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INTRODUCTION

Basic research in Parkinson’s disease (PD) has prof-
ited greatly from rat and mice models. These models 
allow for experimentation on homogeneous popula-
tions with low costs relative to larger animal models 
(Meredith et al. 2008, Terzioglu and Galter 2008, 
Dawson et al. 2010). Larger animal models are, how-
ever, an important translational step toward clinical 
applications (Capitanio and Emborg 2008, Jenner et al. 
2009). Several primate models of PD have been suc-
cessfully developed (Langston et al 1984, Capitanio 
and Emborg 2008, Jenner  et al. 2009) and have paved 
the way for current PD treatment paradigms such as 
continuous L-dopa treatment and subthalamic deep 
brain stimulation (DBS) (Capitanio and Emborg 2008, 

Jenner et al. 2009). The use of primate models has, 
however, been increasingly difficult and expensive, 
necessitating the search for alternative non-primate 
large animal models (Goodman and Check 2002). 
During the last fifteen years we have used pigs and 
especially the Göttingen minipig to examine neuro-
modulatory treatment modalities such as stem cell 
transplantation and DBS directed towards PD 
(Danielsen et al. 2000, Cumming et al. 2001, 2003, 
Bjarkam et al. 2005, 2008). This has been accom-
plished by the development of a MPTP-based Göttingen 
minipig model of PD having a substantial decrease in 
striatal dopamine and a stable parkinsonian syndrome 
characterized by rigidity, bradykinesia, and discoordi-
nation of the hind limbs (Mikkelsen et al. 1999, 
Danielsen et al. 2000, Bjarkam et al. 2005). The 
Göttingen minipig has a large gyrencephalic brain 
(6 × 5 × 4 cm) that both can be examined at sufficient 
resolution using conventional clinical scanning modal-
ities and preclinical testing of DBS and other neuro-
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modulatory devices (Danielsen et al. 1998, 2000, 2001, 
Watanabe et al. 2001, Cumming et al. 2001, 2003, Røhl 
et al. 2002, Andersen et al. 2005, Bjarkam et al. 2004, 
2005, 2008, 2009, 2010, Jensen et al. 2009, Rosendal et 
al. 2009, Fjord-Larsen et al. 2010). The instituted CNS 
changes can be evaluated through cystometry, gait 
analysis, neurological evaluation, and post mortem 
histological and stereological analysis (Danielsen et al. 
2000, Sørensen et al 2000, Cumming et al. 2001, 2003, 
Røhl et al. 2002, Larsen et al. 2004, Dalmose et al. 
2004, 2005, Andersen et al. 2005, Bjarkam et al. 2005, 
Rosendal et al. 2005, 2009, Nielsen et al. 2009, Ettrup 
et al. 2010). The MPTP model is, however, a toxic 
model that mimics PD pathogenesis (Terzioglu and 
Galter 2008), rather than the current genetic based 
models, which increases the accumulation of alpha-
synuclein in the nigral neurons (Polymeropoulos et al. 
1998, Bayer et al. 1999, Terzioglu et al. 2008).

The aim of the current study was to establish an 
alternative PD model in the Göttingen minipig based 
on lentiviral (LV) vector mediated A53T alpha-synu-
clein overexpression in the substantia nigra.

METHODS 

The viral system

The LV vector system was developed in the labora-
tory of Professor Didier Trono, Lausanne, and has 
previously been described (Glud et al. 2010). The vec-
tors utilized for direct viral mediated gene transfer 
harbour either a mutated human alpha-synuclein trans-
gene (SNCA-A53T) or a transfer vector, pWPXL, 
encoding EGFP. The transgene is flanked by long ter-
minal repeats (LTR) and the expression is driven by 
the human elongation factor 1α promoter (EF1-α). The 
cPPT (central polypurine tract signal) and WPRE 
(Woodchuck hepatitis virus posttranscriptional ele-
ment) sequences incorporated in the vector enhance 
the transgene expression.

