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INTRODUCTION

Mesenchymal stem cells (MSCs) are multipotent, 
fibroblast-like cells that were first found in stromal 
compartment of bone marrow then described in 1970s 
by Friedenstein (Friedenstein et al. 1976). In addition 
to bone marrow, similar populations have been identi-
fied in others adult and fetal tissues including: bone 
and adipose tissue, skeletal muscle, teeth, pancreas, 
lung, liver, amniotic fluid, cord blood and umbilical 
cord tissues (UC) (Campagnoli et al. 2001, Lee at al. 
2004, da Silva Meirelles et al. 2006). MSCs are 
defined as a heterogeneous cell population which can 
be isolated by exploiting their plastic adherence and 
then expanded in vitro. The cells display capability for 
self-renewal and differentiation into all lineages of 
mesodermal origin, including bone, cartilage and fat 
cells. There are also evidences showing that MSCs are 
capable to differentiate into cells originating from 
other than mesodermal sources such as neurons, hepa-

tocytes or epithelial cells (Woodbury et al. 2000, 
Hermann et al. 2004). This could be explained by con-
tribution of the very early set of MSC clones (the 
waves) appearing during embryogenesis and derived 
either from a neuroepithelium (Takashima et al. 2007) 
or a cranial neural crest (Ishii et al. 2012). These cells 
display pluripotent characteristic and can give rise to 
different ectomesenchymal derivatives, including 
smooth muscle, neurons, glial cells or endothelium 
(Santagati et al. 2003). Even if this population is only 
transient, restricted and then replaced by MSC derived 
from mesodermal sources, it can contribute to observed 
heterogeneity of the fraction, at least to the part 
derived from immature, fetal tissues. Under in vitro 
conditions they can differentiate and express among 
other also the neural markers like nestin or β-tubulin 
III (Tondreau et al. 2004, Minguel et al. 2005). On the 
other hand there is also well documented data that in 
heterogeneous population of adult stem cells homing 
into the MSC niches there is a subset of primitive stem 
cells identified by different isolation methods. They 
are cells of so called the side population (SP), multipo-
tent progenitor cells (MAPCs), marrow-isolated adult 
multilineage inducible cells (MIAMI), very small 
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embryonic-like stem cells (VSEL), the lineage-deplet-
ed FR25Lin- cells or endothelial progenitor cells 
(EPC) (Goodell et al. 1996, Jiang et al. 2002, Amrani 
and Port 2003, D’Ippolito et al. 2004, Kucia et al. 
2006, Goldenberg-Cohen et al. 2012). Due to their 
pluripotent features they may contribute in various 
degrees to lineage of MSC differentiation. To  con-
solidate that extremely heterogeneous results the 
International Society of Cellular Therapy (ISCT) 
defined three basic criteria essential for MSC charac-
teristic: (1) plastic-adherence in cell culture, (2) posi-
tive expression of et least three surface membrane 
molecules CD73, CD90, CD105 together with negativ-
ity in respect of the hematopoietic markers like CD14, 
CD34, CD45 and human leukocyte antigen DR (HLA-
DR) and (3) ability to osteo-, adipo- and chondroblas-
tic differentiation in vitro (Horwitz et al. 2005, 
Dominici et al. 2006). 

