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INTRODUCTION

Spiking neural networks (SNN) represent a special 
class of artificial neural networks (ANN), where neu-
ron models communicate by sequences of spikes. 
Networks composed of spiking neurons are able to 
process substantial amount of data using a relatively 
small number of spikes (VanRullen et al. 2005). Due to 
their functional similarity to biological neurons, spik-
ing models provide powerful tools for analysis of ele-
mentary processes in the brain, including neural infor-
mation processing, plasticity and learning. At the same 
time spiking networks offer solutions to a broad range 
of specific problems in applied engineering, such as 
fast signal-processing, event detection, classification, 
speech recognition, spatial navigation or motor control. 
It has been demonstrated that SNN can be applied not 
only to all problems solvable by non-spiking neural 
networks, but that spiking models are in fact computa-
tionally more powerful than perceptrons and sigmoidal 

gates (Maass 1997). Due to all these reasons SNN are 
the subject of constantly growing interest of scientists.

In this paper we introduce and discuss basic con-
cepts related to the theory of spiking neuron models. 
Our focus is on mechanisms of spike-based informa-
tion processing, adaptation and learning. We survey 
various synaptic plasticity rules used in SNN and dis-
cuss their properties in the context of the classical 
categories of machine learning, that is: supervised, 
unsupervised and reinforcement learning. We also 
present an overview of successful applications of spik-
ing neurons to various fields, ranging from neurobiol-
ogy to engineering. Our paper is supplemented with a 
comprehensive list of pointers to literature on spiking 
neural networks.

The aim of our work is to introduce spiking neural 
networks to the broader scientific community. We 
believe the paper will be useful for researchers work-
ing in the field of machine learning and interested in 
biomimetic neural algorithms for fast information pro-
cessing and learning. Our work will provide them with 
a survey of such mechanisms and examples of applica-
tions where they have been used. Similarly, neurosci-
entists with a biological background may find the 
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paper useful for understanding biological learning in 
the context of machine learning theory. Finally, this 
paper will serve as an introduction to the theory and 
practice of spiking neural networks for all researchers 
interested in understanding the principles of spike-
based neural processing.

SPIKING MODELS

Biological neurons communicate by generating and 
propagating electrical pulses called action potentials or 
spikes (du Bois-Reymond 1848, Schuetze 1983, Kandel 
et al. 1991). This feature of real neurons became a cen-
tral paradigm of a theory of spiking neural models. 
From the conceptual point of view, all spiking models 
share the following common properties with their bio-
logical counterparts: (1) They process information 
coming from many inputs and produce single spiking 
output signals; (2) Their probability of firing (generat-
ing a spike) is increased by excitatory inputs and 
decreased by inhibitory inputs; (3) Their dynamics is 
characterized by at least one state variable; when the 
internal variables of the model reach a certain state, the 
model is supposed to generate one or mores spikes.

The basic assumption underlying the implementa-
tion of most of spiking neuron models is that it is tim-
ing of spikes rather than the specific shape of spikes 
that carries neural information (Gerstner and Kistler 
2002b). In mathematical terms a sequence of the firing 
times - a spike train - can be described as S(t)=∑fδ(t-tf), 

where f = 1, 2, ... is the label of the spike and δ(.) is a 
Dirac function with δ(t)≠0 for t=0 and ∫

∞

-∞δ(t)dt = 1. 
Historically the most common spiking neuron mod-

els are Integrate-and-Fire (IF) and Leaky-Integrate-
and-Fire (LIF) units (Lapicque 1907, Stein 1967, 
Gerstner and Kistler 2002b). Both models treat bio-
logical neurons as point dynamical systems. 
Accordingly, the properties of biological neurons 
related to their spatial structure are neglected in the 
models. The dynamics of the LIF unit is described by 
the following formula:

(1)

   
where u(t) is the model state variable (corresponding to 
the neural membrane potential), C is the membrane 
capacitance, R is the input resistance, io(t) is the exter-
nal current driving the neural state, ij(t) is the input 
current from the j-th synaptic input, and wj represents 
the strength of the j-th synapse. For R→∞, formula (1) 
describes the IF model. In both, IF and LIF models, a 
neuron is supposed to fire a spike at time tf , whenever 
the membrane potential u reaches a certain value υ 
called a firing threshold. Immediately after a spike the 
neuron state is reset to a new value ures<υ and hold at 
that level for the time interval representing the neural 
absolute refractory period (Fig. 1).

Neurons connect and communicate with one anoth-
er through specialized junctions called synapses 

Fig. 1. Time course of the membrane potential u(t) of a leaky-integrate-and-fire neuron LIF (panel C) driven by the external 
input current io(t) (shown in panel A) or by the synaptic current ij (t) evoked by the sample presynaptic spike train (panel B). 
Initially, the state u(t) of the LIF neuron is at the resting value ures. The currents io(t) and ij(t) increase the membrane potential 
towards the firing threshold θ. Whenever the threshold is crossed the neuron emits a spike and the membrane voltage u(t) is 
reset to a new value - here assumed ures. The firing times of the LIF neuron are shown as vertical bars in panel D.
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(Sherrington 1897, Bennett 1999). Arrival of a presyn-
aptic spike at a synapse triggers an input signal i(t) into 
the postsynaptic neuron. This signal corresponds to 
the synaptic electric current flowing into the biological 
neuron (Kandel et al. 1991). In a simple model the time 
course of i(t) can be described by the exponential func-
tion:

 (2)

where τs is the synaptic time constant and Sj(t) denotes 
a presynaptic spike train. A typical response of the 
synapse model given by (2) to a sample input spike 
train is illustrated in Fig. 1 (top right plot). For an 
excellent review of spiking neuron models we refer the 
reader to Gerstner and Kistler (2002b). 

Given the models of neurons and synapses we can 
define a spiking neural network. Typically an SNN is 
considered as a finite directed graph (V, E), with V 
being a set of neurons and E representing a set of syn-
apses (Maass 1996). In particular the set V contains a 
subset of input neurons Vin and a subset of output neu-
rons Vout. The firing of input neurons is assumed to be 
determined from outside of the SNN, that is the sets of 
firing times – for the neurons in Vin are given as the 
input of the SNN.

Spiking network topologies can be classified into 
three general categories:

1. Feedforward networks – this is where the data 
flow from input to output units is strictly one-direc-
tional; the data processing can extend over multiple 
layers of neurons, but no feedback connections are 
present. In biological neural systems feedforward pro-
jections can be found mainly in areas closer to the 
periphery. Similarly, in SNN feedforward topologies 
are usually applied to model low-level sensory sys-
tems, e.g. in vision (Perrinet et al. 2004, Escobar et al. 
2009), olfaction (Rochel et al. 2002) or tactile sensing 
(Cassidy and Ekanayake 2006). Feedforward networks 
are investigated also in the context of spike synchroni-
zation (Kumar et al. 2010) or for solving the binding 
problem based on spatio-temporal patterns of spikes 
(Natschlaeger 1999).

