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INTRODUCTION

Stem cell therapy is a promising strategy for over-
coming the limitations of current treatment methods. 
The efficacy of stem cell transplantation has been 
shown in multiple animal models of human disease, as 
well as by the clinical success in some fields, such as 
hematology (Hacein-Bey-Abina et al. 2010) or connec-
tive tissue restoration (Burt et al. 2009). However, in 
the case of non-regenerating organs, such as the heart 
or the brain, despite promising outcomes in small ani-
mals, clinical trials, to date, have failed to show a sat-

isfactory effect. While the stem cells were proven to 
exert some positive effect due to cell replacement 
mechanisms, immunomodulation, or trophic effects, 
these effects may still require adjustment/modification 
to realize their full therapeutic potential (Bersenev and 
Levine 2012, Gage 2012).

Advances in stem cell and molecular biology have 
opened up new avenues for manipulating the fate and 
the functionality of stem cells. Genetic engineering, 
with an abundance of methodologies to induce gene 
expression in a precise and well-controllable manner, 
is particularly attractive. 

There are several methods that enable gene delivery 
to eukaryotic cells. The first group includes typically 
the non-integrating techniques with transient expres-
sion, such as plasmid DNA and mRNA transfection, 
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minicircles and the Sendai virus based methods 
(Gracey Maniar et al. 2013). The second set of methods 
grouped typically the genome-integrating methods 
with stable expression, based on lentiviruses, retrovi-
ruses and site-specific recombinases. Both approaches 
have advantages and disadvantages and the selection 
of method should be determined by a careful evalua-
tion of unique experimental needs and/or clinical con-
ditions. Advanced genetic engineering techniques 
allow very specific genetic manipulations including 
targeted gene insertion, gene removal, or gene target-
ing. The introduction of a new gene followed, by its 
expression, proved highly practical, thus encouraging 
development in this field and a methodology for gene 
introduction that is impressively effective and straight-
forward, often with off-the-shelf, kit-based solutions. 

With these methods, it is possible to engineer the 
cells and introduce completely new, specific, and well-
defined features. It was recently shown that cells engi-
neered by the insertion of genes encoding adhesion 
molecules dramatically increased the homing of glial 
progenitors to the brain after intracarotid transplanta-
tion (Gorelik et al. 2012). Insertion of gene-encoding 
growth factors is another example of a practical appli-
cation for genetic engineering, potentiating the thera-
peutic effects of stem cells (Janowski and Date 2009). 
However, it should be emphasized that these studies 
were performed in animal models, and the clinical 
application of genetically engineered stem cells remains 
challenging and requires further investigation for bet-
ter understanding and the control of genomic integra-
tion and transgene expression. Due to the risks associ-
ated with the viral vector-based methods (i.e. mutagen-
esis, aberrant transgene expression, and immunogenic-
ity), integration-free solutions (or rather with a low 
probability of integration) have been solicited for 
clinical use.

Still, many of the integration-free methods require 
transfection agents, an additional means of enabling 
the shuttling of genetic material into the cell. This can 
be accomplished with various physical and chemical 
methods, but all are associated with some level of tox-
icity, which cannot be ignored. The expression time-
course with the integration-free methods is usually 
short-lived, with natural silencing, but that silencing of 
the transgene may be considered an advantage in some 
applications. By using an appropriately selected meth-
od for cell engineering, ranging from stable viral 
transduction, DNA transfection, mRNA transfection, 

or protein introduction, it is now possible to select a 
technique that precisely suits the particular applica-
tion, with an optimal expression time-course in stem 
cells and an acceptable balance of benefits and risks. 
In this review, we will characterize different tech-
niques for expressing the transgene, with a focus on 
maximizing the therapeutic utility of stem cells. We 
will also discuss genetic engineering of stem cells 
from the perspective of clinical applications. 

METHODS FOR GENETIC ENGINEERING 
BASED ON VIRAL VECTORS

The application of viral vectors for gene delivery is 
based on their natural ability to infect the cells. Their 
use as a relatively safe molecular biology tool was 
made possible by the modification of the viral genome 
by the deletion of some critical coding sequences to 
prevent spontaneous replication in target cells. 
Introducing a gene of interest as a component of the 
viral genome enables highly efficient shuttling of the 
payload into the cells and its long-term expression. 
Currently, viruses are commonly used as vehicles with 
both in vitro and in vivo delivery paradigms. 
Retroviruses, lentiviruses, and adeno-associated virus-
es are the three main integrating virus types that are 
used for a transduction of mammalian cells for long-
term transgene expression. Adenoviruses and Sendai 
viruses are non-integrating types of virus that result in 
a transient expression of the transgene (Fig. 1). 

Integrating viral vectors

Retroviral vectors

Retroviruses consist of a capsid with double-strand-
ed RNA and reverse transcriptase and a lipid envelope 
with receptor binding proteins. While retroviral vec-
tors infect proliferating cells with high efficiency, 
post-mitotic cells, such as neurons or myocytes, are 
not susceptible, which limits the spectrum of cells for 
targeting. The process of infection is initiated by the 
viral envelope glycoproteins binding to the cell’s sur-
face receptors. These receptors determine the infection 
specificity; for example, the human immunodeficiency 
virus type 1 (HIV1) binds only to lymphocytes and 
macrophages expressing the CD4 receptor (Dalgleish 
et al. 1984). After binding to the receptor, the external 
layer of the envelope integrates with the cellular mem-
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brane and the virus is internalized, releasing the con-
tents of the capsid into the cytoplasm. Reverse tran-
scriptase is a hallmark of retroviruses, and it is neces-
sary to rewrite viral RNA into DNA for its integration 
into the host genome. Following integration, viral 
genes, including the insert, are expressed. 