The MSCs attract a lot of attention in the context 
of their usefulness for the cell based therapies. In 
general such therapies may be associated with 
either direct replacement of damaged cells by exog-
enously implanted MSC or indirectly, by their sup-
port to endogenous regeneration. Numerous recent 
data demonstrated successful use of mesenchymal 
stem cells in hematology, cancer therapy and vari-
ous acquired or inherited genetic diseases (Qiao et 
al. 2008, Markert et al. 2009, Bitsika et al. 2012, 
Chao et al. 2012). The therapeutic potential of these 
cells has been demonstrated in experimental treat-
ment of numerous neurological diseases and neural 
tissues injuries (Miller et al. 2010, Momin et al. 
2010). Accessibility of autologous MSC, their 
immunomodulatory and trophic properties and 
ability to multi-lineage differentiation makes from 
these cells the most valuable resource for regenera-
tive medicine and tissue engineering (Pittenger et 
al. 1999, Kastrinaki et al. 2008, Locke et al. 2009). 
For clinical therapies MSCs could be isolated from 
different sources, including bone marrow, periph-
eral blood and different after-birth tissues. Recently 
also adipose tissue has been considered as a good 
alternative source for MSC isolation. Fat is an abun-
dant and very easily accessible tissue,  rich in adi-
pose-derived mesenchymal stem cells (A-MSCs) 
that possess, beside of others also proneural differ-
entiation capacity as well as paracrine properties, 
all features required  for their regenerative applica-
tions (Fraser et al. 2006, Gimble et al. 2007).  

Differentiation potential of MSC

As described above MSCs can differentiate into 
variety of different tissues (Fig. 1) being descendants 
of the mesodermal but also the other primary germ 
layers.   

Several investigators have reported that different 
types of MSCs can differentiate into neuronal-like 
phenotypes under permissive conditions (Jeong et al. 
2004, Bae et al. 2011, Claros et al. 2012, Ferroni et al. 
2012). Positive results in neural differentiation were 
obtained with the use of different experimental proto-
cols, for example by treating cells with chemical com-
pounds, growth factors or co-culturing them with 
neurons or other cells in tree-dimensional cultures. 
Studies of Sanchez-Ramos, Storch and Woodbury 
groups shown that mesenchymal stem cells derived 
from bone marrow (BM) change their phenotypes and 
acquire neural-like features in vitro (Sanchez-Ramos 
et al. 2000, Woodbury et al. 2000, Storch et al. 2002). 
In these experiments researchers have confirmed neu-
ronal MSC differentiation observing expression of 
nestin, GFAP, neurofilament M, neuN and neuron-
specific enolase and other neural markers. Results 
obtained by Tondreau and coworkers (2004) shown 
that 80% of BM-MSC spontaneously express imma-
ture neural markers even at most early stages of cul-
ture. In later stages, these cells acquired even more 
matured neural-like phenotypes and expressed mark-
ers characteristic for mature neurons and astrocytes, 
i.e. MAP2 and GFAP.  Also Alessandri and colleagues 
(2004) reported in human skeletal muscle-derived 
stem cells (SkmSCs) a subpopulation with MSC-like 
characteristics that can differentiate into neural pheno-
type. Under special permissive conditions these cells 
acquire neural features revealed the expression of 
β-tubulin III, GFAP and nestin (Alessandri et al. 2004, 

Fig. 1. Multilineage differentiation of mesenchymal stem cells
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Canzi et al. 2012). Moreover, mentioned before differ-
entiation of adipose tissue-derived MSC or WJ-MSC 
toward neurons and glial cells has been described 
(Gimble et al. 2007, Ferroni et al. 2012).

Yet, other researchers negated the authenticity of 
neural differentiation of MSC and suggested that 
acquirement of the neural-like morphology resulted 
rather from stress-connected artifactual cell over-
staining than from genuine neural differentiation 
(Woodbury et al. 2000, Lu et al. 2004, Neuhuber et al. 
2004, Bertani et al. 2005). Clarifying this question 
would be especially important for answering if poten-
tial uses of these stem cells could be broadened to 
accommodate, in addition to indirect neuroprotective 
and immunomodulatory effects, also to classical cell 
replacement strategy (Jablonska et al. 2010). Our own 
results obtained for MSC derived from human umbili-
cal cord Wharton jelly support ability of these cells to 
spontaneous neural differentiation (Fig. 2). Also other 
immature human tissues, like umbilical cord blood 
mononuclears (Habich et al. 2006) or their derivatives 
can display similar neural differentiation potential 
(Buzanska et al. 2002, Zychowicz et al. 2012) con-
firmed not only by immunocytochemical and molecu-
lar cell characteristic but also by direct electrophysio-
logical data (Sun et al. 2005, Jurga et al. 2009)

