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INTRODUCTION

Experimental autoimmune encephalomyelitis (EAE) 
is a well-established cell-mediated autoimmune inflam-
matory disease of the CNS. Pathologically, EAE is char-
acterized by infiltration of the CNS by lymphocytes and 
mononuclear cells as a consequence of breakdown in 
blood brain barrier (BBB) permeability, microglial and 
astrocytic hypertrophy, and demyelination, which cumu-
latively contribute to clinical expression of disease 
(Raine et al. 1980). Because the clinical and pathological 

aspects of this disease have significant similarities to the 
human demyelinating disease multiple sclerosis (MS) it 
has been used as a model of that disease (Raine et al. 
1980, Willenborg and Staykova 1998, Jack 2005).

In physiological conditions, nitric oxide (NO•) is pro-
duced from the oxidation of the terminal guanidine 
nitrogen of arginine, by a NADPH-dependent enzyme, 
NO• synthase (NOS). There are three NOS isoforms – 
neuronal NOS (nNOS), endothelial NOS (eNOS) and 
inducible NOS (iNOS) (Moncada et al. 1991, Knowles 
and Moncada 1994, Buchwalow 2001). Nitric oxide 
mediates many biological functions, including regulation 
of vascular tone, platelet activation, and acting as a neu-
rotransmitter of nonadrenergic, noncholinergic innerva-
tions. NO• is tumoricidal and microbicidal, and plays a 
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role of transsynaptic retrograde messenger in the brain, 
thus participating in synaptic plasticity (Nathan and Xie 
1994, Willenborg and Staykova 1998, Jack et al. 2005). It 
has also been shown to be a part of a number of immu-
nopathologies including EAE and MS (Nathan and Xie 
1994). The role of NO• in the immune system comprises 
both regulatory and effector functions. The regulatory 
functions include immunosuppressive effects (inhibition 
of lymphocyte proliferation), while effector functions 
include immunopathologic effects (tissue destruction) 
and immunoprotective activities (apoptosis of autoreac-
tive T cells) (Nathan and Xie 1994, Xu et al. 2001).

In pathological conditions, when NO• is produced in 
high levels, it leads to a rapid reaction with superoxide 
(O2

–) to form peroxynitrite (ONOO–), or with other 
biomolecules (proteins, DNA, lipids) (Beckman et al. 
1994) that play an important role in neuronal tissue 
damage, inducing mitochondrial dysfunction, lipid 
peroxidation, protein nitration, ion channel disability 
and electrolyte imbalance (Beckman and Koppenol 
1996, Marques et al. 2008, Pautz et al. 2010) . 

In the recent studies that evaluate the role of NO• in 
development of EAE, several authors use iNOS inhibi-
tors or an oxidant-scavenger to treat EAE. 
Aminoguanidine (AG) is equipotent to NG-monomethyl-
L-arginine (L-NMA), an inhibitor inducible isoform of 
NO. synthase. In our previous work we have reported 
that AG inhibits the nitrosative stress in whole encepha-
litic mass (WEM) and clinical signs of EAE 
(Ljubisavljevic et al. 2011), but others have found that 
there can be aggravation and prolongation of the disease 
upon AG treatment (Ruuls et al. 1996, Brenner et al. 
1997). Also, it has been shown in our previous work that 
N-acetyl-L-cysteine (NAC), an oxidative scavenger,  is 
beneficial against reactive nitrogen species (RNS) and 
reactive oxygen species (ROS) generation in WEM, 
decreasing the level of nitrosative and oxidative damage 
and clinical course of EAE  (Ljubisavljevic et al. 2011).

Unfortunately, current efforts fail to clearly define 
the NO• role underlying EAE and MS pathology and 
its association with neurological dysfunction. Because 
of confusing results of some studies using NOS 
inhibitors and/or oxidative scavengers to treat EAE, 
which have reported NO• proinflammatory (promot-
ing cytotoxicity), and/or antiinflammatory roles (sup-
pressing the immune response) (Mitrovic et al. 1994, 
Farias et al. 2007) we have evaluated the level of NO• 
in different regions of CNS (cerebellum, spinal cord) 
of EAE rats and its correlation with clinical expres-

sion, using AG and NAC as a potential nitrosative 
stress modulators.

METHODS

Animals 

Female Sprague Dawley rats, 3 months old, weigh-
ing 300 ± 20 g, were housed in the Biomedical 
Research Centre animal care facility of the Medical 
Faculty of Nis throughout the experiment under a 
12:12 h light-dark cycle. The rats were kept in plastic 
cages and fed on a standard diet and water ad libitum. 
All animals received human care in strict accordance 
with the National Institute of Health Guide for the 
Care and Use of Laboratory Animals (NIH publication 
80-23, revised 1985). The experimental protocols were 
reviewed and approved by the Faculty Ethical 
Committee.