2. Recurrent networks – here individual neurons or 
populations of neurons interact through reciprocal 
(feedback) connections. Feedback connections result 
in an internal state of the network which allows it to 
exhibit dynamic temporal behavior. Consequently 

recurrent networks are characterized by richer dynam-
ics and potentially higher computational capabilities 
than feedforward networks. Unfortunately, they are 
also more difficult to control and train (Hertz et al. 
1991). Recurrent spiking neural networks have been 
used e.g. to investigate neural information processing 
involved in formation of associative memories (Gerstner 
and van Hemmen 1992, Sommer and Wennekers 2001, 
Zamani et al. 2010) or working memory (Amit and 
Mongillo 2003, Mongillo et al. 2008, Szatmary and 
Izhikevich 2010). Spiking networks with recurrent 
connections have also been used to model and analyze 
phenomena observed in the brain that emerge from 
complex dynamics of reciprocal interactions, such as 
network oscillations (Buzsaki 2006, Izhikevich and 
Edelman 2008, Melamed et al. 2008) or network multi-
stability (Ma and Wu 2007). Networks with lateral 
inhibitory interactions are often used for signal de-
correlation (Linster and Cleland 2010, Tkacik et al. 
2010) or to implement competition between neurons or 
neural populations (Lumer 2000, Jin and Seung 2002), 
and thus are considered in the context of decision mak-
ing (Wang 2008).

3. Hybrid networks – this group encompasses net-
works in which some subpopulations may be strictly 
feedforward, while other have recurrent topologies. 
Interactions between the subpopulations may be one-
directional or reciprocal. Whereas multiple hybrid 
network architectures are possible, here we describe 
only two, probably the most extensively studied classes 
of hybrid spiking neural networks:

• Synfire chain – human learning often consists in 
associating two events, or linking a signal and a subse-
quent action into a causal relationship. The events are 
often separated in time but, nonetheless, humans can 
link them, thereby allowing them to accurately predict 
the right moment for a particular action. Synfire chain 
is considered as a possible mechanism for representing 
such relationships between delayed events (Abeles 
1982). Synfire chain is a multi-layered architecture (a 
chain), in which spiking activity can propagate as a 
synchronous wave of neuronal firing (a pulse packet) 
from one layer (subpopulation) of the chain to the suc-
cessive ones (Diesmann et al. 1999). This definition 
suggests a feedforward architecture, however, the par-
ticular subpopulations may contain recurrent connec-
tions. An excellent review of synfire chain mecha-
nisms and properties is provided in Kumar and coau-
thors article (2010).
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• Reservoir computing – is a computational concept 
that takes advantage of properties of recurrent networks, 
while avoiding difficulties associated with their training 
(Atiya and Parlos 2000, Dominey and Ramus 2000, 
Jaeger 2001, Maas et al. 2002a, Schrauwen et al. 2007, 
Lukosevicius and Jaeger 2009). In a typical implementa-
tion a reservoir network consists of a fixed recurrent 
structure (a reservoir) and a set of output neurons called 
readouts. Usually, readouts receive only feedforward con-
nections from the reservoir, although a feedback from 
readouts to the reservoir is also considered in some mod-
els. Nevertheless, the desired output from the network is 
obtained by training only the connections from the reser-
voir neurons to readout neurons. Such an approach highly 
simplifies training in reservoir networks.

Reservoir can be viewed as a structure perform-
ing the mapping from inputs onto a high-dimen-
sional vector of an activity of neurons belonging to 
the network. Each component of this vector reflects 
the impact that the particular neurons may have on 
the output units. The connectivity structure within 
the reservoir is usually random and fixed (although, 
it has been shown that some adaptivity within a 
reservoir may facilitate the task of an output neuron 
for a family of related tasks, see e.g. Häusler et al. 
2003). Stable internal states of the reservoir are not 
necessary for producing stable outputs, since tran-
sient internal states can be transformed by readout 
neurons into stable target outputs making use of the 
high dimensionality of the dynamical system (Maass 
et al. 2002a). Moreover, the reservoir states and the 
transitions between them need not be customized 
for a specific task. It means that the same, suffi-
ciently large, generic reservoir can be used to per-
form many, different tasks (Maass et al. 2004).

The concept of reservoir computing has initially 
been suggested in the context of non-spiking ANN 
(Atiya and Parlos 2000, Dominey and Ramus 2000, 
Jaeger 2001, Steil 2004). More recently it has been 
adopted for spiking networks e.g. within the Liquid 
State Machine framework (Maass et al. 2002a,2003, 
Häusler et al. 2003). Reservoir computing with spik-
ing units has so far been successfully applied to such 
tasks as: spoken-word recognition (Maass et al. 2003, 
Verstraeten et al. 2005), spatio-temporal spike pat-
tern classification (Maass et al. 2002a, Ponulak and 
Kasinski 2010), motion prediction (Maass et al. 
2002b) or motor pattern generation and motor control 
(Joshi and Maass 2005, Burgsteiner 2005, Belter et 

al. 2008, Ponulak et al. 2008). More details on the 
particular tasks are presented in this paper in the 
’Applications’ section.

INFORMATION PROCESSING IN  
SPIKING NEURONS

Each millisecond, thousands of spikes emitted by sen-
sory neurons are processed by the brain, which decides 
what actions are the most appropriate for the sensed 
stimuli. Sometimes decisions are made already within 
tens of milliseconds (VanRullen and Thorpe 2001, Girard 
et al. 2008). It is intriguing, what processes enable such a 
fast information processing. How is information encoded 
in the neural signals? What is the temporal resolution of 
signals required to perform precise computations?

These questions concerning the neural representa-
tion of information are often referred to as a problem 
of the neural code (Rieke et al. 1997). Here we review 
various hypotheses on the neural code and present 
them in the light of the recent neurophysiological find-
ings on information processing mechanisms in the 
nervous system in animals.

In 1926, Adrian and Zotterman demonstrated that 
frog cutaneous receptors responded with more spikes 
whenever the strength of the external mechanical pres-
sure on the frog skin increased. This finding gave rise to 
the idea that the neural information is encoded in the 
firing rate. The rate code has been a dominant paradigm 
in neurophysiology and artificial neural networks for 
many years. Recent neurophysiological results, however, 
suggest that, at least in some neural systems, efficient 
processing of information is more likely to be based on 
the precise timing of action potentials rather than on 
their firing rate (Lestienne 2001, Bohte 2004, Stein et al. 
2005, Faisal et al. 2008, Tiesinga et al. 2008). The pri-
mary observation used as an argument against the rate 
code is that many behavioral responses are completed 
too quickly for the underlying sensory processes to rely 
on the estimation of neural firing rates over extended 
time windows (VanRullen et al. 2005)1. Another argu-
ment is that the rate, at which neurons fire, does not fully 
capture the information content conveyed in the spike-
train. For example, it has been found that the populations 
of neurons in the primary auditory cortex can coordi-
nate the relative timing of their action potentials by 

1  However, for alternative theories supporting rapid information encoding/decoding ba-
sed on the rate-code see Shadlen and Newsome (1998) and Huys and colleagues (2007).