Retroviral transduction of actively dividing cells is 
highly efficient, with a fairly large-capacity genetic 
payload of up to 8 kb. The integration of viral DNA into 
a host genome results in sustained expression of the 
gene of interest. However, long-lasting expression in 
some cell types, including hematopoietic (HSC) and 
mesenchymal (MSC) stem cells, has proved difficult 
(Zhang et al. 2002). It has been shown that the silencing 
of a viral transgene intensifies during cell differentia-
tion (Laker et al. 1998). One of the suggested mecha-
nisms for this is the methylation of a viral promoter 
sequence after its integration into the host genome 
(Challita and Kohn 1994). Another important feature of 
the retroviral vectors, with implications for the safety of 
genetic engineering, is the random integration of a 
transgene into the host genome. This can lead to the 
disruption of the host proto-oncogenes and tumorigen-
esis. An example of that scenario is a clinical trial per-
formed between 1999 and 2002 in patients with X-linked 

severe combined immunodeficiency (SCID-X1) 
(Hacein-Bey-Abina et al. 2010). In that trial, CD34+ 
bone marrow cells (Huang and Terstappen 1994) were 
isolated and transduced in vitro with Moloney murine 
leukemia virus vectors carrying a cytokine receptor 
common γ chain (Hacein-Bey-Abina et al. 2010). 
Engineered, autologous cells were transplanted back 
into patients. The result of this gene therapy was posi-
tive, with the successful correction of an immunodefi-
ciency in eight of nine patients. Thus overall, the study 
considered successful. Unfortunately, over the follow-
ing nine years, four of the treated patients developed 
acute leukemia caused by the insertional oncogenesis 
(Hacein-Bey-Abina et al. 2010). Currently, retroviral 
vectors with some improved safety features are exten-
sively used in clinical trials, accounting for 19.7% (370) 
of all vectors clinically used for gene therapy (http://
www.wiley.com//legacy/wileychi/genmed/clinical/). 

Lentiviral vectors

Lentiviruses are a subclass of retroviruses with a 
similar structure, including double-stranded RNA as 
their genetic material, reverse transcriptase, and vec-
tors with a maximum payload of up to 9 kb. An impor-

Fig. 1. Viral vectors can be divided into two types: integrating and non-integrating vectors. Most vectors require the presence 
of specific receptors on the cell surface. After binding to the receptors, the content of the viral capsid is released into the 
cytoplasm. In the case of integrating vectors, viral DNA translocates into the nucleus and integrates into the host genome. 
The genetic material of non-integrating vectors, in contrast, remains in the cytoplasm in an episomal form.
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tant advantage of the lentiviral vectors is their ability 
to efficiently infect the non-dividing cells (Naldini et 
al. 1996). The integration of lentiviruses, similar to 
retroviruses, is random; however, it has been shown 
that, with targeted mutations of the integrase gene, it 
was possible to achieve episomal forms of the vector 
without the risk of a non-specific integration of the 
transgene (Apolonia et al. 2007). 

The adaptation of lentiviruses as gene delivery 
vectors, with the minimized risk of viral replication 
in target cells, was achieved by the deletion of viral 
structural genes and by placing these genes on sepa-
rate DNA-helper plasmids. In addition to the struc-
tural genes of the virus, helper plasmids may also 
include modified gene coding envelope proteins 
responsible for the interaction with cellular surface 
proteins, such as the vesicular stomatitis glycopro-
tein (VSV-G) or RD114 (Bell et al. 2010). This 
enables expanding the variety of potential host cells 
that can be infected. All helpers, as well as trans-
gene-carrying viral backbone plasmid, are co-trans-
fected into packing cells for the assembly of fully 
functional, yet replication-deficient virions. The 
safety of lentiviruses was further improved by the 
generation of self-inactivating vectors (SIN). SIN 
were created by Hiroyuki Miyoshi in 1998, based on 
HIV1 (Miyoshi et al. 1998). SIN were developed by 
the deletion of viral enhancer and promoter sequenc-
es in the U3 region of the 3’ LTR sequence. This 
modulation prevents the replication-competent virus 
mobilization.

Lentiviral vectors, due to their transduction effi-
ciency toward non-proliferating or slow proliferating 
cells, have proven to be a particularly useful tool for 
the engineering of stem cells. It has been shown that, 
at optimized conditions, a lentiviral transduction does 
not have a significant detrimental effect on stem cells 
with an example of rat MSC as their viability or dif-
ferentiation potential was unaltered (McGinley et al. 
2011). A comparative study showed that a single 
transduction of cynomolgus stem cells by an SIN, 
carrying the enhanced green fluorescent protein 
(eGFP) gene, resulted in higher efficacy compared to 
the retroviral method (Asano et al. 2002). The SIN 
eGFP expression persisted for months and was not 
altered by the embryoid body formation (Asano et al. 
2002). Human embryonic stem cells (ESC) transfect-
ed by SIN carrying a transgene encoding GFP retain 
green fluorescence following co-culture with S17 