Induction of EAE

Experimental autoimmune encephalomyelitis was 
induced by the subcutaneous injection of myelin basic 
protein, bovine type (50 µg), dissolved in phosphate 
buffered saline (PBS) emulsified in the volume equal 
to the complete Freund’s adjuvant (CFA), on days 0 and 
7 in the hind foot pad of the animals under anesthesia. 
Two intraperitoneal injections of 200 ng Pertussis 
toxin were given on days 0 and 1. Each of 49 animals 
was randomly assigned to seven groups: control (PBS 
0.3 ml/i.p/daily), EAE (PBS  0.3 ml/i.p/daily after EAE 
induction), CFA (PBS 0.3 ml/i.p/daily), EAE and AG 
(AG 100 mg/kg body weight/daily after EAE induc-
tion), AG (100 mg/kg body weight/daily), EAE and 
N-acetyl-L-cysteine (150 mg/kg body weight/daily 
after EAE induction) and NAC (100 mg/kg body 
weight/daily). 

All animals were tested daily for clinical signs of 
EAE (healthy = 1; loss of tail tone = 2; hindlimb weak-
ness = 3; hindlimb paralysis = 4; hindlimb paralysis 
plus forelimb weakness = 5; moribund or dead = 6; 
Sajad et al. 2009). The animals were sacrificed 15 days 
after EAE induction and the cerebellums and spinal 
cords were dissected, washed in PBS, placed on ice 
and 10% homogenates of all the tissue were stored at 
−20°C for later biochemical analysis. Nitrite and 
nitrate concentration as a measure of nitric oxide pro-
duction was determined as follows.
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Determination of nitrate and nitrate 
concentration

After deproteinization, the production of NO• was 
evaluated by measuring nitrite and nitrate concentra-
tions. Nitrites were assayed directly spectrophotomet-
rically at 543 nm, using the colorimetric method of 
Griess (Griess reagent: 1.5% sulfanilamide in 1 M HCl 
plus 0.15% N-(1-naphthyl)ethylendiamine dihydro-
chloride in distilled water). However, nitrates were 
previously transformed into nitrites by cadmium reduc-
tion (Navaro-Gonzalvez et al. 1998).

Protein content

Protein content was measured according to the 
Lowry procedure using bovine serum albumin as stan-
dard (Lowry et al. 1951).

Chemicals

Chemicals were purchased from Sigma (St. Louis, 
MO, USA). All chemicals were of analytical grade. All 
drug solutions were prepared on the day of the experi-
ment.

Statistical analysis

All the data presented were mean ± SD. Normal 
distribution was verified using Kolmogorov-Smirnov 
test. The significance of the difference between exper-
imental and control groups was analyzed using analy-
sis of variance (ANOVA) followed by paired samples t 
test, Bonferroni test and Chi Square test using the sta-
tistical program SPSS version 13. An α-level of 0.05 
was used for statistical significance.

RESULTS

As we have reported in our previous paper, AG 
and NAC treatment of EAE rats during the develop-
ment of the disease significantly decreased the 
clinical score of EAE compared to EAE group 
(Ljubisavljevic et al. 2011). That clinical score sig-
nificantly correlated with NO• levels in examined 
tissues – cerebellum and spinal cord (c=0.71; c=0.72, 
respectively; P<0.01). 

The obtained results showed that the nitrate and 
nitrite level, as a measure of NO• production, was sig-
nificantly increased in all examined tissues (cerebel-
lum, spinal cord) of EAE rats compared to the control 

Fig. 1. NO2 and NO3 concentration (nmol/mg prot.) in rat 
cerebellum. (CFA) Complete Freund’s adjuvant; (AG) amin-
oguanidine; (NAC) N-acetyl-L-cysteine; (CG) control group; 
(EAE) rats with experimental autoimmune encephalomyeli-
tis; (CFA) rats treated with CFA; (EAE + AG) EAE rats 
treated with AG; (AG) rats treated with AG; (EAE + NAC) 
EAE rats treated with NAC; (NAC) rats treated with NAC.

Fig. 2. NO2 and NO3 concentration (nmol/mg prot.) in rat 
spinal cord. (CFA) Complete Freund’s adjuvant; (AG) amin-
oguanidine; (NAC) N-acetyl-L-cysteine; (CG) control group; 
(EAE) rats with experimental autoimmune encephalomyeli-
tis; (CFA) rats treated with CFA; (EAE + AG) EAE rats 
treated with AG; (AG) rats treated with AG; (EAE + NAC) 
EAE rats treated with NAC; (NAC) rats treated with NAC.
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and CFA groups (t5=7.73; t5=7.61, respectively;  
P<0.001– Fig. 1, Fig. 2, respectively). 