Stereotaxic implantation	

Six female Göttingen minipigs aged 8–12 months, 
weighing 20–34 kg, were used in this study as 
approved by the Danish National Council of Animal 
Research Ethics. Animals were anesthetized with ket-
amine and midazolam according to weight (Olsen et 
al. 2010). Artificial ventilation and isoflurane (1–2%) 

anesthesia was used during the remainder of the pro-
cedure. After initiating isoflurane anesthesia the head 
of the animal was fixed in a stereotaxic localizer box 
(Mark 2.5 with TSE parallel rail and micromanipula-
tor assembly, Neurologic, Denmark) (Bjarkam et al. 
2005) (Fig. 1A). A MRI-visible fiducial marker was 
placed in bregma (Fig. 1B) and each animal was 
MR-scanned in order to calculate substantia nigra 
(SN) coordinates at six different positions, in each SN, 
relative to the fiducial marker (Fig. 1C). The anaesthe-
tized animals were then transported to a class II virus 
facility where the localizer box was converted to a 
stereotaxic device by addition of a stereotaxic frame 
with attached TSE-micromanipulator (Fig. 1D). A 10 
μl Hamilton syringe with attached glass needle was 
filled with a 6.0 × 107 transducting units per μl LV 
preparation and placed on the micromanipulator. 
Through a skull burr hole and dural incision, six 2.5 
μl injections were made in the SN at the pre-deter-
mined coordinates, three injections encoding for 
alpha-synuclein and three encoding for EGFP. After 
suturing the skin, the animals were placed in a quar-
antine stable for 72 hours. Postoperative antibiotics 
and analgesics were administrated for 3 and 2 days, 
respectively.

Euthanasia and collection of brain tissue

After 20 weeks the animals were euthanized by an 
overdose of pentobarbital. Two brains were freshly 
removed for PCR analysis. The remaining four pigs 
were transcardially perfused with 5 l of phosphate 
buffered 4% paraformaldehyde (pH 7.4) fixative. The 
brains were removed and immersed in the fixative for 
24 hours. The brains were then sectioned into 1-cm-
thick coronal brain slabs and paraffin embedded. 
Embedded slabs were subsequently microtome sec-
tioned into 40 μm thick coronal sections. 

Nissl staining and immunohistochemistry

Tissue staining was performed according to previ-
ously established principles (Larsen et al. 2004). 
Sections for immunohistochemistry were incubated 
for 72 h with a primary polyclonal rabbit anti-GFP 
(ab290, Abcam Ltd., Cambridge, UK) diluted 1:1000 
or a primary monoclonal mouse anti-GFAP (ab4648, 
Abcam Ltd., Cambridge, UK) diluted 1:500 or a pri-
mary polyclonal Sheep anti-alpha-synuclein (ab6162, 
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Fig. 1. Photographs of the surgical procedure. (A) Fixation of the head in the stereotaxic frame. (B) A copper sulphate filled 
fiducial is placed in bregma for MRI localization. (C) MR-image depicting the planned trajectories. The numbers 1–4 refer 
to the lines. The lines mark the injection tract. Number 5 refers to a measure-bar used to keep all injections in three planes 
parallel. On this picture four injection-tracts are seen. There are two more MR-slides (data not showed) with injections for 
the two other coronal planes, making the total of injections twelve, e.g. six in each SN.  (D) The localizer box is converted 
into a stereotaxic device by addition of a stereotaxic frame with attached TSE-micromanipulator. The system is sterilely 
wrapped. It is possible to angle the system without derailing the manipulator, enabling a larger surgery area.