Paracrine activity of MSCs 

Beside the ability to multilineage differentiation, 
preclinical studies indicated that MSCs secrete pletho-
ra of the important growth factors, cytokines and 
extracellular matrix compound that can enhance cell 
survival in the damaged tissues (Li et al 2002, 
Schinkothe et al. 2008, Li et al. 2010). These support-
ive effects of MSC have been experimentally tested in 
various animal models of main neurological disorders 

including stroke, Parkinson’s Huntington’s diseases 
(PD and HD), ALS (amyotrophic lateral sclerosis), AD 
(Alzheimer’s disease) and SM (sclerosis multiplex) 
(Zebardast et al. 2010, Wen et al. 2011).  

Another recently explored mechanism responsive 
for supportive role of MSCs in tissue regeneration may 
involve, in addition to classical paracrine activity, a 
partial cell fusion (direct cell-to-cell connection), 
which would lid to direct exchange of intracellular 
components. This interaction is based on the formation 
of thin membrane channels (tunneling nanotubes), 
which can combine neighboring cell membranes. It has 
been reported that mesenchymal stem cells and cardio-
myocytes can exchange their cytoplasmic components, 
organelle and parts of membranes thought such nano-
tube structures (Acquistapace et al. 2011). This inter-
cellular transport may play significant role in regen-
eration process but still needs further investigations 
(Cselenyak et al. 2010).

Recently, it has been described the other mechanism 
utilizing formation of microvesicles (MVs) which can 
be involved in cell-to-cell communication. MVs are 
plasma membrane exosomes released by various cell 
types including mesenchymal stem cells and their pro-
genitors. MVs may deliver various proteins, mRNA, 
miRNA and bioactive lipids affecting the function of 
target cells (Schorey et al. 2008). MVs receptor-medi-
ated transfer of these macromolecules may facilitate 
exchange of information between cells and influence 
various processes including reprogramming and dif-
ferentiation. Proteomic analysis of human MSCs 
derived MVs revealed that they contain approximately 
around 730 proteins associated with cell cycle, prolif-
eration, differentiation and self-renewal signaling 
pathways. Obtained results allowed identification 
among these MVs various protein molecules belonging 
to surface receptors (PDGFRB, EGFR, and PLAUR), 

Fig. 2. Expression of neural markers in WJ-MSC (Wharton jelly mesenchymal stem cells) cultured under standard condi-
tions. Part of the cells at 4–5 passage can spontaneously express nestin (A, green), NF200 (B, green) patches of βIII-tubulin 
(C, green) and GFAP (D, red). Nuclei were counterstained by Hoechst (blue). 
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components of Wnt, MAPK, BMP, TGFβ, PPAR sig-
naling pathways, cell adhesion proteins and MSC-
associated antigens (Kim et al. 2012). Bruno and 
coworkers (2009) demonstrated that bone marrow 
mesenchymal stem cells produce MVs containing spe-
cial mRNA which have exerted a beneficial effect on 
repair processes in acute kidney injury. Moreover, 
Collino and colleagues (2010) have recently shown that 
MVs from BM-MSC contain selected patterns of 
miRNA involved in cells survival, proliferation and 
differentiation or lineage specification which can be 
used as signature of these cells origin. MVs can trans-
port either endogenous or synthetic miRNA to neigh-
bor cells and may regulate expression profile of many 
specific genes.

MSC immuno-modulatory functions

The unique and most valuable property of mesen-
chymal stem cells is connected with their potential 
immunomodulatory function. It is known that MSCs 
can influence severity of the innate as well as acquired 
immune reactions. This property make them valuable 
for the clinical treatment of several autoimmune syn-
dromes including multiple sclerosis (MS) (Djouad et 
al. 2009, Fiorina et al. 2009, Gonzalez-Rey et al. 2010) 
and graft-versus-host disease  (GVHD) (Bartholomew 
et al. 2002, Nauta and Fibbe 2007). 