Introduction to spiking neural networks 413 

grouping the neighboring spikes in short bursts, without 
changing the number of firings per second (deCharms 
1998). This way, the neurons can signal stimuli even 
when their average firing rates do not change.

Evidence for the reproducibility of neural responses to 
the given stimuli with high precision of the order 0.2–2 ms 
was found in blowfly’s visual cortex (de Ruyter van 
Steveninck et al. 1997), in cat’s lateral geniculate nucleus 
(Liu et al. 2001), in the middle temporal area of the 
macaque (Bair and Koch 1996) or in the rabbit retina 
(Berry et al. 1997). Similar results on the reliable preci-
sion (2–3 ms) of single spikes have been reported for 
spinal neurons in the neonatal rat spinal cord (Beierholm 
et al. 2001). In bats and weakly electric fish, relative tim-
ing of spikes in multiple cells allows for the reliable dis-
crimination of the time intervals of the order of 10−8 sec-
ond, in spite of the fact that individual spikes have a 
duration of the order of 10−3 second. A population of nerve 
cells can therefore encode information that would other-
wise be outside the limited bandwidth and resolution set 
by the maximal firing rate and action potential duration 
in individual neurons (Gabbiani and Midtgaard 2001).

Many experimental results on the neural code point out 
particularly to the high importance of each individual 
spike in the biological neural signals. In humans, precise 
timing of already first spikes in tactile afferents encodes 
touch signals at the finger tips (Johansson and Birznieks 
2004). In cats and toads, a few retinal ganglion cells seem 
to encode information about light stimuli by firing only 
two or three spikes in about 100 ms under low light condi-
tions (Gabbiani and Midtgaard 2001). This evidence sug-
gests that in almost any system where the processing-
speed of a neural system is required to be high, the timing 
of individual spikes carry important information.

Precise temporal coding paradigm is required also in 
some artificial control systems. Examples are neuro-
prosthetic systems using electrical stimulation (ES) for 
producing functionally useful movements of the para-
lyzed limbs (Popovic and Sinkjaer 2000). These systems 
explore the fact that trains of short electrical pulses 
applied to nerves or muscles result in muscle contrac-
tion. Traditionally, movement control in the ES systems 
has been realized by modulating frequency or width of 
the electrical pulses. Several results, however, suggest 
that precise relative timing of stimulating pulses may be 
more effective in generating desired, smooth movement 
trajectories than the frequency modulation. One recently 
explored approach is to use ES not only to evoke direct 
muscle contraction, but also to trigger motor reflexes 

aiming at supporting a desired movement (Mulder et al. 
1990, Sayenko et al. 2007). In this case the reflexes have 
specific temporal patterns and arrive within a time win-
dow of 50–100 ms after the initial stimulation, which 
puts certain limits on the number of stimulating pulses 
that can be delivered to the biological tissue to evoke a 
reflex, and thus it emphasizes the role of individual 
pulses and their timing in the ES.

The phenomena discussed here demonstrate the 
importance of analysis of the neural information pro-
cessing, both in biological and in artificial systems, 
with focus on the timing of individual spikes/pulses. To 
address this problem several neural coding strategies 
based on spike timing have been proposed. In the fol-
lowing we shortly describe some of these strategies:

1. Time to first spike – in this model information in 
the neural systems is encoded in the latency between 
the beginning of stimulus and the time of the first spike 
in the neural response (Fig. 2A). Time to first spike has 
been shown to carry enough information e.g. to encode 
touch signals at the finger tips in the tactile system 
(Johansson and Birznieks 2004). Interesting enough, 
Saal and coauthors (2009) have shown that the first 
spikes provide more than twice the information about 
the stimulus shape present in the firing rate during a 
tactile stimulus discrimination task and similar amount 
of information about force direction as present in spike 
counts.

Time-to-first-spike scheme enables ultra-fast infor-
mation processing, as a decision on a stimulus can be 
communicated by the arrival of the first spike already 
within a few milliseconds. The code is also very sim-
ple and can be implemented using just one neuron with 
inhibitory feedback interactions that prevent emission 
of all but the first spike. Time-to-first-spike model has 
been considered for input discrimination e.g. in artifi-
cial tactile and olfactory sensors (Kim et al. 2010, 
Chen et al. 2011).

2. Rank-order coding (ROC) – is another simple neu-
ral coding scheme. Here information is encoded by the 
order of spikes in the activity of a neural population 
(Fig. 2B). ROC approach has been proposed to explain 
ultra-fast categorization observed in the primate’s visual 
system. Thorpe and colleagues (Thorpe 1990, VanRullen 
and Thorpe 2001) proposed that the order in which each 
ganglion cell emits its first spike codes for the visual 
stimulus. The ROC model assumes that each neuron 
emits only a single spike during a presentation of the 
image. This can be easily implemented in a feedforward 
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network with inhibitory feedback connections.  Based 
on these principles and using the ROC approach, Thorpe 
and others (1997, 2001) developed a spiking neural 
model able to categorize static images with a processing 
speed comparable to that observed in humans.

3. Latency code – in this model information is sup-
posed to be contained in the exact timing of a set of 
spikes relative to each other (Fig. 2C). As discussed 
before, precisely timed patterns of spikes have been 
postulated to play an important role in the nervous 
system in many functions (Bohte 2004). Precise rela-
tive spike timing is one of the critical parameters that 
control many forms of synaptic plasticity. Changing 
the relative timing of presynaptic and postsynaptic 

spikes in a cortical neuron by as little as 10 ms can 
determine whether a synapse is potentiated or depressed 
(Markram et al. 1997). Latency code is also very effi-
cient in terms of information capacity – timing of just 
a few spikes can carry a substantial amount of infor-
mation (Borst and Theunissen 1999). Precisely timed 
sequences of spikes are typically observed in feedfor-
ward networks, since noise and inherent dynamics of 
recurrent networks can easily disrupt spike timing 
precision (Lestienne 2001, Faisal et al. 2008). Yet, 
some attempts to harvest precise spiking timing in 
recurrent networks have been made for example by 
exploring the idea of reservoir computation (Maass et 
al. 2002a, Ponulak and Kasinski 2010).