mouse stromal feeders and the differentiation into 
CD34+ cells (Ma et al. 2003). The transduction of 
human CD34+ progenitors with SIN yielded 20–40% 
efficiency (Hanazono et al. 2003) (Table I), and was 
similar to that achieved in rat MSC transduced with 
GFP (35–40%) (McGinley et al. 2011). It has been 
shown that the transduction efficiency can be signifi-
cantly improved by pseudotyping of the lentiviral 
vectors with the fusiogenic envelope G glycoprotein 
of the vesicular stomatitis virus (VSV-G), which 
results in 90–98% of positive cells and long-lasting 
expression (McGinley et al. 2011). An additional fac-
tor that affects the efficiency of lentiviral transduc-
tion is the number of passages. For rat MSC, the dif-
ference between p1 and p5 was about 8% (McGinley 
et al. 2011). Another important element with a direct 
effect on gene expression is the methylation of a 
transgene promoter. For some vectors, the supplemen-
tation with demethylation factors, such as 5-aza-2`-
deoxycytidine or Trichostatin A, increased efficacy. 
The advantage of lentiviruses compared to retrovi-
ruses was highlighted in a study on the engineering of 
CD34+ progenitors. For the retroviral transduction, 
the standard culture protocol had to be modified with 
the addition of cytokines to boost proliferative activ-
ity. This led to the decline of proliferation capacity, 
probably due to the differentiation of CD34+ cells and 
the loss of multipotency (Dunbar et al. 2001). This 
problem does not exist in the case of lentiviral vectors 
since they can infect non-dividing cells (Schambach 
et al. 2013). 

Adeno-associated Viruses (AAV)

AAV are small, non-pathogenic, single-stranded 
DNA viruses. Their nomenclature is due to their 
dependence on an adenovirus to replicate. AAV inte-
grate specifically into the host genome on chromo-
some 19. The place of their integration is called 
AAVS1. After the deletion of the integration target 
gene Rep68 or Rep78, the DNA of AAV remains in an 
episomal form. AAV penetrate cells by endocytosis 
after binding to the integrin αVβ5 and FGF4 receptor. 
AAV can infect a broad spectrum of cells, although the 
particular serotype is very specific toward selected 
cell types. This feature makes these vectors very good 
candidates to use in gene therapy (Wright 2009). The 
transduction of human bone marrow or umbilical cord 
blood-derived MSC resulted in high efficiency and the 



Stem cell genetic engineering in therapy 5 

expression of the transgene was sustained during three 
months after transplantation into rat brain, without a 
detrimental effect on their differentiation (Kim et al. 
2007). An important advantage of the AAV is their low 
immunogenicity (Zaiss et al. 2002).

Another subtype of viral vectors developed from 
adenoviral vectors is the helper-dependent adenoviral 
vectors. These vectors are characterized by low immu-
nogenicity, and by a very high (up to 100%) transduc-
tion efficiency reported for human and mouse ESC, 
without a negative effect on their pluripotency. 
Moreover, these vectors enable an efficient (approxi-
mately 45%) gene targeting via homologous recombi-
nation in ESC (Suzuki et al. 2008). 

Non-integrating viral vectors

Adenoviral-vectors (AV)

Adenoviruses are a non-envelope virus family with 
a double-stranded DNA as genetic material. 
Adenoviruses do not pose a serious danger for humans 
and induce only mild upper respiratory infection or 
food poisoning. The lack of pathogenicity is their great 
advantage. They are composed of icosahedral capsids 
and protein fibers situated on their surface. The func-
tion of the surface elements is to recognize and bind to 
membrane receptors of mammalian cells. These recep-
tors belong to the Coxsackie family (CAR). The 
expression level of the CAR is crucial for the efficacy 
of cell infection. The integrins are also involved in this 
process. The viral particles undergo phagocytosis and 
the virus is internalized and routed to the endosome. 
The endosomes decompose, and a viral capsid disinte-
grates and releases adenoviral DNA into the cyto-
plasm. Adenovirus rarely integrates into the host 
genome, but rather, usually stays in the cytoplasm in 
an episomal form (Stadtfeld et al. 2008). This protects 
the host from the risk of an insertional mutagenesis, 
but the gene expression is transient. The maximum 
payload of adenovirus is much larger compared to the 
previously described types of viruses, and it can reach 
up to 36 kb (Alba et al. 2005). Human bone marrow-
derived MSC and human HSC provide inherently low 
transduction efficiency for adenoviral vectors, due to 
the low level of the CAR receptors on their surface 
(Carson et al. 1999). One possible solution for this 
problem is to use adenoviral vectors with modified 
capsid fibers. This technique was developed by Gall 

and coworkers (1996). The transgene expression in 
MSC with an inhibited proliferation activity endured 
for up to 36 days. Similar experiments performed with 
dividing MSC resulted in a loss of the transgene 
expression after 21 days (Knaän-Shanzer et al. 2005). 
It demonstrates that the episomal DNA of an adenovi-
ral vector is gradually lost during cell divisions, and 
that feature may be an advantage when only a transient 
expression of a transgene is desired. An improvement 
in the transduction efficiency of the AV has also been 
achieved with brief exposure to ultraviolet light (Ito et 
al. 2004). Reports about the effect on the differentia-
tion capacity of stem cells engineered with AV are 
inconsistent. Some studies have reported no influence, 
including the preserved capacity of human MSC to 
differentiate into adipocytes or osteoblasts (Knaän-
Shanzer et al. 2005), and some have reported detri-
mental effects (Zaldumbide et al. 2012). 

