the hippocampus and found 
significant improvement of cognitive function in 
Alzheimer’ disease model of rats. Maruichi and others 
(2009) stereotactically transplanted the BMSC into the 
mice subjected to diffuse axonal injury, and concluded 
that BMSC transplantation significantly enhance the 
recovery of cognitive function on Morris Water Maze 
test. Furthermore, Shichinohe and colleagues (2010) 
have also demonstrated that the BMSC significantly 
ameliorate white matter damage and improve cognitive 
function in chronic cerebral ischemia model of rats. 
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Based on these preclinical results, some of pre-
liminary clinical testing has already been conducted 
to evaluate the safety and therapeutic effects of 
BMSC transplantation for the patients with both 
acute and chronic neurological disorders (Bang et al. 
2005, Lee et al. 2008, Zhang et al. 2008, Pal et al. 
2009, Lee et al. 2010, Mazzini et al. 2010, Saito et al. 
2012). However, it should be reminded that a variety 
of questions or problems still remains to be solved in 
order to establish BMSC transplantation as scientifi-
cally proven entity in clinical situation (Abe et al. 
2012). This article reviews recent knowledge on basic 
aspects of BMSC transplantation for ischemic 
stroke.

Mechanisms of CNS protection and repair by 
BMSCs

Recent studies have shed light on the mechanisms 
through which the BMSCs enhance functional 
recovery after cerebral infarct. Thus, Shichinohe 
and coworkers (2006) reported that BMSC trans-
plantation significantly improved the binding poten-
tial for 125I-iomazenil, a specific ligand for 
γ-aminobutyric acid (GABA) receptor, in the peri-
infarct area. Mori and colleagues (2005) also showed 
that the engrafted BMSCs also improve glucose 
metabolism in response to sensory stimuli when 
transplanted into the rat cold injury model. Very 
recent study has demonstrated that the BMSCs may 
enhance functional recovery by promoting the 
recovery of local glucose metabolism in the peri-
infarct area when directly transplanted into the 
infarct brain (Miyamoto et al. 2012).

Furthermore, biological or molecular roles of the 
BMSCs in the CNS have recently been elucidated. As 
first reported by Friedenstein and coauthors (1976), the 
BMSCs can be isolated using their biological proper-
ties to adhere to tissue culture surfaces. The adherent 
cells are well known to differentiate into osteoblast, 
chondrocytes, adipocytes, cardiomyocytes, and neural 
cells (Friedenstein et al. 1976, Prockop et al. 2003). 
However, they are morphologically heterogeneous. 
Therefore, it is quite natural to hypothesize that the 
BMSCs are the mixture of biologically various sub-
populations of cells and contribute to enhance func-
tional recovery through multiple mechanisms. In fact, 
our recent study has proven it (see below) (Hokari et al. 
2008).

Migration and proliferation of BMSCs

The transplanted BMSC are known to aggressively 
migrate towards the lesion, although the underlying 
mechanisms are not clarified. Recent studies have 
shown that some chemokine such as monocyte 
chemoattractant protein-1 (MCP-1) and stromal cell-
derived factor (SDF)-1α are expressed around the dam-
aged CNS tissue and play an important role in the 
migration of the transplanted cells (Wang et al. 2002, 
Askari et al. 2003). Recently, CXCR4, a specific recep-
tor for SDF-1α, are believed to play an important role 
in their migration in the CNS (Shichinohe et al. 2007). 
Son and coworkers (2006) also reported that SDF-1/
CXCR4 and HGF/c-Met axes were involved in the 
recruitment of BMSC to the damaged tissue. It may be 
quite valuable to elucidate the temporal profile of these 
chemokines around damaged CNS tissue to determine 
the optimal timing of BMSC transplantation.

There are few studies whether the engrafted BMSCs 
retain their proliferative activity in the host brain or 
not. Therefore, we labeled the GFP-expressing BMSCs 
with a superparamagnetic iron oxide (SPIO) agent and 
transplanted into the ipsilateral striatum of the mice 
infarct brain. Fluorescence immunohistochemistry 
revealed that many of the GFP-positive cells were 
widely distributed in the peri-infarct area and partially 
expressed MAP2 and NeuN at 3 months after trans-
plantation. However, only a small number of SPIO-
positive cells could be detected on Turnbull blue stain-
ing. Surprisingly, the ratio of the SPIO- to GFP-positive 
cells was less than 3%. The results strongly suggested 
that the BMSCs actively proliferate, toward the lesion, 
and partially express the neuronal phenotype in the 
host brain during 3 months after transplantation (Yano 
et al. 2005). 