Fig. 2. Spike-based information coding strategies (see text for details): (A) time to first spike; (B) rank-coding or spike-order 
coding; (C) latency coding based on the exact timing of spikes; (D) resonant burst coding; (E) coding by synchrony; (F) 
phase coding. Legend: n1,...,n7 are the labels of neurons; the vertical bars in the particular plots represent the neural firing 
times; the numbers 1,...,5 in the circles indicate the order of spike arrival; ∆t is the latency between the stimulus onset and 
the first spike; ∆t1,...,∆t4 are the inter-spike latencies; u(t) is the neuron model state variable.
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4. Resonant burst model – in (Izhikevich 2002) it 
has been suggested that the frequency of a burst of 
spikes can determine which downstream neurons are 
activated. Using the resonance phenomenon, Izhikevich 
demonstrated that a short burst can elicit strong post-
synaptic response if the burst frequency is tuned to the 
eigen-frequencies of the membrane potential oscilla-
tions in the target neurons. The same burst would have 
a negligible effect on the postsynaptic membrane 
potential if the burst and eigen-frequencies are not 
tuned (Fig. 2D). The author suggests that this phenom-
enon may provide an effective mechanism for selective 
communication between neurons.

5. Coding by synchrony – this model is based on the 
assumption that neurons that encode different bits of 
information on the same object fire synchronously 
(Fig. 2E). This concept is grounded on several experi-
mental observations. For example, it has been shown 
that neurons in the visual cortex tend to synchronize 
their discharges with a precision in the millisecond 
range when activated with a single contour (Gray and 
Singer 1989), whereas they fail to do so when activated 
by different contours moving in different directions 
(Gray et al. 1989). It has also been suggested that syn-
chronous firing of neurons in a population can carry 
information about the global significance of the stimu-
lus for the animal (Gray et al. 1989) or to organize 
information together in packets (Jefferys et al. 1996). 
In principle, neuronal synchronization will serve as a 
mechanism improving, both information transmission 
through the network, as well as timing precision of 
spiking events (von der Malsburg 1985, Abeles et al. 
1994, Singer 1999).

Synchronization has been investigated in the context 
of networks with dominant feedforward connections, 
such as in synfire chain networks, but synchronies 
events may also dynamically emerge in recurrent net-
works (Diesmann et al. 1999). In fact, synchronization 
can be established very rapidly – simulations demon-
strate that networks of reciprocally coupled spiking 
neurons can undergo very rapid transitions from uncor-
related to synchronized states (e.g. Bauer 1993, Gerstner 
and van Hemmen 1993, Hopfield and Hertz 1995), 
which is consistent with experimental observations 
(Eckhorn et al. 1988, Neuenschwander and Singer 
1996).

6. Phase coding – in this model times of emitted 
spikes are referred to the reference time point in a peri-
odic signal. In this way neuronal spike trains can 

encode information in the phase of a pulse with respect 
to the background oscillations (Fig. 2F).

The concept of coding by phases has been studied 
both in models (Hopfield 1995, Maass 1996, Jensen 
Lisman 1996) and experimentally (Buzsaki 2006). 
Phase coding has been suggested for the hippocam-
pus (O’Keefe 1993), the olfactory system (Laurent 
1996), and also other areas of the brain, where oscil-
lations of some global variable (for example the 
population activity) are quite common (Buzsaki 
2006).

Spiking networks exploring the phase coding strat-
egy have recently been used in such tasks as odor 
discrimination (Chen et al. 2011) or robot navigation 
(Kiss et al. 2006). 

It is important to note that the experimental and 
theoretical findings discussed in this section do not 
discard rate-based neural codes. They rather high-
light the importance of precise timing of spikes to the 
neural information transmission and provide strong 
motivation for investigating computational proper-
ties of the systems that compute with precisely timed 
spikes.

LEARNING

Synaptic plasticity refers to the ability of synaptic 
connections to change their strength, which is thought 
to be the basic mechanism underlying learning and 
memory in biological neural networks (Baudry 1998).

Various forms of synaptic plasticity co-exist. They 
differ mainly on a time scale: some processes, e.g. 
pulse paired facilitation, decay on the order of about 
10–100 ms; other processes, such as long-term poten-
tiation (LTP) or long-term depression (LTD), persist 
for hours, days, or longer (Lømo 1966, Magleby and 
Zengel 1976, Abbott and Nelson 2000, Citri and 
Malenka 2008). Plasticity processes differ also in the 
conditions required for the induction. Some depend 
only on the history of presynaptic stimulation, inde-
pendently of the postsynaptic response. Other forms 
of plasticity depend on the coincidence of pre- and 
postsynaptic activity, on the temporal order of pre- 
and postsynaptic spikes and possibly on other factors, 
such as a concentration of specific chemicals (Citri 
and Malenka 2008).

In this section we discuss various models of learn-
ing for spiking neural networks that explore spike-
timing based synaptic plasticity.
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Unsupervised learning

In 1949 Donald Hebb addressed for the first time 
the question on how synapses should change their 
weights in order to store information (Hebb 1949). In 
mathematical terms his idea is usually expressed as: 
∆wji  ∞  νiνj , where ∆wji refers to the change of the 
strength of the synaptic coupling wji between the 
presynaptic neuron i and the postsynaptic cell j;  and 
νi,νj represent the activities of those neurons, respec-
tively. According to the Hebb’s formula the coupling 
wji is strengthened whenever neurons i and j are 
simultaneously active. This formula did not account 
for the synaptic depression. Only later experimental 
and theoretical work elaborated on the conditions 
under which the potentiation and depression could 
interact at a single synapse (Stent 1973, Sejnowski 
1977, Sejnowski and Tesauro 1989).

By modifying synaptic strengths Hebbian processes 
lead to the reorganization of connections within a neu-
ral network and under certain conditions may result in 
the emergence of new functions, such as input cluster-
ing, pattern recognition, source separation, dimension-
ality reduction, formation of associative memories or 
formation of self-organizing maps (for a survey, we 
refer to Hinton and Sejnowski 1999). Development of 
such properties through Hebbian process is commonly 
referred to as unsupervised learning, since no direct 
goal and thus no correction is necessary here for devel-
oping a function within a network (Barlow 1989, Hertz 
et al. 1991, Hinton and Sejnowski 1999).