A significant disadvantage of the AV is their high 
immunogenicity (Yang et al. 1994). It has been shown 
that the infection of host cells by the AV in vivo results 
in the activation of the antigen-presenting cells, CD4+ 
T-helper cells and CD8+ cytotoxic T cells. This effect 
is triggered by both the expression of the transgene 
protein, as well as the presence of a viral capsid protein 
(Yang et al. 1994). This leads to the degradation of the 
viral particle and the silencing of transgene expression. 
However, bone marrow-derived rat MSC transfected in 
vitro by an adenoviral vector, and then transplanted 
intravenously to the rat, did not cause an inflammatory 
response (Treacy et al. 2012). Another possible strate-
gy to overcome the immunogenicity problem is to co-
transduce adenoviral vectors with a second adenoviral 
vector carrying the gene for hem oxygenase-1. This 
enzyme prevents the development of an acute inflam-
mation state through an unknown mechanism 
(McCarter et al. 2003). 

Sendai Virus Vectors (SVV)

Sendai viruses belong to the paramyxviridae family 
with negative-strand RNA. They cause severe respira-
tory disease in mice, but are not pathogenic for humans 
(Lamb and Kolakofsky 2001). Similar to the adenovi-
ruses, they replicate their genome in the cytoplasm 
without going through the DNA phase, thus precluding 
the integration and altering of cellular DNA. SVV are 
characterized by high transduction efficiency, and 
very rapid onset of expression, with the maximum 
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reached as early as 24 hours after infection (Hosoya et 
al. 2008). Due to these important advantages, SVV are 
being successfully used for cellular reprogramming 
and the generation of induced pluripotent stem cells 
(iPS) (Fusaki et al. 2009).

The viral transduction of stem cells is one of the 
most efficient gene delivery techniques; however, 
there are unfortunately still many problems associated 
with the use of viruses. The most important of these 
problems are high immunogenicity of the vectors and 
the risk of insertional mutagenesis. The last decade has 
brought significant progress in this field, with improve-
ments in the safety of viral vectors to a level acceptable 
for clinical application (Candotti et al. 2012, Schambach 
et al. 2013). Nevertheless, further research effort is 
needed to maximize the safety and the therapeutic util-
ity of these tools. 

METHODS FOR GENETIC ENGINEERING 
BASED ON NON-VIRAL METHODS

Successful genetic engineering can be achieved with 
several non-viral methods. Recently, these methods 
have gained popularity due to their low immunogenic-
ity (both intracellular and systemic) (Dewey et al. 1999, 
Gul-Uludag et al. 2012), a nearly unlimited size of the 
transgene (Raimondi 2011), and well-established, 
straightforward procedures. However, the disadvantage 
of these techniques is their relatively low efficiency 
compared to viral transduction. Based on transfection 
strategies, the non-viral based methods can be divided 
into two main groups: physical (Fig. 2) and chemical 
(Fig. 3). Physical methods include microinjection (Han 
et al. 2008), electroporation (Gehl 2003), microporation 
(Ziv et al. 2009), nucleofection (Gresch et al. 2004), 
magselectofection (Sanchez-Antequera et al. 2011), and 
sonotransfection (Otani et al. 2009). Chemical methods 
are based on the application of chemical compounds 
that facilitate the internalization of a genetic material 
and include calcium phosphate (Cao et al. 2011), cat-
ionic lipids (Cho et al. 2012), cationic polymers (Jeon et 
al. 2012), cationic peptides (Kim et al. 2010), cationic 
polysaccharides (Thakor et al. 2011), and inorganic 
nanomaterials (Kim et al. 2012). 

Diversity of genetic material 

Among DNA-based constructs, plasmids containing 
one or more therapeutic genes find widespread use. 

After transfection into the cell, exogenous plasmid 
DNA must reach the nucleus to be transcribed, and 
synthesized mRNA diffuses back to the cytoplasm for 
translation. The limitation of this approach is a maxi-
mum estimated insert size of 20 kb (Lodish et al. 
2000).

Another group of DNA constructs are the artificial 
chromosome technologies. For stem cell transfection, 
YAC (yeast) and BAC (bacterial) systems have been 
used (Lamb and Gearhart 1995, Kang and Hebert 
2012). The development of new generations of artifi-
cial chromosomes, such as MAC (mammalian) and 
HAC (human), where an artificial chromosome does 
not integrate into the host genome but is maintained in 
the nucleus as an extra chromosome, enables almost 
unlimited possibilities of introducing multiple genes 
(Lindenbaum et al. 2004, Kazuki and Oshimura 
2011).

Another approach is based on the phiC31 integrase, 
which is a site-specific recombinase catalyzing genom-
ic integration between two DNA recognition sequenc-
es: attB containing plasmids and a pseudo attP site 
within the host genome, leading to permanent trans-
gene expression (Keravala et al. 2008). This technolo-
gy was used in trials that explored the engineering of 
human cardiac stem cells (Lan et al. 2012).