Several unique features of MSC were implicated as 
responsible for their immunomodulatory potential. 
Firstly, MSC were shown to express vestigial amounts 
of the major histocompatibility complex MHC class I 
and MHC class II molecules together with co-stimula-
tory CD80, CD40, CD86 markers (Tse et al. 2003, Le 
Blanc and Ringden 2007). This property indicates that 
transplanted MSCs are non-immunogenic and thus 
able to avoid host immune attack even when implanted 
without immunosuppression (Spaggiari et al. 2008). 
MSCs can also modulate activation and proliferation 
of T and B lymphocytes (Corcione et al. 2006, Yang et 
al. 2009, Duffy et al. 2011) and alters their secretion 
profiles. They promote a strong anti-inflammatory T 
helper 2 (Th2) response and inhibit deteriorating pro-
inflammatory T helper cell type 1 (Th1) response. 
Moreover, secreted by MSCs macrophage-colony-
stimulating factor (M-CSF) and IL-6 may interfere 
with the differentiation and functionality of brain 
residing dendritic cells (DC) (Djouad et al. 2007). 
Specifically, the MSCs caused mature DCs type 1 

(DC1) to decrease tumor necrosis factor α (TNF-α) 
secretion and mature DC2 to increase interleukin-10 
(IL-10) secretion; MSCs caused Th1 cells to decrease 
interferon γ (IFN-γ) and caused the Th2 cells to 
increase secretion of IL-4; MSCs caused an increase in 
the proportion of regulatory T cells (Treg) to more toler-
ant phenotype and decrease secretion of IFN-γ from 
the natural killer (NK) cells. Numerous studies have 
confirmed that infused MSCs mobilize endogenous 
stem cells to migrate from their tissue niches as well as 
from the recipient bone marrow and then directed 
them into injured and inflamed areas where they con-
tribute to described above anti-inflammatory effects 
(Wakabayashi et al. 2010, Sheikh et al. 2011).

Migratory properties of MSC

Several studies have shown that MSCs have ability 
to migrate toward the injured tissues in response to 
variety of endo/paracrine signals that attracts them 
directly in the receptor-mediated manner (Spaeth et al. 
2012). Mechanism of MSCs migration involves expres-
sion of the numerous specific receptors and ligands to 
facilitate their trafficking, adhesion and infiltration 
into pathogenic microenvironment. Among actually 
described migratory axis there are chemokine recep-
tors molecules like CCR1-4, CCR7-10, CXCR1-6, 
CXCR4 and a broad range of cell surface adhesion 
antigens like β1-integrins (CD29), VEGFR, CD44 and 
their local ligands CXCL12 (SDF-1) or VEGF (Ponte et 
al. 2007, Brooke et al. 2008, Wang et al. 2008, Yu et al. 
2010). In addition there are many others guiding axis 
of cell migration which exact homing mechanism is 
still under intensive investigation. Several experimen-
tal approaches are directed toward enhance of the 
natural cell tropism into targeted brain regions. They 
include overexpression of tissue factors affecting cell 
migration like metalloproteinases, statins and adhe-
sion molecules which modifies cell migratory behavior 
in response to endogenous guidance cues. Also ex vivo 
treatments of MSCs with cytokines (Pasha et al. 2008, 
Choi et al. 2010), their genetic modification (Kurozumi 
et al. 2004, Nomura et al. 2005) or hypoxic-ischemic 
MSCs preconditioning (Grayson et al. 2007) before 
transplantation is expected to improve MSCs migra-
tion. Other observation indicated that G-CSF treat-
ment can mobilize endogenous MSC populations of 
bone marrow and increase their quantity in peripheral 
blood and migration toward injured cerebral tissue 
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(Deng et al. 2011). The other way to enhance the local 
MSCs penetration toward side of injury is dependent 
on the mode of cell application. The used in our labora-
tory the intra-arterial delivery of transplantation mate-
rial allows avoidance of the first pass effect after cell 
infusion what gained recently substantial attention 
(Pendharkar et al. 2010, Gornicka-Pawlak et al. 2011, 
Lundberg et al. 2012, Osanai et al. 2012).