The terms νi,νj in the Hebb’s formula have tradi-
tionally been interpreted as neural firing rates. 
Recent neurophysiological findings, however, sug-
gest that the Hebbian plasticity may also be influ-
enced by the timing of individual spikes (Markram 
et al. 1997). Moreover, evidence from hippocampal 
and neocortical pyramidal cells indicate that the 
order of pre- vs. postsynaptic spikes may induce 
different Hebbian processes. In one experiment the 
relative timing of the presynaptic spike arriving at 
the synapse and the postsynaptic action potential 
has been systematically varied (Markram et al. 
1997, Bi and Poo 1998). It has been observed that 
the resulting change in the synaptic efficacy after 
several repetitions of the experiment was a function 
of the relative differences of the spike times. 
Generally, presynaptic spikes preceding postsynap-
tic spikes have been observed to induce potentia-

tion, while the reversed order of spikes induced 
synaptic depression. This phenomenon has been 
termed Spike-Timing-Dependent-Plasticity (STDP). 
In some synapses, a process complementary to 
STDP has been observed, i.e. the synapses were 
weakened if the presynaptic input arrived shortly 
before the postsynaptic spike and the potentiation 
occurred if the presynaptic spike followed the post-
synaptic one. This process is known as anti-STDP 
(or anti-Hebbian plasticity).

Interesting enough, the dependence of synaptic 
plasticity on timing of spikes has been predicted theo-
retically (Gerstner et al. 1996). A general phenomeno-
logical model describing various forms of the spike-
based synaptic plasticity has been proposed by 
Gerstner and Kistler (2002a). This model can be 
expressed as:

(3)

where wji(t) is the efficacy of the synaptic coupling 
from neuron i to j; Si(t) and Sj (t) are the pre- and 
postsynaptic spike trains, respectively; each spike 
train is defined as a sum of the Dirac impulses at 
the firing times tf , that is S(t)=∑fδ(t-tf); terms Si(t) 
and Sj(t) are the low-pass filtered versions of Si(t) 
and Sj(t), respectively; a0,...,a4 are the constant coef-
ficients that control the rate of change in the synap-
tic efficacy.

In Equation 3 it is assumed that apart from the 
activity-independent weight decay (a0) and the 
Hebbian terms (a3Si(t) Sj(t), a4 Si(t)  Sj(t)), the synap-
tic changes can be triggered also by the individual 
spikes at the pre- or postsynaptic terminal even 
without additional action potentials on the opposite 
site, as illustrated in Fig. 3. Depending on the 
parameter choice Equation 3 can describe STDP, 
anti-STDP or other forms of synaptic plasticity.

STDP-like processes have assumed an important 
role in many applications of spiking neural net-
works. They are of a special interest in the context 
of unsupervised learning in such tasks as: cluster 
analysis (Natschlaeger and Ruf 1998b, Bohte et al. 
2002b, Landis et al. 2010), pattern recognition 
(Hopfield 1995, Natschlaeger and Ruf 1998a), inde-
pendent component analysis (Clopath 2008, Klampfl 
et al. 2009, Savin et al. 2010), formation of self-or-
ganizing maps (Ruf and Schmitt 1998, Choe and 



Introduction to spiking neural networks 417 

Miikkulainen 2000, Sanchez-Montanes et al. 2002, 
Veredas et al. 2008) or formation of associative 
memories (Gerstner and van Hemmen 1992, Maass 
and Natschlaeger 1998, Sommer and Wennekers 
2001, Zamani et al. 2010). We review specific appli-
cations of SNN controlled by the STDP rules in the 
last section of this paper.

Supervised learning

Supervised learning was proposed as a successful 
concept of information processing in artificial neural 
networks already in the early years of the theory of neu-
ral computation (Rosenblatt 1958, Widrow and Hoff 
1960, Widrow 1962, Werbos 1974). Recently, there has 
been increasing body of evidence that instruction-based 
learning is also exploited by the brain (Knudsen 1994). 
The most documented evidence for this type of learning 
in the central nervous system comes from studies on the 
cerebellum and the cerebellar cortex, and thus refers 
mostly to motor control and motor learning (Thach 1996, 
Ito 2000a, Montgomery et al. 2002). In particular, super-
vised learning is believed to be utilized by the neural 
motor centers to form internal representations of the 
body and the environment (Kawato and Gomi 1992a,b, 
Shidara et al. 1993, Miall and Wolpert 1996, Wolpert et 
al. 1998) or for behavioral simulations and the encapsula-
tion of learned skills (Doya 1999). Learning from 
instructions is supposed also to control information rep-
resentation in sensory networks (Gaze et al. 1970, Udin 
1985, Knudsen 1991). It is likely that supervised learning 
also contributes to the establishment of networks that 
support certain cognitive skills, such as pattern recogni-
tion or language acquisition, although there is no strong 
experimental confirmation of this proposition (Knudsen 
1994, Thach 1996, Ito 2000b, 2008).

Instruction signals for supervised learning are 
thought to have a form of activity templates to be repro-
duced (Udin and Keating 1981, Miall and Wolpert 
1996) or error signals to be minimized (Georgopoulos 
1986, Kawato and Gomi 1992a, Montgomery et al. 
2002). There is evidence that, in the nervous system, 
these signals are provided to learning modules by sen-
sory feedback (Carey et al. 2005) or by other ’supervi-
sory’ neural structures in the brain (Doya 1999, Ito 
2000a). But how are the instructions exploited by the 
learning neural circuits? What is the exact neural rep-
resentation of the instructive signals? And, finally, how 
do biological neurons learn to generate desired outputs 

given these instructions? Despite the extensive explora-
tion of these topics the exact mechanisms of supervised 
learning in biological neurons remain unknown.

Whereas there is a well documented and richly rep-
resented group of supervised learning models for rate-
based neurons (Kroese and van der Smagt 1996, Rojas 
1996), spike-based coding schemes are still highly 
uncovered in this regard by the existing approaches. 
Only recently several concepts have been proposed to 
explain supervised learning in biologically realistic 
neuron models operating on the precise timing of par-
ticular action potentials (Kasinski and Ponulak 2006).

Supervised Hebbian Learning (SHL) offers probably 
the most straightforward solution for the implementation 
of supervision in a biologically realistic manner. 
According to this approach a spike-based Hebbian pro-
cess (cf. Eq. 3) is supervised by an additional ’teaching’ 
signal that reinforces the postsynaptic neuron to fire at 
the target times and to remain silent at other times. The 
’teaching’ signal is usually transmitted to the neuron in a 
form of synaptic currents or as intracellularly injected 
currents. A thorough analysis of the supervised Hebbian 
learning in the context of spiking neurons was performed 
by Legenstein and coworkers (2005). The authors dem-
onstrated that the learning algorithm was able to approx-
imate arbitrary mapping from input to output spike trains 
with satisfactory spike train precision. The authors 

Fig. 3. Illustration of the spike timing dependent plasticity 
model given by Equation 3. From top to bottom: presynaptic 
spike train Si(t); synaptic trace Si(t) of Si(t); postsynaptic spike 
train Sj(t) and its synaptic trace Sj(t); changes of the synaptic 
weight wji(t) induced by the particular terms in Equation 3 
(referred to by coefficients given in quotes). Dashed gray line 
in the bottom plot illustrates the activity-independent weight 
decay (a0).
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reported, however, the following drawback of the algo-
rithm: since teacher currents suppress all undesired fir-
ings during training, the only correlations of pre- and 
postsynaptic activities occur around the target firing 
times. At other times, there is no correlation and thus no 
mechanism to weaken these synaptic weights that lead 
the neuron to fire at undesired times during the testing 
stage. Another reported problem is that synapses con-
tinue to change their weights even if the neuron fires 
already exactly at the desired times. Thus, stable solu-
tions in SHL can be achieved only by assuming some 
additional constraints or extra learning rules.