AG treatment decreased the level of NO• products in 
all tissues (cerebellum, spinal cord) compared to the 
EAE group (t6=12.328; t6=8.468, respectively; P<0.001 
– Fig. 1, Fig. 2, respectively).

Also, NAC treatment decreased the level of NO• 
products in all tissues (cerebellum, spinal cord) com-
pared to the EAE group (t5=13.85; t5=10.19, respective-
ly; P<0.001 – Fig. 1, Fig. 2, respectively).

NO• increase is the most pronounced in the spinal 
cord compared to the whole encephalitic mass 
(Ljubisavljevic et al. 2011) and cerebellum (t7=15.98; 
t8=18.8, respectively; P<0.001 – Fig. 3).

DISCUSSION

Our results show increased NO• production in all 
estimated CNS regions. As has been previously pro-
posed, that may be the consequence of activated 
microglia, astrocytes, macrophages, and other immune 
cell types, which infiltrate CNS tissue due to NO• 
mediated vasodilatation and increased BBB permea-
bility (Smith et al. 1999, Thiel and Audus 2001). In 
EAE, NO• can have proinflammatory, cytotoxic, and/

or anti-inflammatory roles, suppressing the immune 
response (Mitrovic et al. 1994, Farias et al. 2007). 

The major Th1 cytokines, such as interferon-γ (IFN-γ), 
as well as tumor necrosis factor-α (TNF-α), and interleu-
kin-1-b (IL-1b), induce immune cell iNOS in vitro, 
apparently by transcriptional modulation (Napoli and 
Neumann 2010). On the other hand, these proinflamma-
tory cytokines activate endothelia and modulate the 
BBB, inducing the expression of endothelial cell adhe-
sion molecules (Losy et al. 1999) and in this way pro-
mote immune cell infiltration of nerve tissue. The recent 
reports indicate that NO• also induces the production of 
TNFα (Bishop et al. 2009, Henderson et al. 2009).

The increased secretion of reactive nitrogen inter-
mediates (RNI) by inflammatory leukocytes and high 
levels of NO• and iNOS mRNA, documented in CSF of 
MS patients (Cross et al. 1998) and in the peripheral 
blood of rats with hyperacute EAE, correlates directly 
with disease severity as we have shown in our work 
(De Groot et al. 1997, Yamashita et al. 1997, 
Ljubisavljevic et al. 2011). 

In the context of EAE clinical expression, NO• 
secreted by iNOS plays a dual role. On one side, it is 
thought that NO• mediates protection, because EAE 
symptoms are exacerbated in iNOS-/- mice (Fenyk-
Melody et al. 1998). It may function to increase T 
helper 1 response (Kahl et al. 2003) or to eliminate 
inflammatory cells from the CNS by promoting apop-
tosis or downregulation of adhesion molecules (Okuda 
et al. 1998). On the other hand, our data are consistent 
with the hypothesis that NO• has cytotoxic effects that 
include oligodendroglia disruption and impairment of 
the ability of myelin supporting cells to maintain and 
produce myelin during early EAE phase. Calcium-
dependent NOS (eNOS and nNOS) activity in the spinal 
cord was reported to remain unchanged or decrease 
during EAE concomitantly with iNOS upregulation 
(Calabrese et al. 2001, Kahl et al. 2003). Following 
these, Okuda and coauthors (1998) have used AG, a 
selective iNOS inhibitor, in mice with actively induced 
EAE. Administration of AG during the early develop-
ment of EAE, as we have proposed in our work 
(Ljubisavljevic et al. 2011), produced a significant delay 
in EAE onset, but AG administration after the onset of 
clinical EAE enhanced the clinical severity and mortal-
ity rate and provoked the onset of relapse. These data 
suggested that NO• plays different roles during the 
induction and progression phases of EAE. However, the 
role of NO• in EAE is not the same in different phases 