Clinical applications of MSC 

Mesenchymal stem cells have been the first type of 
stem cells exploited in clinical regenerative medicine 
owing to their capacity to multipotent differentiation 
and the feasibility of autologous transplantation. 
Experimental and preclinical data gave successful results 
by showing that injection of MSC exerts positive effect 
on variety of acute and slowly progressive diseases 
(Newman et al. 2009).  Mesenchymal stem cells seem to 
be promising tools especially for therapeutic application 
in incurable neurological disorders however precise 
mechanism of their protective action is still unclear 

There are at least three main hypotheses explaining 
the role of MSCs in neural repair: (1) the ability of 
these cells to transdifferentiate toward genuine neural 
lineage and thus to replace damaged cells in the brain 
tissue, (2) the possibility of fusion between transplant-
ed MSCs and endogenous recipient cells what would 
change their fate and (3) the capacity of MSCs to 
release a wide range of trophic factors influencing 
neurogenesis and enhancing tissue regeneration. The 
first assertion implies that transplanted cells would be 
able to differentiate into the distinct types of neural 
cells in vivo and then to integrate functionally with 
neuronal circuits. It would relay on the induction and 
promotion of specified neural lineages guided by 
changes of cell epigenetic programs and gene expres-
sion profiles (Choong et al. 2007, Filip et al. 2008). 
However, as already being discussed, the ability of 
human MSCs to differentiate toward neural cell fate is 
still unproven, rare and questioned phenomenon. 

In regard to the second option, in the past several 
studies implicated spontaneous fusion between trans-
planted mesenchymal stem cells and host neural cells. 
Ying and Terada demonstrated that MSCs derived 
from bone marrow fuse with other cell types and 
acquire the phenotypic properties of those cells (Terada 
et al. 2002, Ying et al. 2002). In Crain’s study the cells 
derived from bone marrow were transplanted to a 

female patient. Fluorescent in situ hybridization (FISH) 
connected with radiolabeling showed the fusions 
between donor and host cells (Crain et al. 2005). In 
spite of this observation, spontaneous fusion, if really 
happen, would be a very rare and uncommon phenom-
enon which cannot explain observed benefits from 
MSC therapeutic transplantations.

Currently, there are accumulating data suggesting 
that the third hypothesis may be the most relevant. It 
seems that MSCs likely promote cellular re-growth, 
differentiation and survival by secreting plethora of 
both soluble and insoluble factors like cytokines, 
growth factors and extracellular matrix proteins 
(Nakayama et al. 2003, Crigler et al. 2006). 
Neuroprotective effect can be mediated by secretion 
of nerve growth factors (NGF) (Cho et al. 2010), 
brain-derived neurotrophic factor (BDNF) or insulin- 
like growth factor-1 (IGF-1) (Wakabayashi et al. 2010). 
All of them can stimulate endogenous regeneration, 
axonal sprouting and improve neurobehavioral func-
tions. Moreover, concomitantly released angiogenic 
cytokines like vascular endothelial growth factor 
(VEGF) (Toyama et al. 2009) and angiopoietin-1 
(Ang-1) (Onda et al. 2008, Toyama et al. 2009) may 
promote neovascularisation in the regenerating tis-
sues. 