These problems are resolved in ReSuMe, another 
supervised learning algorithm introduced in Ponulak 
(2005). Similarly to SHL, the latter algorithm takes 
advantage of the Hebbian (correlation) processes, 
however, an instructive signal that modulates syn-
aptic plasticity is supposed to have no- or only a 
marginal direct effect on the postsynaptic somatic 
membrane potential (Ponulak and Kasinski 2010). 
In ReSuMe, synaptic weight changes are modified 
according to the following equation:

(4)

 
where: a is the learning rate, Sd(t) is the target (refer-
ence) spike train, Sj(t) is the output spike train and Si

(t) is the low-pass filtered input spike train. We note 
that the middle part of Equation 4 describes ReSuMe 
as a method combining two Hebbian processes: the 
first one defined over the target and presynaptic 
spike trains, and the latter, anti-Hebbian one defined 
over the pre- and postsynaptic trains. The right hand 
side part of Equation 4 has a similar form to the 
Widrow-Hoff rule known from the theory of super-
vised learning in artificial non-spiking neural net-
works (Widrow and Hoff 1960). Indeed, ReSuMe can 
be considered as an extension of the Widrow-Hoff 
rule to spiking neural networks. We deliberately 
present here both equivalent forms of the ReSuMe 
algorithm to emphasize the role of the method in 
providing continuity between the well-established 
principles of supervised learning theory and the 
physiological mechanisms able to implement the 
learning algorithm in a biologically plausible way. 
For a detailed discussion on this topic we refer a 
reader to Ponulak and Kasinski (2010).

It has been demonstrated that ReSuMe enables 
effective learning of complex temporal and spatio-
temporal spike patterns with high accuracy (cf. Fig. 4). 
The algorithm has also proven to be efficient in such 
computational tasks as: spike train prediction, forecast-
ing, classification, pattern generation and motor control 
(Ponulak et al. 2006, 2008, Ponulak and Kasinski 
2006b, 2010, Belter et al. 2008, Ponulak and Rotter 
2008).

Whereas supervised Hebbian learning and ReSuMe 
are primarily suitable for training in single-layer net-
works2, in many tasks it is more desirable to use multi-
layer feedforward or recurrent neural networks. The 
reason is that the multi-layer and recurrent networks 
are typically capable of performing more complex 
computation than single-layer networks (Hertz et al. 
1991). In the case of artificial non-spiking neural net-
works with continuous activation functions backprop-
agation algorithm has successfully been used to solve 
the problem of credit assignment in multi-layer net-
works (Werbos 1974, Rumelhart et al. 1986). However, 
implementation of error backpropagation in spiking 
networks is difficult due to the complex and, in many 
models, discontinuous dynamics of spiking neurons. 
In this case indirect approaches or special simplifica-
tions must be assumed in order to estimate gradient of 
the error.

One of the first algorithms to address this problem 
has been proposed by Bohte and colleagues (2000, 
2002a). In their algorithm, known as SpikeProp, the 
authors implemented a gradient descent-based error 
backpropagation for multi-layer spiking neural net-
works. The major limitation of their method, however, 
was that each neuron was supposed to fire only once 
during a single simulation cycle and the time course of 
the neuron’s membrane potential after the firing was not 
considered. The original SpikeProp algorithm has been 
thoroughly analyzed and various modifications have 
been proposed (Xin and Embrechts 2001, Moore 2002, 
Schrauwen and Campenhout 2004, Tino and Mills 
2005). However, only several years later Booij and 
Nguyen (2005) and Ghosh-Dastidar and Adeli (2009) 
proposed two other algorithms derived from SpikeProp 
that would learn patterns composed of multiple spikes.

Interesting enough, many of the questions posed 
here, concerning supervised learning in spiking neu-

2  See, however, Ponulak and Rotter (2009) for application of ReSuMe to multi-layer 
networks.
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ral networks, have also been asked in the context of 
the cerebellum, which is thought to be the primary 
site for supervised learning in the brain (Marr 1969, 
Albus 1971, Ito 2005, Jörntell and Hansel 2006). 
Accordingly, several spiking models of cerebellar 
supervised learning have been proposed (e.g. 
Yamazaki and Tanaka 2007, Achard and De Schutter 
2008, De Schutter and Steuber 2009, De Sousa et al. 
2009), along with some attempts to explain cerebel-
lum-related aspects of motor adaptation (Medina and 
Mauk 1999, Hofstötter et al. 2002, Inagaki et al. 2007, 
Carrillo et al. 2008).

Up to now many other interesting algorithms for 
supervised learning in spiking networks have been 
proposed, including: Sougne (2001), Pfister and 
others (2006), Gütig and Sompolinsky (2006), 
Schrauwen and Campenhout (2006). For a review 
of some of those methods we refer to Kasinski and 
Ponulak (2006).

Reinforcement learning

Animals learn new behaviors not only through 
direct instructions, but more often by exploring avail-
able actions in the presence of reward signals. In a 
process of trials and errors desired actions are rein-
forced with positive rewards, whereas undesired 
actions are penalized by negative reward signals. Such 
a learning scenario has been termed reinforcement 
learning and has successfully been applied to the field 
of machine learning. However, a direct link between 
the theory of reinforcement learning and its biological 
neural implementation has for long been missing. Only 
recently, some progress has been made to connect 
theories of reinforcement learning to observed adapta-
tion of neuronal processing. In particular, it has been 
observed that the activity of midbrain dopaminergic 
neurons is consistent with the reward signals predicted 
by the theory of reinforcement learning (Schultz 2002). 

  Fig. 4. Illustration of supervised learning with the ReSuMe algorithm. A single-layer feedforward network with 10 LIF 
neurons and 500 inputs is presented with a spatio-temporal spike pattern generated with a 5Hz Poissonian process. The task 
is to learn a sample target sequence of spikes assigned individually to each LIF neuron. The particular panels are the raster 
plots of the target firing times (gray vertical bars) and output firing times (black vertical bars) observed before- and after n 
training epochs, as indicated in the figure labels. Note, that already after 15 learning epochs all target patterns are almost 
perfectly reproduced at the network outputs.
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It has also been shown that the concentration of dop-
amine, a neuromodulator emitted by dopaminergic 
cells, controls plasticity processes in various brain 
areas (Otmakhova and Lisman 1996, Otani et al. 1998, 
Gurden et al. 2000, Bao et al. 2001, Lovinger 2010).