Nursing effects of BMSCs

The BMSCs may produce some neuroprotective or 
neurotrophic factors and support the survival of the 
host neural cells (Zhong et al. 2003). This hypothesis 
is readily reasonable because the BMSC per se sup-
port the homing and proliferation of the hematopoi-
etic cells in the bone marrow by producing a variety 
of cytokines such as stromal cell-derived factor-1α 
(SDF-1α) (Kortesidis et al. 2005). Indeed, the condi-
tioned medium of BMSCs significantly promote neu-
rite outgrowth from the dorsal root ganglion (Neuhuber 
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et al. 2005). Recent study has clearly shown that the 
BMSCs release soluble neuroprotective factors, 
including nerve growth factor (NGF), hepatocyte 
growth factor (HGF) and brain-derived neurotrophic 
factor (BDNF), and significantly ameliorate gluta-
mate-induced damage of neurons (Hokari et al. 2008). 
Furthermore, the BMSC-conditioned medium acti-
vates phosphorylation of mitogen-activated protein 
kinase/extracellular signal-regulated protein kinase 
and/or phosphoinositide 3-kinase/serine/threonine 
kinase (PI3K/Akt) in primary culture of rat dorsal 
root ganglion (DRG) neurons (Gu et al. 2009). The 
BMSCs markedly promote the neurite extension from 
the neurons in the organotypic slice of the brain and 
spinal cord (Kamei et al. 2007, Shichinohe et al. 
2008). Hofstetter and colleagues (2002) transplanted 
the BMSC into the injured cord and found that the 
engrafted BMSC were tightly associated with longi-
tudinally arranged immature astrocytes and formed 
bundles bridging the epicenter of the injury. Very 
recently, He and coauthors (2011) have reported that 
the BMSC significantly increase the expression of 
bFGF, BDNF, and vascular endothelial growth factor 
(VEGF) in the ischemic brain. These findings strong-
ly suggest that the BMSCs trigger endogenous signal-
ing pathways of survival and repair in neurons by 
secreting soluble neurotrophic factors (Gornicka-
Pawlak et al. 2011). 

Very recent studies have demonstrated the alterna-
tive pathways through which the BMSC may protect 
the neurons. Thus, Scheibe and others (2012) investi-
gated the mechanism through which the BMSCs pro-
tect the neurons against oxygen-glucose deprivation 
model in vitro. They found that the BMSCs released 
plasminogen activator inhibitor (PAI)-1 and signifi-
cantly improved neuronal survival by increasing the 
phosphorylation of STAT3 and Akt in the neurons 
(Scheibe et al. 2012). Nowadays, the neurovascular 
units (NVUs) are known quite important to maintain-
ing the homeostasis in the CNS. The NVUs consist of 
endothelial cells, astrocytes, and neurons. The BMSCs 
also protect the neurovascular integrity between base-
ment membrane and astrocyte end-feet and ameliorate 
brain damage in stroke-prone spontaneous hyperten-
sive rats (SHR-SP) (Ito et al. 2012). Alternatively, it is 
well known that the BMSCs release the angiogenic 
factors such as VEGF and contribute to increase the 
vessel density in the ischemic organs (Hoffmann et al. 
2010).

Immunomodulatory effects of BMSCs

Both neutrophils and macrophages are well known 
to play an important role in the early inflammation 
after cerebral infarct (Barone and Feuerstein 1999). 
Indeed, their inflammatory response may be an essen-
tial process to clear cellular debris and initiate the 
healing pathways. Simultaneously, however, these 
inflammatory reactions may also give rise to cytotoxic 
damage to the surviving neurons, astrocytes, and 
endothelial cells in the peri-infarct area (Barone and 
Feuerstein 1999). 

On the other hands, the BMSCs have currently been 
investigated as donor cells for novel cell therapy to pre-
vent and to treat clinical disease associated with aberrant 
immune response. Preclinical studies strongly suggest 
that the BMSCs may protect against infectious challenge 
either by direct effects on the pathogen or through indi-
rect effects on the host. In the host, the BMSCs may 
attenuate pro-inflammatory cytokine and chemokine 
induction, reduce pro-inflammatory cell migration into 
sites of injury and infection, and induce immunoregula-
tory soluble and cellular factors to preserve organ func-
tion (Auletta et al. 2012). Based on these observations, 
the BMSCs have been expected as immunomodulators 
in tissue repair, autoimmune disease, and graft versus 
host disease (GVHD) (Mundra et al. 2012).