An alternative vehicle for gene delivery is a “Sleeping 
Beauty” technology (SBTS). This approach is based on 
the synthetic transposase gene, encoding an enzyme 
that catalyzes genomic transposon insertion. The 
transposase gene was reactivated from an evolutionary 
sleep, hence the name “sleeping beauty,” as accumu-
lated mutations had made it inactive. Salmonid fish-
derived genetic elements allowed the reactivation of 
the transcriptional activity of the transposase gene 
(Ivics et al. 1997). In practice, SBTS requires a vector 
containing a transposon sequence and a second vector 
with the transposase gene. The disadvantage of this 
method is a random genomic integration and the 
nuclear presence of an active form of the transposase 
enzyme, which also carries the risk of a native dor-
mant transposon activation, dispersed throughout the 
host genome. Despite these shortcomings, SBTS has 
been used as an effective and stable transfection meth-
od for HSC (Hollis et al. 2006, Izsvak et al. 2009), and 
for iPS generation (Muenthaisong et al. 2012). The 
transposon-based technology advanced with the devel-
opment of new transposase genes, including the insect-
derived transposase piggy BAC, was utilized to gener-
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ate iPS (Woltjen et al. 2011), and the medaka-derived 
Tol2 transposase was applied to the engineering of 
neural precursors (Yoshida et al. 2010).

In addition to the DNA-based methods, genetic 
engineering utilizing RNA is highly attractive. To 
achieve a transient presence of therapeutic proteins 
in the stem cells, the genes of interest can be tran-
scribed in vitro into mRNA and introduced into the 
cytoplasm of target cells. The exogenous mRNA is 
already translationally active, and thus, nuclear 
transport is not required. Another advantage of this 
method is that exogenous mRNA cannot be inte-
grated into the genome, so there is no risk of an 
insertional mutagenesis. In addition, due to the high 
transfection efficiency, it is possible to efficiently 
transfect cells that are resistant to transfection 
(Wiehe et al. 2007). However, it must be empha-
sized that the mRNA transfection is temporary and 
gradually declines over a period of two-to-three 
weeks, as mRNA is unstable and vulnerable to 
intracellular degradation. To circumvent this limita-
tion, new strategies have been employed to stabilize 
exogenous mRNA molecules in the cytoplasm 
(Hayashi et al. 2010). However, a short-lived gene 
expression may actually be an advantage.

In addition to direct gene expression based on the 
induction of DNA or mRNA, it is possible to apply 
regulatory RNA sequences to regulate native gene 
expression (Liu et al. 2012, Snead and Rossi 2012). 
These short, non-protein-coding RNA sequences, 
miRNA and siRNA, interact with mRNA molecules, 
causing the inhibition of their translation and posterior 
cleavage, which results in silencing of gene expression. 
The use of this solution permits the silencing of select-
ed genes, which causes some beneficial biological 
effects (Guzman-Villanueva et al. 2012).

Physical transfection methods

Electroporation

Electroporation is based on the application of an 
external electrical field to the cells suspended in an 
adequate buffer. In practice, cells are exposed to a 
series of short, high electric pulses, which results in 
a transient destabilization of the cell membrane and 
the formation of micropores. Thus, molecules pres-
ent in the extracellular medium enter the cells 
through the micropores according to the concentra-

tion gradient. In the case of DNA delivery, nega-
tively charged DNA molecules enter the cells on the 
cathode side of the cell and migrate inside the cell 
body toward the anode (Gehl 2003). Multiple data 
indicate the utility of this method for the enhance-
ment of stem cell functionality, however, according 
to other reports electroporation is considered as a 
method with low transfection efficiency and high 
cell death (Nakashima et al. 2005, Cao et al. 2010, 
Lim et al. 2010). On the other hand, it has been 
shown that electroporation-mediated gene delivery 
was effective in improving the migration capacity of 
MSC (Ryser et al. 2008, Park et al. 2011) and in the 
induction of cellular differentiation into various tis-
sues, such as bone (Ferreira et al. 2012) and carti-

A

B

C

D

E

Fig. 2. Schematic representation of physical transfection 
methods (dark blue – nucleus; light orange – cytoplasm; 
black strings – genomic material; blue arrows indicate the 
direction of genetic material migration). (A) electroporation, 
(B) microporation, (C) nucleofection, (D)  sonotransfection, 
and (E)  microinjection. 
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lage (Kim and Im 2011). In one study, Park et al. 
used electroporation to introduce a DNA plasmid 
encoding the C-X-C chemokine receptor type 4 
(CXCR4) gene to improve the homing of human 
MSC cells in glioma patients (Park et al. 2011). A 
similar strategy has been used to introduce mRNA 
for the CXCR4 protein into MSC (Ryser et al. 
2008). 

Microporation

Microporation, a variant of the classic electropo-
ration, is a process that occurs in a small, confined 
space, allowing the controlled electroporation of 
single cells (Ziv et al. 2009). This approach was 
applied to the delivery of eGFP and brain-derived 
neurotrophic factor (BDNF) DNA constructs to 
human umbilical cord blood-derived MSC, and it 
was reported that microporation had the highest 
efficiency of all the compared transfection methods 
(Lim et al. 2010).