Alpha-synuclein expression in the porcine SN 511 

Abcam Ltd., Cambridge, UK. Made against human 
synuclein (aa116-131) coupled to diphtheria toxoid with 
a cysteine residue attached to the N-terminal of the 
peptide) diluted 1:2000. Primary antibody staining 
was followed by 1 hour incubation with a secondary 
anti-rabbit IgG biotinylated antibody (RPN1004, 
Amersham, Buckinghamshire, UK) diluted 1:400, a 
secondary anti mouse IgG biotinylated (RPN1177 GE 
Healthcare Europe GmbH) diluted 1:400 or a biotiny-
lated anti-Sheep IgG (RPN1025 GE Healthcare Europe 
GmbH) diluted 1:400, respectively. Primary antibodies 
were omitted for negative control staining. Alpha-
synuclein-positive striatum was counterstained with 
toluidine blue as previously described (Larsen et al. 
2004). 

Purification of nucleic acids from tissue samples

Total RNA was isolated from the minipig mesen-
cephalon by the RNeasy method (Qiagen). The integ-
rity of the RNA samples was verified by ethidium 
bromide staining of the ribosomal RNA on 1% agarose 
gels. 

Synthesis of cDNA

Synthesis of cDNA used for detection of the trans-
gene transcript by RT-PCR cloning was conducted 
with 5 mg of total RNA isolated from mesencephalon 
using SuperScript II RNase– reverse transcriptase 
(Invitrogen). The cDNA synthesis was initiated by the 
heating of total RNA, oligo(dT)12-18 primer (Invitrogen), 
random hexamer primers (Invitrogen) and dNTP at 
65°C for 5 min, followed by the addition of 200 U 
reverse transcriptase and incubation at 42°C for 50 
min. cDNA synthesis reaction was terminated by heat-
ing at 70°C for 15 min.

RT-PCR amplification of cDNA sequences

Oligonucleotide primers were derived from the 
untranslated regions of the human SNCA mRNA 
sequence to ensure transgene-specific PCR amplifica-
tion. The amplification product therefore covers a part 
of the 5’UTR of the entire coding sequence and a part 
of the 5’UTR of the human SNCA gene. The PCR reac-
tion mix contained 1 ml cDNA, 1.5 mM MgCl2, 0.2 
mM dNTP, 0.5 mM of each primer hSNCA5UTRs and 
hSNCA3UTRas (Table I) and 1 U Phusion DNA poly-
merase (Finnzymes), in a total volume of 10 ml. The 
PCR profile was as follows: 98°C for 1 min, 10 touch-
down cycles of 98°C for 5 s, 65°C for 20 s (−0.5°C/
cycle), 72°C for 1 min, followed by 20 cycles of 98°C 
for 5 s, 60°C for 20 s, 72°C for 1 min and finally an 
elongation at 72°C for 5 min.

The cDNA amplicons were visualized and isolated 
from an ethidum bromide stained 2% agarose gel. The 
PCR products were cloned directly into the pCR TOPO 
2.1 vector (Invitrogen) and sequenced in both direc-

Table I

List of oligonucleotide primers used for PCR amplification of cDNA sequences

Primer Sequence (5’ - 3’) Product size (bp)

hSNCA5UTR-S TGG AGA AGC AGA GGG ACT C 600

hSNCA3UTR-AS ACT GGG CAC ATT GGA ACT GA

GAPDH-F TGGTGAAGGTCGGAGTGA 250

GAPDH-R TTGATTTTGGCGGGATCT

Fig. 2. Schematic drawing of the minipig with attached 
reflectors (red) on the hind limbs, the thigh, the neck and the 
right front limb. 
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tions. DNA sequencing was performed as previously 
described (Bjerre et al. 2006).

Gait analysis

All animals underwent open field pre-operative 
and post-operative [after 110 days (3 animals), and 
after 140 days (3 animals)] digital gait analysis, uti-
lizing an infrared 3-D computerized Vicon system 
with 6 cameras to measure the temporospatial 

parameters of gait. Chocolate chips or pieces of 
apple were offered at the ends of the pen enclosure 
to promote animal movement. Reflectors were 
placed on hind limbs, the right front limb, the thigh 
and the highest point on the pig (the back of the 
neck) (Fig. 2). We obtained post OP double stand 
phase data from 5 of the 6 animals. The rest of the 
gait analysis data is for all 6 animals.