To understand growing role of MSC in therapy of 
various acute, traumatic as well progressing neurode-
generative diseases, we must remember that all of 
these different types of CSN insults can generate a 
common spectrum of the secondary pathological 
responses.  In all of these pathologies primary insult 
evokes a local inflammation with reactive astrogliosis, 
macrophages influx and secondary cell death with 
connected progression of tissue damage and glial scar 
formation. Local or systemic MSCs supply might be 
equally useful in targeting and ameliorating all of 
these adverse pathological events. From already gath-
ered preclinical data it seems that in the vast majority 
of tested clinical situations released by MSC trophic 
factors and bioactive substances suppress effectively 
neuroinflammation, decrease local lesions and then 
lighten the symptoms of neurological functional defi-
cits (Table I).

The growing number of clinical investigations 
addressing MSC-based neuroprotective and immuno-
modulatory therapeutic abilities are currently designed 
and tested in different clinical centers (Uccelli et al. 
2011). Below we will address them briefly.
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In stroke, being one of the most common causes of 
severe neurological disabilities, the therapy is focused 
mainly on pharmacological neuroprotection, regenera-
tion of lesioned tissue and physical rehabilitation of the 
victims. In accordance, in various animal models of 
local and global cerebral ischemic injuries it has been 
demonstrated that intravenous infusion of bone mar-
row derived MSCs can substantially enhance func-
tional recovery due to released neurotrophins and anti-
apoptotic factors (Li et al. 2002, Chen et al. 2003, 
Iihoshi et al. 2004, Jablonska and Lukomska 2011). 
Basing on these promising results several trials verify-
ing feasibility, safety and efficacy of a cell-based ther-
apy are currently ongoing in various clinical centers 
(see ClinicalTrials.gov) and the first results are already 
published (Table I). In majority of them autologous 
MSC were injected intravenously (Bang et al. 2005) 
although in cerebral palsy the intraparenchymal and 
intraventricular brain administrations have been tested 
as well (Zhang et al. 2008, Chen et al. 2012). Such 
direct intra-cerebral cell transplantation enables better 
selection of the injection site which would be achieved 
under MRI guidance (Correa et al. 2007, Barbosa et al 
2010, Jozwiak et al. 2010), assuring the proper cell 
migration and the optimal concentration of the trans-
planted cells and protective cytokines and growth fac-
tors. The majority of studies carried over the last 1 up 
to 5 years, reported enhancement of functional recov-
ery, especially when transplantation was combined 
with intense rehabilitation programs. Furthermore, 
there were no reported cases of deaths, serious adverse 
events or stroke recurrence in comparison to the 
untreated group (Table I).

Stem cell therapy becomes now a reality for treat-
ment of acute spinal cord injury (SCI) (Lee et al. 
2007). The efficacy of the therapies using different 
types of adult stem cells (OECs, MSCs or BM-HSCs) 
as well as the selection of the best cell transplantation 
techniques (intradural or intraspinal injection) have 
been continuously tested in variety of already finished 
or running trials (Table I). To ameliorate recovery 
some investigators combined the MSCs treatment with 
delivery of bioactive molecules together or not with 
physical rehabilitation of patients (Yoon et al. 2007). 
Autologous mesenchymal stem cells have also been 
probed in the therapy of chronic SCI patients (Moviglia 
et al. 2009). Although many groups confirmed positive 
effects achieved by these therapies (Deda et al. 2008) 
in both, acute as well as chronic SCI, the benefit that 

comes from the early post-injury treatment is unques-
tionable (Sykova et al. 2006, Kumar et al. 2009). 