Nucleofection

Nucleofection is another modification of the elec-
troporation method that is geared to deliver genetic 
material (DNA or mRNA) directly into the nucleus 
(Gresch et al. 2004, Flanagan et al. 2011). This 
method proved effective with many hard-to-trans-
fect cell types, including MSC, resulting in higher 
transfection efficiency compared to conventional 
electroporation (Nakashima et al. 2005), and was 
shown not to alter the properties of MSC (Aluigi et 
al. 2006). In addition to the DNA-based delivery, 
nucleofection was also effective for mRNA trans-
fection, thus opening new possibilities for a non-
viral, safe, transient, and highly efficient expression 
of exogenous proteins (Wiehe et al. 2007, 2012). 
This approach satisfied good manufacturing prac-
tice conditions and is very attractive for application 
in future clinical trials.

Sonotransfection

Sonotransfection utilizes ultrasonic waves, and 
the principle of this technique is similar to that of 
electroporation, with a local sound wave introduc-
ing the transient cell membrane destabilization with 
local cavitation. When the cavitation bubbles col-

lapse, the resulting forces lead to interruption of the 
local cell membranes and the internalization of 
DNA present in the extracellular environment 
(Nakashima et al. 2003, Rome et al. 2008). The 
same technique can be used for transfection with a 
small interfering RNA (siRNA), as exemplified by 
the silencing of the phosphatase and tensin homolog 
in MSC (Otani et al. 2009). 

Microinjection

Microinjection is yet another transfection tech-
nique that enables the precise delivery of DNA into 
individual cells. Han et al. compared two tech-
niques for the direct injection of DNA into cells: the 
classic microinjection method based on a needle of 
1 µm diameter, and nanoinjection with a 200 nm 
diameter nanoneedle. Both techniques effectively 
delivered DNA into the cell nuclei of MSC (Han et 
al. 2008).

Chemical transfection methods

Calcium phosphate-based transfection

Calcium phosphate-based transfection uses the co-
precipitation of positively charged Ca2+ cations and 
negatively charged DNA (Jordan and Wurm 2004). 
The modification of this technique with the encapsula-
tion of DNA into calcium phosphate nanoparticles 
resulted in an improved transfection efficiency with 
the successful expression of the tumor growth factor 
beta-1 (TGF-β1) in MSC, leading to enhanced chon-
drogenesis (Cao et al. 2011). 

Cationic lipid-based transfection

Cationic lipid-based transfection is, by far, the most 
popular chemical transfection technique. Cationic lip-
id-based transfection is called lipofection and is based 
on the use of nano-sized lipoplex particles. Lipoplexes 
can be created by the spontaneous self-assembly of 
cationic liposomes and DNA (Masotti et al. 2009). 
Generally, the liposomes contain an amphiphilic cat-
ionic lipid linked to a hydrophobic domain via a con-
nector. Dioleoylphosphatidylethanolamine (DOPE) 
and cholesterol are employed as neutral lipids (Ciani et 
al. 2007, Pozzi et al. 2012). The DNA-lipoplex aggre-
gates bind to the cells by the electrostatic interactions 
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between the positively charged complexes and the 
negatively charged cell membrane surface, followed by 
endocytosis (Ruponen et al. 2001, Rejman et al. 2006). 
It has been shown that DNA release into the cytoplasm 
occurs due to the endosome membrane destabilization 
elicited by the presence of cationic lipids (Simoes et al. 
1999). The commercially available lipoplex compound, 
lipofectamine 2000, was used to introduce the fork-
head box A2 (Foxa2) gene to MSC to enhance the 
regeneration of damaged liver tissue (Cho et al. 2012). 
Lipofection has also been applied for the transfection 
of siRNA and miRNA into stem cells, including trans-
fection of miR-181a into MSC for the modulation of 
cell proliferation, immunosuppressive properties, and 
myogenic differentiation (Cai et al. 2012, Liu et al. 
2012). The efficiency of lipofection-based methods is 
highly cell-type dependent, and ranges from about 
20% for neural stem cells (NSC) (Tinsley et al. 2004) 
to over 90% for mouse ESC (McLenachan et al. 2007). 
The efficiency of RNA transfection into MSC is high 
and oscillates between 80–90% (Rejman et al. 2010, 
Yu et al. 2012).

Cationic polymers

Cationic polymers, in contrast to the cationic lip-
ids, lack the hydrophobic groups, and thus, are inca-
pable of endosomal membrane destabilization. 
However, the new generations of cationic polymers, 
such as polyethylenimine (PEI) and polyamidoamine 
dendrimers (PAMAM), provide the opportunity for 
endosomal escape, and result in the cytoplasmic tar-
geting of delivered DNA (Wen et al. 2012). Cationic 
polymers consist of natural DNA-binding molecules, 
such as PEI, PAMAM, and Poly(L-lysine) (PLL). 
PLL and PEI are among the most widely tested com-
pounds for gene delivery. Several reports claim the 
use of cationic polymers for transgene delivery to 
MSC. For instance, PAMAM-based transfection is 
reportedly a tremendous transfection method, with 
elevated capacity and low cytotoxicity (Santos et al. 
2010). The examples of PEI-based transfection for 
MSC include Bcl-2 gene overexpression in a myocar-
dial infarction model (Li et al. 2007), induced expres-
sion of type I interferon IFNα (Krause et al. 2011), or 