RESULTS

Postoperative behavior

The animals did not exhibit rotational behavior, 
increase in aggressiveness, decrease in weight or 
changes in vocalization. 

Gait changes after injection

A change in gait pattern was noted after performing 
stereotaxic injections. Despite normal gait velocity, a 
significant decrease in the double limb stand phase of 
the hind limbs was quantified (Fig. 3A). Additionally, 
the animals took significantly longer steps (Fig. 3B), 
and raised their legs significantly higher from the floor 
(Fig. 3C) (Table II). A t-test for dependent samples was 
used.

IHC findings in nigrostriatal pathways

Needle trajectories targeting the substantia nigra 
without accompanying infection or hemorrhage 
were clearly visible in all animals (Fig. 4A). GFAP 
staining revealed bilateral normal representation of 
glial cells around the injection site indicating lim-
ited signs of astrogliosis or infection caused tissue 
damage (Fig. 4B). Alpha-synuclein-positive cells 
were noted immediately around the injection tract 
in the substantia nigra (Fig. 5A). These cells 
appeared to have swollen soma and nuclei (Fig. 5B), 
compared to surrounding non-transfected cells. 
Few alpha-synuclein-positive fibers were noted in 
the striatum (Fig. 5C). EGFP-positive staining was 
observed in neurons and glial cells of the contralat-
eral substantia nigra (Fig. 5DE). EGFP was observed 
in the soma, axons and dendrites of the substantia 
nigra neurons. Numerous EGFP-positive boutons 
and fibers were found in the striatum (Fig. 5F). 
Tyrosine hydroxylase(TH)-staining showed that the 

Fig. 3. Gait-analysis: Significant findings after pre- vs. post-
operatively comparison. A t-test for paired data was used. 
(A) Double stand phase of the hind limb (P=0.04). (B) Step 
length (P=0.04). (C) Step height (P=0.02).
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Fig. 4. (A) TH-stained mesencephalon showing the substantia nigra. Vertical arrow: Injection site of vectors encoding for 
EGFP. Horizontal arrow: Injection site of vectors coding for alpha-synuclein. (B) GFAP-stained tissue corresponding to the 
stippled area marked on (A). Scale bar is 1.4 mm (A), 35 μm (B).

Fig. 5. (A) Alpha-synuclein-stained injection site in substantia nigra. (B) Alpha-synuclein-stained swollen neurons in sub-
stantia nigra. (C) Alpha-synuclein positive fibers surrounding toluidine-counterstained striatal neurons. (D) EGFP-stained 
injection site in substantia nigra. (E) EGFP-stained section from substantia nigra. (F) EGFP-stained varicose fibers in stria-
tum. Scale bar is 55 μm (A, D and F), 10 μm (B), 5 μm and 35 μm (C and E).
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trajectories targeted the SN on both the alpha-synu-
clein injection side and the contralateral control 
side (Fig. 4A). The expression was found in neu-
ronal somas up to 1.5 mm. from the injection site 
and several cm away in axons and boutons of the 
nigrostriatal pathway.

Expression of transgene in the brain

The presence of the introduced alpha-synuclein 
transgene hSNCA A53T (SNCA) was examined using 
semi-quantitative RT-PCR with specific primers ensur-
ing transgene amplification (Table I). Total RNA was 
isolated from the mesencephalon of 2 transduced 
minipigs and from 2 control animals. The tranduced 
mesencephalon was dissected into three equally sized 

parts. The oligonucleotide primers were derived from 
the human SNCA sequences and does not PCR ampli-
fy the endogenous porcine SNCA sequence. Expression 
of SNCA transcript was observed only in samples 
from the two transduced Göttingen minipigs (Fig. 6). 
A significantly higher expression of SNCA transgene 
was detected in mesencephalon samples from one 
transduced mini-pig (lanes 4–6). Sequencing of the 
amplified 600-bp DNA fragment revealed correctly 
the identity of the transgene introduced by the A53T 
mutation. No SNCA transcript was detected in the 
mesencephalon samples from the two non-transfected 
control pigs (lanes 7 and 8). Amplification of 
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
transcript served as a control for the quality and con-
centration of the synthesized cDNA (Fig. 6). 