Fig. 3. NO2 and NO3 concentration (nmol/mg prot.) in rat 
CNS different regions. (CFA) Complete Freund’s adjuvant; 
(AG) aminoguanidine; (NAC) N-acetyl-L-cysteine; (CG) 
control group; (EAE) rats with experimental autoimmune 
encephalomyelitis; (CFA) rats treated with CFA; (EAE + 
AG) EAE rats treated with AG; (AG) rats treated with AG; 
(EAE + NAC) EAE rats treated with NAC; (NAC) rats 
treated with NAC.
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of the disease, changing according to the immunologi-
cal status (Xu et al. 2001). Since NOS activity repre-
sents the combined activity of all three NOS isoforms, 
it is evident that each isoform could play a different role 
in EAE. It has been found in some studies that NO. lev-
els in the spinal cord are about 20% lower in eNOS-/- 
mice than in control groups, decreasing in parallel with 
both strains during EAE progression (Lin et al. 1993, 
Muzhou and Tsirka 2009). We have demonstrated a 
higher spinal cord NO• level compared to other exam-
ined CNS regions (Fig. 3), which directly correlates 
with clinical expression of EAE (hindlimb paralysis 
with/without forelimb weakness) in EAE animals. The 
neurological expression is the consequence of nitrosa-
tive stress in the spinal cord, more pronounced than in 
the cerebellum and brain. It may be the result of more 
lesions per the spinal cord volume unit (Saito et al. 1994 
, Kim et al. 2006) compared to brain and cerebellum. 
However, Blanco and colleagues (2010) suggest that 
there are changes affecting the cerebellar NO/NOS sys-
tem during this disorder, as a result of the changes in 
iNOS cellular distribution, but not its expression. 

Although demyelination has been defined as the 
cause of neurological dysfunction in MS, the recent 
work has suggested that neuronal (axonal) degeneration 
is responsible for irreversible neurological disability. 
Inflammation and demyelination, potentially reversible 
pathologies, have been attributed to the relapsing 
remitting course of MS (RR-MS), while irreversibile 
neuronal damage has been shown in primary progres-
sive and secondary progressive course of MS (PP, SP 
MS), as a consequence of oxidative and nitrosative 
stress (Kornek et al. 2000, Muzhou and Tsirka 2009). 

Even if the inhibition of NO• production can be 
shown to prevent demyelination, NO• may not directly 
damage myelin or myelinating cells, but rather act as 
the means of induction or enhancement of other factors 
(Smith et al. 1999). It is possible that the negative out-
comes triggered by NO•  production could ensue from 
its conversion to the toxic metabolite peroxynitrite 
(ONOO–) through the reaction with O2

–. Peroxinitrite is 
formed very early in EAE, exerting a wide variety of 
effects on cellular systems by modifying protein struc-
ture, and thereby function, through the formation of 
nitrotyrosine adducts and, when present at sufficiently 
high levels, it induces excitotoxicity, DNA damage, 
and apoptosis (Brown and Bal-Price 2003). This 
increased nitrotyrosine reactivity is present in MS 
brains, particularly in areas of demyelination and 

inflammation (Bo et al. 1994, Kahl et al. 2003). NO• 
can also damage DNA directly by deamination, and 
inhibit the repair activity of the enzyme DNA ligase, 
leading to cell death (Bo et al. 1994).

NO• has been shown to inhibit several enzymes, 
including protein kinase C and enzymes involved in 
mitochondrial respiration, including aconitase, NADH-
ubiquinone oxidoreductase and succinateubiquinone 
oxidoreductase (Boullerne et al. 1995). The effects on 
the mitochondrial respiratory chain may be expected 
to cause deficits in cellular energy supplies. ATP con-
tent is reduced in neurons exposed to NO• and ONOO-, 
which results in neuronal and axonal damage. This is 
supported by our results, as the animals with decreased 
NO• levels had lower EAE clinical intensity 
(Ljubisavljevic et al. 2011). Also, NO•/ONOO- may 
have adverse consequences in  the production of 
neoepitopes which may provoke an immune reaction. 
There is evidence to suggest that this phenomenon can 
explain the EAE clinical course amelioration (Boullerne 
et al. 1995, Okuda et al. 1997). 

Aminoguanidine (AG), an iNOS inhibitor, has been 
shown to delay the disease onset and decrease EAE 
severity (Brenner et al. 1997, Ljubisavljevic et al. 2011). 
Our recent results show that the maximum clinical 
severity of EAE and the duration of illness were sig-
nificantly reduced by the application of AG 
(Ljubisavljevic et al. 2011), due to an inhibition of iNOS. 
NAC treatment of EAE rats also reduced the severity of 
EAE clinical symptoms which could be explained by 
the suppression of mononuclear cell infiltration into 
CNS and the decrease of proinflammatory Th1 cytokine 
response (IFN-γ) (Pahan et al. 1998, Malabendu and 
Kalipada 2005, Ljubisavljevic et al. 2011).

CONCLUSION

The findings of our work suggest that NO• and its 
derivatives may play an important role in MS. It may 
be the best target for new therapies in human demyeli-
nating disease and may suggest new therapeutic drugs 
based on decreased levels of NO• following MS clini-
cal expression.
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