A B

C D

Fig. 3. Schematic representation of chemical transfection methods (dark blue – nucleus; light orange – cytoplasm; purple 
circles with bright inner – endosomes; black strings – genomic material; blue arrows indicate the direction of genetic mate-
rial migration). (A)  calcium phosphate, (B)  cationic lipids, (C)  cationic polymers, peptides, and polysaccharides, and (D) 
inorganic nanomaterials.
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the Sox9 gene overexpression to enhance chondro-
genesis (Jeon et al. 2012). To further increase the 
PEI-based transfection efficiency, a photosensitizer-
induced gene delivery system was introduced by 
using the photosensitive compound, Pheophorbide-a. 
The authors claim that their approach ensures an 
effective gene delivery through the enhancement of 
cell membrane permeability, the facilitation of DNA 
internalization, and ultimately improves endosomal 
escape, leading to the subsequent enhanced trans-
gene expression (Park and Na 2012). The examples 
provided by these investigators clearly indicate that 
cationic polymers are effective transfection factors 
and should be considered promising tools for the 
genetic engineering of stem cells.

Cationic peptides

It has been observed that application of basic, argi-
nine-rich peptides results in an improved DNA deliv-
ery with low cytotoxicity (Kim et al. 2007). The 
method was based on the modification of a short argi-
nine peptide by adding the hydrophobic group of a 
palmitic acid. The peptide incubated with DNA result-
ed in the formation of complexes, which were readily 
endocytosed when applied to the in vitro cultured cells 
(Kim et al. 2010).

Cationic polysaccharides

Dextran, a naturally occurring cationic polysac-
charide, is one of the most frequently used transfec-
tion agents. Spermine-modified dextran is known 
to interact with DNA chains with high affinity 
(Bachrach 2005). The endocytosis of spermine-
dextran-DNA complexes is thought to occur through 
the sugar-chain-recognizable cell surface receptors 
(Jo et al. 2007). This transfection method also 
proved successful for the internalization of siRNA 
(Nagane et al. 2010). Another polysaccharide, pul-
lulan, complexed with spermine DNA, efficiently 
improved MSC transfection, with a toxicity signifi-
cantly lower than that of lipofection (Thakor et al. 
2011). 

Inorganic nanomaterials

Recently, it has been shown that inorganic nanoma-
terials can be used as effective DNA carriers. 

Mesoporous silica nanoparticles are porous nanostruc-
tures, and, due to their opened-channel arrangement, 
they can be loaded by small molecules (Slowing et al. 
2008). Particularly for DNA delivery, the inner tube 
structure was modified to generate a positively charged 
amine surface, electrostatically retaining negatively 
charged DNA molecules. The application of such pre-
pared particles to cell suspensions results in their effi-
cient endocytosis. It has been shown that mesoporous 
silica effectively shuttled the plasmid-containing bone 
morphogenetic protein-2 (BMP-2) gene into MSC 
(Kim et al. 2012).

CLINICAL ASPECTS

Various methods of the gene delivery have been 
employed in preclinical studies, with DNA being a 
predominant genetic material. The efficiency of non-
viral methods is highly cell-type-dependent, with the 
best results achieved in immortalized cells, which, due 
to a loss of therapeutic activity or to the danger of 
tumor development are not clinically relevant. Primary 
stem/progenitor cells demonstrate high therapeutic 
potential; however, they are often resistant to DNA-
based genetic engineering. 

An important implication for gene therapy is the 
duration of transgene expression, and, in that respect, 
there are two strategies for the introduction of trans-
genes into therapeutic cells for either transient or long-
term expression. 

The transient expression of a transgene is, in many 
cases, sufficient to achieve the desired therapeutic 
goal, and prolonged expression may actually even be 
undesirable. Traditional methods, such as plasmid 
DNA transfection, are characterized by low transfec-
tion efficiency, prohibiting wide application for pri-
mary, highly therapeutic stem/precursor cells. A high 
efficiency of gene delivery for the primary cells is 
essential, as, in most cases, the cell engineering direct-
ly precedes the stem cell transplantation, and sorting 
to enrich for positive cells may compromise the cell 
viability or function. In addition, the genetic engineer-
ing methods utilizing DNA are always associated with 
the risk of an insertional mutagenesis, including aber-
rant cell function, and, the most feared, latent onco-
genesis. Recent advances in mRNA technology, includ-
ing improved stability and translation efficiency, con-
firmed that mRNA is a versatile tool for transient gene 
expression (Kuhn et al. 2012). The mRNA results in a 
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Table I

The comparison of transfection methods efficiency depending on genetic material and cell type used