Fig. 6. Reverse transcriptase PCR analysis of transgene expression for SNCA (alpha-synuclein), (M) DNA molecular weight 
marker, (Lane 1) Mesencephalon sample 1 – pig 1, (Lane 2) Mesencephalon sample 2 – pig 1, (Lane 3) Mesencephalon 
sample 3 – pig 1, (Lane 4) Mesencephalon sample 1 – pig 2, (Lane 5) Mesencephalon sample 2 – pig 2, (Lane 6) 
Mesencephalon sample 3 – pig 2, (Lane 7) Mesencephalon non-transducted pig A, (Lane 8) Mesencephalon non-transduct-
ed pig B, (Lane 9) Negative (reagent) control, (Lane 10) Positive control (SNCA_A53T - plasmid used for transduction). 
GAPDH transcript with lanes equivalent to SNCA is used to serve as a control for the quality and concentration of the syn-
thesized cDNA.

Table II

Gait analysis

Gait Double stand phase [%] Step length [mm] Step height [mm]

Pre OP Post OP Pre OP Post OP Pre OP Post OP

Mean 32.1 19.3 504.8  601.7 45.5 54.3

SEM 4.3 2.8 33.3 17.6 2.7 3.5

Student t-test, P-value 0.04 0.04 0.02
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DISCUSSION

Our study has shown that cells in the substantia 
nigra of the Göttingen minipig can be transducted with 
an alpha-synuclein transgene using direct MRI-guided 
stereotaxic injection of viral vectors encoding for 
alpha-synuclein (Figs 4–5). Alpha-synuclein-positive 
neurons appeared swollen and vacuolated and had less 
intensely stained nigrostriatal projections (Fig. 5A–C), 
compared to the EGFP-positive control side (Fig. 
5D–E). This indicate that the viral vector caused intra-
cellular alpha-synuclein accumulation had a pathoge-
netic influence on the nigral neurons. Gait-analysis 
displayed that post-operative transducted animals had 
reduced double stand phase and increased step height 
and length. 

Several caveats should be taken into consideration 
when interpreting our results. Firstly, the changes 
demonstrated by gait-analysis were not side dependent. 
We would expect that unilateral nigral degeneration 
would cause unilateral movement deficits and rota-
tional behavior, as we have previously noted when 
STN stimulation was applied unilaterally to bilaterally 
MPTP intoxicated animals (Bjarkam et al. 2005). We 
would also expect primary symptoms of rigidity, 
imbalance and bradykinesia, as these symptoms are 
normally seen in MPTP intoxicated animals (Mikkelsen 
et al. 1999, Danielsen et al. 2000, Bjarkam et al 2005). 
We are therefore inclined to believe that the gait-anal-
ysis findings are mainly due to tissue damage caused 
by the injection procedure and are not transgene-in-
duced. A wider spread of the vector and subsequently 
wider loss of dopaminergic cells may be required to 
cause unilateral symptoms. Accordingly, in humans it 
is known that symptoms of PD are seen after loss of 
around 80% of the dopaminergic neurons. Our TH 
staining revealed minimal loss of dopamanergic neu-
rons bilaterally (Fig. 4). According, to the human find-
ings we would expect the resulting symptoms to be 
non existent or mild in comparison with previously 
described minipig MPTP-induced parkinsonism. In 
future studies based on a widely disseminated viral 
vector and a larger cohort, stereology will be prefera-
ble for quantification of cell loss and pathology. 