Interestingly, large numbers of mature neutrophils are 
retained near the BMSCs in the bone marrow, suggest-
ing that the BMSCs protect these neutrophil pools from 
apoptosis and also prevent their inappropriate activation 
and release of granules to prevent accidental damage to 
the bone marrow (Bianco and Gehron Robey 2000, 
Raffaghello et al. 2008). The BMSCs also reduce their 
migration and release of reactive oxygen species (ROS) 
(van den Akker et al. 2013). Likewise, the BMSCs trig-
ger the macrophage to go towards the anti-inflammatory 
phenotype and also reduce their release of pro-inflam-
matory cytokines such as interleukin (IL)-1, IL-6, and 
interferon (TNF)-γ, while markedly increase their anti-
inflammatory cytokines such as IL-10 (van den Akker 
et al. 2013). Therefore, the transplanted BMSCs may 
prevent excessive inflammatory response and prevent 
further tissue damage in the peri-infarct area.

Cell fusion of BMSCs

Several studies have demonstrated that the BMSCs 
fuse with the host cells when they are transplanted into 
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various kinds of organs or are co-cultured with donor 
cells (Terada et al. 2002, Alvarez-Dolado et al. 2003, 
Spees et al. 2003, Vassilopoulos et al. 2003). Spees and 
coauthors (2003) co-cultured the BMSCs with heat-
shocked human small airway epithelial cells, and 
found that about 25% of them fused with epithelial 
cells (Spees et al. 2003). We have found similar results 
when the Yang and colleagues (2012) recently reported 
that the BMSCs fuse with the hydrogen peroxide-
treated cardiomyocytes and significantly ameliorate 
their apoptosis in vitro. They also found that the 
BMSCs highly fused with the cardiomyocytes when 
injected to the mice subjected to myocardial infarction 
(Yang et al. 2012). However, the function of the result-
ing hybrid cells should be further investigated to 
explore their roles in tissue protection (Curril et al. 
2010). Very recently, Islam and coworkers (2012) 
reported that the BMSCs transfer their mitochondria to 

the pulmonary alveolar epithelia through gap junction 
channels. The mitochondrial transfer increased alveo-
lar ATP concentration and protected them against 
acute lung injury (Islam et al. 2012).

Neural differentiation of BMSCs

The BMSC per se are believed to differentiate into 
neural cells in the host’s brain. This theory is based on 
the findings that BMSC simulate neuronal morphology 
and express the proteins specific for neurons in vitro 
(Sanchez-Ramos et al. 2000, Woodbury et al. 2000) or 
in vivo (Azizi et al. 1998, Kopen et al. 1999). Although 
the hypothesis is quite attractive, there still remain 
several questions. Actually, several studies posed a 
question about their in vitro differentiation into neu-
rons (Lu et al. 2004, Neuhuber et al. 2004). Recent 
studies have shown that the BMSCs can alter their 

Fig. 1. Possible mechanism of functional recovery after ischemic stroke by bone marrow stromal cell (BMSC) transplantation
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gene expression profile in response to exogenous 
stimuli and increase the genes related to the neural 
cells (Bossolasco et al. 2005, Hermann et al. 2006, 
Yamaguchi et al. 2006). Using microarray analysis, 
Yamaguchi and others (2006) showed that the BMSCs 
significantly reduce their genes related to mesenchy-
mal cells and increased the neuron-related genes, when 
chemically treated with basic fibroblast growth factor 
(bFGF), retinoic acid (RA), and dimethyl sulfoxide 
(DMSO). 