Transfection  
Method

Genetic 
Material

Efficiency (%) Cell Type Reference

Viral vectors

Lentiviral vectors RNA 25 ESC Cao et al. 2010

20–40 CD 34 + progenitor 
cells

Hanazono et al. 2003

35–40 MSC McGinley et al. 2011

Adeno-associated viruses DNA 65 MSC Kim et al. 2007

Helper-dependent adenoviral 
vectors

DNA ~100 ESC Suzuki et al. 2008

Adenoviruses DNA ~100 MSC Knaän-Shanzer et al. 2005

Non-Viral methods

Electroporation DNA 80 MSC Park et al. 2011

2 ESC Cao et al. 2010

RNA >90 MSC Ryser et al. 2008

Microporation DNA 83 MSC Lim et al. 2010

Nucleofection DNA 41 MSC Nakashima et al. 2005

RNA >90 MSC Wiehe et al. 2012

Sonotransfection siRNA 47 MSC Otani et al. 2009

Microinjection DNA 10 MSC Han et al. 2008

Nanoinjection DNA 70 MSC Han et al. 2008

Lipofection DNA 20 NSC Tinsley et al. 2004

>90 ESC McLenachan et al. 2007

RNA 80–90 MSC Rejman et al. 2010

Cationic polymers DNA 24 MSC Krause et al. 2011

Cationic peptides DNA 12 MSC Kim et al. 2010

Cationic polysaccharides DNA 100 MSC Thakor et al. 2011

Inorganic nanomaterials DNA 66 MSC Kim et al. 2012

(ESC) embryonic stem cells; (MSC) mesenchymal stem cells; (NSC) neural stem cells
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rapid onset, high gene expression that is relatively uni-
form across the treated population of cells, with grad-
ual silencing within three weeks. This characteristic 
seems ideally suited for many clinical applications. 
Using this approach, therapeutic cells can be thawed, 
transfected overnight, with a resulting high transgene 
expression the following day, and, then, are ready for 
transplantation. This strategy could be used, for exam-
ple, for the “biological navigation” of stem cell traf-
ficking. Transplanted cells usually need to extravasate 
or migrate (disperse) throughout the tissue until they 
reach the desired destination. Thus, such temporary 
mRNA-based transgene expression could be useful for 
cell guidance, with the subsequent cessation of expres-
sion limiting the risk of interference with cell differen-
tiation. This method would also be useful for rapid-
onset diseases, such as stroke or trauma, where the 
pathological processes are initially very active, with a 
gradual decrease. In such cases, stem cells could be 
transiently transfected for the expression of immuno-
modulatory trophic factors to facilitate tissue healing. 
Indeed, the mRNA method has been used already in a 
preclinical study to increase cell migration by the 
overexpression of the CXCR4 gene (Ryser et al. 
2008). 

Permanent transgene expression is more difficult to 
achieve and is potentially less safe; however, in some 
circumstances, it is still superior to the transient meth-
ods. The engineering of stem cells for the stable expres-
sion of the transgene is preferable for the slow, progres-
sive degenerative diseases, or in oncology, where the 
time-frame of cell activity is expected to be very long. 
Because the safety of these methods is a concern, they 
are usually considered for diseases with a rather poor 
prognosis where greater therapy-associated risks are 
acceptable. For permanent expression, it is feasible and 
advisable to perform all cell-engineering steps during 
the process of cell production at the manufacturing site. 
Following engineering, cells should be carefully evalu-
ated in vitro for the stability of transgene expression 
and for functionality and proliferative properties. 
Permanent transgene expression is typically accom-
plished by the integration of a genetic material into the 
genome using viral transduction. The MMLV-type ret-
rovirus encoding the mycERTAM fusion gene was 
employed for the introduction of conditional immortal-
ization of neural stem cells (Pollock et al. 2006). This 
strategy has been applied in the PISCES clinical trial 
(NCT01151124) to enhance the recovery from stroke 

(Stroemer et al. 2008, Sinden et al. 2012).
Although retroviruses used for HSC gene therapy in 

patients has led to leukemia in some patients (Wu et al. 
2011), these viruses continue to be used clinically 
(Candotti et al. 2012). The random integration of genet-
ic material into the genome, including proto-oncogenic 
sites, is one of the highest risk factors. Thus, significant 
efforts have been directed to develop new, safer tech-
niques. Recombinant lentiviruses are characterized by 
several more advantageous features than retroviruses, 
including a better safety profile, additional built-in 
safety features (Scaife et al. 2009), and their safe use in 
several clinical trials (D’Costa et al. 2009). There have 
also been attempts to use MAC, which have several 
positive features, including stable episomal mainte-
nance that avoids insertional mutations (Katona et al. 
2011), which makes them potentially safer, and MAC 
have the ability to carry large gene inserts. However, 
the frequency of a successful MAC introduction is rela-
tively low; thus, multiple cell divisions with sorting is 
necessary to reach a therapeutic number of cells. 
Consequently, this technology is of a low value for pri-
mary stem cells with limited proliferation capacity, but 
was shown to be applicable for iPS. This method 
enabled a complete genetic correction of iPS cells from 
Duchenne’s muscular dystrophy (Kazuki et al. 2010). 
Another potentially clinically applicable non-viral 
method is to use transposons, which combines the 
advantages of viruses and naked DNA. Specifically, 
the Sleeping Beauty and Pigg Bac transposon systems 
were developed over the last several years for clinical 
application (Aronovich et al. 2011, Di Matteo et al. 
2012). Recently, the site-specific recombinases, such as 
Zinc Finger (Ramalingam et al. 2013), TALEN (Sakuma 
et al. 2013), or phiC31, were introduced as highly effi-
cient methods for the targeted integration of genes into 
a known chromosomal context, avoiding the risk of 
proto-oncogene activation (Lan et al. 2012).

CONCLUSION

The present work provides an overview of the various 
transfection methods applicable to genetic modification 
of stem cells. Exogenous DNA, mRNA, and/or short 
regulatory RNA can be delivered to stem cells, resulting 
in modification that is important from the cell therapy 
point of view. This cell engineering technology opens up 
new possibilities for the modulation of stem cells to 
achieve beneficial clinical effects in the near future.
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