Secondly, although the alpha-synuclein-positive 
cells appeared swollen and vacuolated (Fig. 5A–C), we 
cannot definitively conclude that their pathology is due 
to the expression of alpha-synuclein. The cell patholo-
gy findings could have been caused by the injection 

procedure or the viral vector system. Against the latter, 
we would argue that a similar injection technique, 
viral vector system and injection volume was used on 
both sides. Alpha-synuclein-induced neurotoxicity in 
rodents has been reported to activate microglia and 
may induce robust neurotoxicity. In future studies 
staining of microglia activation markers and double 
staining with alpha-synuclein and TH/GFAP will be 
incorporated in the protocol.

Thirdly, the proven transduction and alpha-synuclein 
expression in nigral neurons was limited to neurons 
situated immediately around the injection tract. This 
indicates limited viral vector spread, and the necessity 
of numerous injections in order to obtain substantial 
infection of nigral neurons using the current vector sys-
tem. Performing numerous injections would result in 
substantial mechanical damage, masking potential 
effects of alpha-synuclein. Limited dissemination of 
injected viral vectors is a general problem in the field of 
gene therapy as the diffusion of injected substances (e.g. 
viral vectors) diminishes exponentially with increasing 
distance from the injection site (Salvatore et al. 2006). 
Aside from performing more injections and therefore 
inducing mechanical tissue damage, alternative strate-
gies could utilize viral vectors that are able to replicate 
more widely and engage in transsynaptic transduction 
(Cearley and Wolfe 2007). We have accordingly previ-
ously used the minipig model to develop an intracere-
bral microinjection instrument, which allows multiple 
angled injections from one central injection tract pass-
ing through the brain tissue (Bjarkam et al. 2010). 

The selection of the viral vector is critical as viral 
vectors may be based on RNA-viruses (retrovirus, LV) 
or DNA-viruses [adenovirus, adeno-associated virus 
(AAV) or herpesvirus]. Viral vectors based on LV and 
AAV have proved to be particularly useful to generate 
transgenic animal models of neurological diseases. 
One disadvantage of the AAV vector is the limited 
insert size of usually less than 5 kb. This restricts the 
use of long promoters used to drive cell-specific 
expression. In addition, AAV also have a low packag-
ing capacity (Verma and Somia 1997, Davidson and 
Breakefield 2003, Thomas et al. 2003). For the reasons 
mentioned above we preferred to initiate our study 
with vectors based on LV which have been claimed to 
be particularly well suited for transduction of neuronal 
cells. LV can transduct to both dividing cells and post 
mitotic cells like neurons (Lewis et al. 1992, Verma 
and Somia 1997, Naldini 1998, Trono 2000). LVs pos-
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sess a large cloning capacity – between 7 and 9 kb 
(Verma and Somia 1997, Aebischer and Ridet 2001) 
and the ability to integrate the genes into the chromo-
somes of target cells. Generally, a long term expression 
from the transferred gene is observed (Blomer et al. 
1997, Naldini 1998, Verma and Somia 1997). 
Furthermore, LVs have a low cytotoxicity and immu-
nogenity, and do not compromise normal cellular func-
tions in vitro and in vivo (Naldini et al. 1996, Blomer 
et al. 1997). LVs have accordingly been used to study 
long-term treatment by expression of therapeutic genes 
in animal models of neurological disorders, such as 
Parkinson’s disease, Alzheimer’s disease, Huntington’s 
disease (Ralph et al. 2006). Our study have clearly 
confirmed that the selected LV based vector transduct 
nigral cells causing an over expression of alpha-synu-
clein. The dissemination of the vector was however to 
restricted and we will therefore need to identify a new 
vector that disperses the tissue more readily for future 
experimentation.   

CONCLUSIONs

We are thus assured that the obstacles we have meet 
during this study with viral vectors in the Göttingen 
minipig reflect some of the problems that gene therapy 
directed towards brain disorders currently encounters, 
e.g. problems with delivery systems, viral dissemina-
tion and safety.

Further development of the described animal model 
will, accordingly, not only lead to a useful animal 
model of PD, but also provide valuable experiences 
and technical development for future clinical use of 
gene therapy directed against brain disorders.
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