Based on these observations several models for rein-
forcement learning in spiking neural networks have 
been proposed (Florian 2005, Baras and Meir 2007, 
Farries and Fairhall 2007, Florian 2007, Izhikevich 
2007, Vasilaki et al. 2009). Many of these models can 
be expressed by the following general formula (cf. 
Legenstein et al. 2008):

(5)

where wji is, again, the weight of a synapse from neu-
ron i to neuron j, cji(t) is an eligibility trace of this 
synapse which collects weight changes proposed by 
STDP (cf. Eq. 3), and d(t)=h(t)−ho(t) corresponds to 
the concentration of the neuromodulatory signal h(t) 
around its mean value ho(t). The learning rule given 
by Equation 5 is illustrated in Fig. 5. It is worth noting 
that this learning rule can be used to modify synaptic 
connections both within feedforward (Florian 2007) 
and recurrent spiking networks (Florian 2005, 
Legenstein et al. 2008, Vasilaki et al. 2009).

The proposed models linking reinforcement theory 
and spike-based synaptic plasticity have been used to 
explain a number of experimentally observed phenom-
ena, such as e.g.:  shift of dopamine response from 
unconditional stimulus to reward-predicting condi-
tional stimulus in classical conditioning (Ljungberg et 
al. 1992, Schultz 2002); learning the association of a 
stimulus with a proper response through instrumental 
conditioning (Thorndike 1901, Skinner 1953, Brembs 
et al. 2002); or direct control of a neural activity 
through biofeedback (Fetz and Baker 1973).

Spiking neural networks trained according to the 
reinforcement learning models have also been demon-
strated to successfully solve many engineering tasks. 
This is the topics of the following section.

APPLICATIONS

In line with a structure of the previous section we 
present an overview of spiking neural network applica-
tions categorized according to the used learning para-
digms.

Many implementations of unsupervised learning in 
perceptron- or sigmoidal-gate-based ANN have been 
applied to real-world tasks. Recently, also SNN trained 
according to the Hebbian paradigm have been success-
fully used in such tasks as: formation of the self-orga-
nizing maps (Ruf and Schmitt 1998, Ruf 1998), tempo-
ral sequence recognition based on the subspaces clus-
tering (Natschlaeger and Ruf 1998a), formation of 
associative memories (Knoblauch 2003), or extraction 
of principal components from spike trains (Gerstner 
and Kistler 2002b). This list covers rather abstract 
applications. However, there is also a number of spe-
cific, real-life tasks performed with use of self-orga-
nizing SNN:

1. real-world data classification – classification 
capabilities of spiking networks trained according to 
unsupervised learning methods have been tested on 
the common benchmark datasets, such as, Iris, 
Wisconsin Breast Cancer or Statlog Landsat dataset 
(Newman et al. 1998, Bohte et al. 2002a, Belatreche 
et al. 2003). Various approaches to information 
encoding and network design have been used. For 
example, Bohte and coauthors (2002b) considered a 
2-layer feedforward network for data clustering and 
classification. Based on the idea proposed in Hopfield 
(1995) the authors implemented models of local 
receptive fields combining the properties of radial 

Fig. 5. Illustration of the spike-based reinforcement learning 
rule given by Equation 5 Here, changes of the synaptic 
weight w(t) are proportional to the product of the STDP 
eligibility trace c(t) with the reward signal d(t). Contribution 
of a pre-before-post spike pair and a post-before-pre spike 
pair to the eligibility trace c(t) is illustrated at the top of the 
figure (reproduced from Legenstein et al. 2009, with permis-
sion in accordance with the Creative Commons Attribution 
License).



Introduction to spiking neural networks 421 

basis functions (RBF) and spiking neurons to convert 
input signals (classified data) having a floating-point 
representation into a spiking representation. The 
authors also proposed a spike-timing dependent 
Hebbian learning rule that enabled separation of 
complex clusters by synchronizing the neurons cod-
ing for parts of the same cluster. Classification results 
have been communicated in two ways: a neuron to 
fire communicated a classification decision (a win-
ning cluster), whereas the firing time of this output 
neuron reflected the distance of the evaluated pattern 
to the cluster center. The approach proposed by 
Bohte and colleagues has been shown to outperform 
several other non-spiking classification methods 
when tested on the Fisher’s Iris-dataset (Newman et 
al. 1998).

2. image recognition – using a feedforward network 
with the STDP-learning and the rank-order coding 
model, Thorpe and colleagues proposed a method for 
ultra-fast image categorization (Thorpe et al. 2001, 
Guyonneau et al. 2004, Perrinet et al. 2004). The net-
work architecture developed by this group, consisted 
of two layers of neurons. At each step of categorization 
learning, one of the images to be classified was pre-
sented to the network. The presentation triggered a 
single spike in each neuron in the first network layer. 
Times of those spikes were then jittered and a Poisson-
inspired spontaneous activity was added to the spike 
pattern at each presentation. The incoming activity 
was propagated towards the next layer. The first neu-
ron to fire in the second layer inhibited its neighbors 
and triggered the STDP learning rule. As a result each 
neuron has learned one stimulus and one only. Similar 
learning principles have also been applied in algo-
rithms for detection and classification of visual objects 
in complex intensity images (Guyonneau et al. 2004, 
Perrinet et al. 2004), or for image compression and 
reconstruction (e.g. Perrinet and Samuelides 2002). 
Several other models for unsupervised image recogni-
tion have been proposed (e.g. Muresan 2002, Kornprobst 
et al. 2005, Shin et al. 2010).

3. odor recognition – spiking models of the olfactory 
system have been proposed (e.g. Rochel et al. 2002, 
Brody and Hopfield 2003, Raman and Gutierrez-
Osuna 2004, Finelli et al. 2008). In Martinez and 
Hugues (2004) a model of the insect locust antennal 
lobe has been implemented in SNN and used in a 
tracking experiment where a mobile robot was sup-
posed to approach an odor source. In the proposed 

model, a stimulus was encoded by a spatial assembly 
of quasi-synchronized projection neurons, each one 
being individually phase-locked to local oscillations. A 
frequency adaptation has been used for temporal evo-
lution of the spatial code aiming at enhancing the dis-
tance between the representations of similar odors.

4. spatial navigation and mental exploration of the 
environment – an interesting model of the hippocam-
pus like network that can learn mental maps of the 
environment and which enables movement planning 
within a given environment has been presented in 
(Hopfield 2010). The network consists of a set of place 
cells with all-to-all excitatory connections. The par-
ticular place cells get activated as a simulated animal 
explores different locations in the environment. Spike-
timing-dependent-potentiation is used to strengthen 
connections between cells activated in a close tempo-
ral proximity. Consequently, the cells that represent 
neighboring locations in the environment develop 
strong synaptic interactions. This mechanism is later 
used for path planning, where a localized bump of 
activity is initiated in the present animal’s location and 
travels through the network along the neuronal path-
ways with the strongest connections until it reaches a 
selected target location. A simple motor control algo-
rithm is proposed that uses the activity bump to guide 
the movement of the animal.