The BMSCs can acquire the neuronal phenotype 
under more physiological conditions. Thus, Sanchez-
Ramos and colleagues (2000) showed that a small frac-
tion of BMSCs cultured in epidermal growth factor 
(EGF) or retinoic acid/BDNF expressed nestin, NeuN, 
or GFAP, and that the proportion of NeuN-expressing 
cells increased when BMSC were co-cultured with 
fetal mouse midbrain neurons. Subsequently, Spees 
and others (2003) co-cultured the BMSCs with heat-
shocked small airway epithelial cells without any 
chemical agents, and found that BMSC rapidly differ-
entiated into epithelial-like cells and repaired epithelial 
monolayer. Wislet-Gendebien and coauthors (2005) 
also co-cultured the BMSCs with cerebellar granule 
cells and assessed their fates. They found that the 
nestin-expressing BMSCs express other neuronal 
markers and that BMSC-derived neuron-like cells fire 
single-action potentials in response to neurotransmit-
ters such as glutamate. Hokari and colleagues (2008) 
also demonstrated that a certain subpopulation of the 
BMSCs morphologically simulated the neuron and 
expressed the neuron-specific proteins without any 
evidence of cell fusion, when co-cultured with the 
neurons. These findings strongly suggest that at least a 
certain subpopulation of the BMSCs have the potential 
to alter their gene expression profile and to differenti-
ate into the neural cells in response to the surrounding 
environment. In fact, the local environment may be the 
predominant determinant of the phenotypic fate of 
engrafted BMSCs in the host brain. Thus, the majority 
of them express the neuronal markers such as NeuN, 
MAP2, and Tuj-1 in the neocortex, while they express 
astrocytic phenotype in the corpus callosum or spinal 
cord (Lee et al. 2003, 2004, Shichinohe et al. 2007, 
Maruichi et al. 2009, Kawabori et al. 2012). The find-
ings correlate very well with previous results. 
Shihabuddin and coworkers (2000) reported that adult 
spinal cord neural stem cells differentiated into neu-
rons after transplantation into dentate gyrus of hip-

pocampus, but were unable to exhibit neurogenic 
potential when transplanted back into the adult spinal 
cord. Johansson and others (1999) also showed that 
neural progenitor cells start to proliferate, but differen-
tiate into astrocytes after spinal cord injury. More 
importantly, the findings indicate that only the sub-
group of BMSCs with potential of neural differentia-
tion can survive in the host brain for a long time (>4 
weeks).

More interestingly, recent study has shown that the 
engrafted BMSCs express γ-aminobutyric acid (GABA) 
receptor and improve the binding potential for 125I-
iomazenil in the peri-infarct area (Shichinohe et al. 
2006). Using micro-PET/CT apparatus, Miyamoto and 
colleagues (2013) serially quantified local glucose 
metabolism in the rat subjected to cerebral infarct and 
found that BMSC transplantation significantly enhance 
the recovery of glucose metabolism in the peri-infarct 
area. Alternatively, Chiba and coauthors (2009) have 
recently found that the BMSCs acquire neuronal phe-
notype and build synaptic connection with the corti-
cospinal tract, when transplanted into the injured spi-
nal cord of rats. In vitro studies have also indicated that 
the BMSCs exhibit electrical functions simulating 
those of neurons (Kohyama et al. 2001, Jiang et al. 
2003, Jin et al. 2003), although this is still controversial 
(Hofstetter et al. 2002).

Very recently, Wakao and coworkers (2011) success-
fully isolated stress-tolerant adult human stem cells 
from cultured skin fibroblasts or BMSCs. These cells 
can self-renew, express a set of genes associated with 
pluripotency, and differentiate into endodermal, ecto-
dermal, and mesodermal cells both in vitro and in vivo. 
When transplanted into immunodeficient mice by 
local or intravenous injection, they were integrated 
into damaged skin, muscle, or liver and differentiated 
into cytokeratin 14-, dystrophin-, or albumin-positive 
cells in the respective tissues. Furthermore, they can 
be efficiently isolated as SSEA-3-positive cells. Unlike 
authentic ES cells, their proliferation activity is not 
very high and they do not form teratomas in immuno-
deficient mouse testes. The findings are quite attrac-
tive, because non-tumorigenic stem cells with the 
ability to generate the multiple cell types of the three 
germ layers can be obtained through easily accessible 
adult human mesenchymal cells without introducing 
exogenous genes (Kuroda et al. 2010). These cells were 
named as multilineage-differentiating stress enduring 
(Muse) cells. Furthermore, they have proven that Muse 
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cells are a primary source of induced pluripotent stem 
(iPS) cells in human fibroblasts (Wakao et al. 2011). 
There results strongly suggest that a certain subpopu-
lation of BMSCs may have the biological properties of 
neural differentiation and contribute to regenerate the 
infarct brain (Fig. 1).

CONCLUSION

Recent studies have gradually clarified the biologi-
cal feature of BMSCs as the donor cells for ischemic 
stroke. The author emphasizes that it would be essen-
tial to fully explore it to apply BMSC transplantation 
into clinical situation. 
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