Amyotrophic Lateral Sclerosis (ALS) is the second 
most common neurological disorder in which stem-
cell-based therapy is currently applied. This is incur-
able and devastating disease that targets preferentially 
motoneurons but also the other cellular components of 
CNS tissue. Mesenchymal stem cells, when applied 
locally, can modulate this pathological microenviron-
ment in the manner that protects existing motoneurons 
by referred above, ”bystrander” mechanism, involving 
release of the variety of cytokines and grow factors.  
The therapeutic cells usually are delivered intraparen-
chymally into spinal cord or in the brain motoneuron-
rich regions or in less harmful manner by the lumbar 
intra-thecal infusions. Since in this later case, injected 
cells would sink downward rather than climb up to 
achieve lesioned brain/stem regions, some groups 
(Baek et al. 2012) introduced them into ventricular 
system via an Ommaya reservoir. Unfortunately, and 
despite of promising expectations based on the results 
from animal experiments (Forostyak et al. 2011, 
Uccelli et al. 2012), the vast majority of ongoing clini-
cal trials (Chen et al. 2012, Mazzini et al. 2012) showed 
rather discouraging results. In spite of the only minor 
adverse effects, such as transient pain, fever, headache 
or dyspnea, the most of authors did not notice any 
meaningful clinical improvement after the treatment 
(Mazzini et al. 2010).    

In contrast to these scarcely reported benefits for 
ALS patient MSC-based therapy of multiple sclerosis 
(MS) seems to be much more promising. Multiple scle-
rosis is an autoimmune, slowly-progressing neurode-
generative disease caused by infiltration of the autore-
active T cells crossing the blood-brain barrier and 
triggering a cascade of pathological, inflammatory 
reactions (Compston and Coles 2008, Courtney et al. 
2009). Currently, treatment of MS relays mainly on 
immunosuppression combined with monoclonal anti-
bodies and steroid therapies. The immunomodulatory 
effects induced by MSCs transplants might thus under-
current therapeutic benefits observed in treatment of 
EAE (the experimental allergic encephalomyelitis, a 
classical animal model of the disease), as well as in MS 
patients. Preclinical experiments have confirmed that 
immunosuppression mediated by MSCs may lead to 
inhibition of lymphocytes proliferation, reduction of 
associated inflammation and protection of axons in the 
involved areas (Gerdoni et al. 2007, Kassis et al. 2008). 
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Karussis and coauthors (2010) demonstrated increased 
number of regulatory T cells and decreased prolifera-
tion of lymphocytes at 24 hours after intrathecal or 
intravenous MSCs transplantation. Unfortunately, 
along with the introduction of the most effective 
intrathecal MSC administration, several adverse side 
effects, such as iatrogenic meningitis (Mohyeddin et al. 
2007), encephalopathy, seizures (Yamout et al. 2010) 
and fever (Karussis et al. 2010) started to be noticed. 

For Parkinson’s as well as Huntington’s neurodegen-
erative diseases (PD and HD) the cell replacement thera-
py has been encouraged in the past by promising results 
reported after transplantation of neural tissues obtained 
from post-mortem embryos (Lindvall at al. 2004). This 
reports evidenced possibility of functional restoration of 
the diseased, degenerating human brain. Unfortunately, 
during following post-mortem studies performed at 10 
years after the first transplantations, Li and colleagues 
(2008) described the α-synuclein-positive Lewy bodies 
being classical hallmarks of neurodegeneration, in the 
engrafted donor neurons.  This observation has ques-
tioned the paradigm of a real cell replacement by show-
ing, that the disease can be propagated from the host 
pathological microenvironment to the engrafted cells. 
Furthermore, it is also apparent, that recently reported by 
Venkataramana and others (2010) substantial functional 
improvement and long-term (3 years) period safety after 
autologous BM-MSCs transplantation, would be rather a 
matter of ”bystander” neuroprotective effects than the 
direct replacement of the degenerated neurons. 

Due to its fatal prognosis, Huntington’s disease (HD) 
is considered as another preferential target for experi-
mental stem cell-based therapy. Preclinical experi-
ments demonstrated that autologous transplantation of 
bone marrow stem cells can substantially ameliorate 
dysfunction and reduce disease-connected memory 
deficits in animal model of HD (Lescaudron et al. 
2003, Jiang et al. 2011). Moreover, delivery of glial 
derived neurotrophic factor (GDNF) or brain derived 
neurotrofic factor (BDNF) has been shown to increased 
neuronal survival and reduce neurological symptoms 
of the disease (Kells et al. 2004, Gharami et al. 2008). 
Therefore, researchers invented to combine both of 
these protective factors by using genetically engineered 
and neurotrophin over-expressing MSCs as a vehicle to 
deliver these cytokines directly into damaged tissue 
(Olson et al. 2012, Sadan et al. 2012). In spite that the 
obtained effects which confirmed substantial advan-
tages of this strategy in HD animal models, similar 

therapies have never been yet performed in the clinic.
Alzheimer’s disease (AD) is a devastating neurode-

generative systemic disorder characterized by a pro-
gressive loss of neurons and synapses in different brain 
regions. In the effect of systemic dysfunction of mainly 
cholinergic transmission a steady decline of memory 
and cognitive brain function is observed and victims 
become demented and die prematurely. To date, the 
therapy in AD is only palliative and involves mainly 
the drugs designed to increase cerebral acetylcholine 
levels. Thus, MSCs therapy becomes a very attractive 
option, the more so as their substantial effectiveness 
has been already confirmed in studies on animals. 
Interestingly, the most effective mode of treatment, 
resulting in the extension of the lifespan, reduction of 
Aβ levels and β-amyloid related pathology consisted i.v. 
infusion of human cord-blood derived mononuclear 
cells (Ende et al. 2001, Nikolic et al. 2008, Darlington 
et al. 2012). Also good results have been obtained by 
combination of BM-derived mononuclear transplanta-
tion with concomitant i.v. administration of various 
protective small molecules like lipoprotein ApoE or 
cholinesterase inhibitor phenserine (Zeitouni et al. 
2008). Although, basing on this encouraging experi-
mental data several clinical MSCs trials were currently 
designed and registered (ClinicalTrials.gov), none of 
them yet finished by publication of the results.

Current attempts were also made to introduce mes-
enchymal stem cells treatments in combination with 
anti-cancer therapy (Nakamura et al. 2004, Loebinger 
et al. 2009, Grisendi et al. 2010, Zolochevska et al. 
2012) especially in a treatment of malignant brain 
tumors like gliomas. Glioblastoma is an aggressive 
primary tumor with poor prognosis and a short 
patient’s survival time below of 1 year. Surgery and 
chemo- or radio-therapy gives a little profit because of 
poor tumor availability and drug penetration due to the 
presence of a blood-brain barrier. Results from pre-
clinical study of Nakamizo et al have shown that 
indeed MSCs isolated from bone marrow can migrate 
in preference into the glioma tumor site after their 
carotid artery infusion (Nakamizo et al. 2005). 
Thereafter, investigators applied genetically modified 
MSCs as a vehicle to deliver INF-β (Interferon β) 
selectively into the tumor. This treatment significantly 
slow-down growth of gliomas and increased survival 
of the tumor-bearing mice in comparison to the control 
group giving a hope for development of similar thera-
pies in human clinic.
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CONCLUSIONS

MSCs are a distinct type of somatic stem cells 
which unique therapeutic properties have been well 
documented in various animal models and human 
clinical studies.  Basing on these promising data MSCs 
appear to be reliable and relatively safe supporter of 
CSN repair processes. However, even if MSCs could 
be considered as being essentially non-harmful, the 
clinical follow up period is still too short to exclude 
possibility of a later appearance of other unwanted side 
effects, including tumor formation (Miura et al. 2006, 
Armesilla-Diaz et al. 2009, Josse et al. 2010, Jeong et 
al. 2011, Suzuki et al. 2011). For this reason only an 
autologous cell therapy without extensive manipula-
tions in vitro would be considered as a risk devoid and 
thus recommended for clinical use.  Furthermore, opti-
mizing the way of MSCs delivery by more precise 
transplant location, timing and mode of cell injection 
would further improve the efficiency of this innovative 
therapy. In effect, an optimal, tightly controlled system 
for MSCs isolation and expansion should be designed 
as a unified standard procedure in neurological clinic.
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