Not only Hebbian learning has proven to be useful 
in practical applications. Spiking networks trained 
according to the supervised paradigm have also been 
used in a number of tasks, such as:

• motor control and trajectory tracking – several 
models of spiking neurocontrollers have been pro-
posed for the trajectory tracking and set point control 
tasks (Hofstötter et al. 2002, Joshi and Maass 2005, 
Burgsteiner 2005, Ponulak and Kasinski 2006b, 
Ponulak et al. 2006, Belter et al. 2008, Carrillo et al. 
2008, Ponulak and Rotter 2008, Ponulak et al. 2008). 
For example, Joshi and Maass (2005) demonstrated 
that a liquid state machine network with a set of linear 
readouts could be trained to generate basic arm move-
ments, both on a simplified 2 degree-of-freedom pen-
dulum model, as well as on a biologically inspired arm 
model. After training the network could successfully 
generalize the acquired knowledge by generating 
movements to new end-points. Interestingly, the con-
troller has been shown to be robust to feedback delay 
in a range similar to feedback latency observed in bio-
logical sensory-motor systems.
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In Paolo (2003a,b) an evolutionary approach has 
been used to train a spiking controller in a mobile 
robot navigation task. The robot was supposed to per-
form positive phototaxis in the absence of sound 
stimuli and to perform negative phototaxis in the pres-
ence of a short-lived aversive sound stimulus. The 
search algorithm was able to find successful controller 
rules by evolving only the plasticity models and the 
time properties of each neuron. Both spiking and rate-
based network models have been tested. It has been 
found that spiking controllers with STDP rules were 
able to reach a stable state more rapidly and more reli-
ably than the rate-based counterparts under the same 
conditions, and achieved higher fitness by being able 
to accomplish the task earlier in their lifetimes.

• supervised data classification – spiking classifiers 
employing supervised learning paradigm have been 
used in several tasks that require classification of tem-
poral signals, including classification of spike patterns 
(Maass et al. 2002a, Nikolic et al. 2009, Ponulak and 
Kasinski 2010), speech recognition (Hopfield and 
Brody 2000, 2001, Verstraeten et al. 2005, Gütig and 
Sompolinsky 2009) or epilepsy detection (Ghosh-
Dastidar and Adeli 2009).

In Ponulak and Kasinski (2010) a liquid state net-
work trained according to the ReSuMe algorithm has 
been used to classify categories of input signals 
encoded in temporal patterns of spikes. The network 
has been trained to communicate classification results 
by emitting precisely timed spike trains associated 
with the particular categories of input signals. It has 
been demonstrated that the network could perform 
correct classification even if stimuli were degraded 
by noise (jitter of spikes) and a decision time was 
delayed with respect to the stimulus presentation. 
Interesting enough, in the extreme case the classifi-
cation was allowed to be made only 500 ms after the 
stimulus offset, based solely on the stimulus trace 
left in the firing activity of the recurrent circuit. 
Despite the fact that this trace would typically be 
overlapped by the ongoing network activity, the net-
work was still able to classify input patterns with 
70% of correct decisions.

A similar classification task, but with real spike pat-
terns obtained from the multi-electrode recordings, 
has been considered by Nikolic and colleagues (2009). 
Here the authors analyzed neural activity of around 
100 neurons in the cat primary visual cortex during the 
presentation of sequences of up to three different 

visual stimuli (letters of the alphabet). Using low-
passed filtered versions of the recorded spike trains 
and a simple linear readout (a linear neuron) the 
authors demonstrated that it was possible to extract 
most of the information about visual stimuli extract-
able by sophisticated methods of machine learning, 
e.g. support vector machines with nonlinear kernel 
functions. Interesting enough, the results presented in 
the paper indicated that the network from which the 
recordings have been made shared similar properties 
to those postulated for reservoir computing concept.

One of the first spiking models of supervised speech 
recognition has been proposed in Hopfield and Brody 
(2000, 2001). In their model, the authors explored the 
phenomenon of transient synchronization of a group of 
neurons with convergent firing rates. Using this model, 
the authors tested the network for spoken digit recog-
nition. It has been shown that the proposed network 
was able to perform broad generalization, even from a 
single example, and was robust to noise. Other inter-
esting models for speech recognition have been pro-
posed e.g. in Verstraeten and others (2005), Gütig and 
Sompolinsky (2009).

• decision making with application to financial mar-
ket – a spiking neural architecture that combines 
supervised learning and fuzzy reasoning has been 
proposed as an expert system for evaluating financial 
fitness of companies operating within certain market 
sectors (Glackin et al. 2008).

Finally, spiking neural networks trained with rein-
forcement methods have been applied to such tasks as:

• spatial navigation and path planning – in Vasilaki 
and coauthors (2009) a simplified hippocampal model 
has been used to solve the Morris water maze task. The 
network model consisted of the place cells – encoding 
the simulated animal location; and the action cells – 
that controlled animal behavior. A reward-modulated 
spiking timing dependent plasticity rule has been used 
to alter synaptic connections between cells in order to 
learn the appropriate sensory-motor mapping allowing 
the animal to find the right way through the maze 
(Fig. 6).

A similar navigation task has been considered in 
(Lee and Kwon 2008), where the authors investigated 
a spiking network architecture for the simulated heli-
copter positioning based on visual clues. Again, a 
reward-based STDP rule has been proposed to learn 
the set of actions bringing the helicopter from any 
arbitrary position to the target position.
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• decision making and action selection – in Soltani 
and Wang (2010) a reinforcement  learning paradigm 
is proposed that explains electro-physiological and 
behavioral data in two-choice decision experiments in 
animals. The model network consists of three-layers of 
neurons. The first layer is a set of cue-selective neural 
populations, each one activated upon the presentation 
of a certain cue. The sensory cue-selective neurons 
provide, through synapses endowed with reward-de-
pendent Hebbian plasticity, inputs to two neural popu-
lations in an intermediate layer. These two populations 
encode reward values of two choice alternatives (action 
values). Combination of cues is accomplished through 
convergence of cue-selective neurons onto action val-
ue-encoding neurons. The latter project to a decision 
making circuit consisting of two competing (through 

mutual inhibition) populations. Correct decisions are 
rewarded through the potentiation of plastic synaptic 
connections contributing to this decision.

• rehabilitation – an adaptive biventricular pace-
maker with a spiking neural network coprocessor is 
investigated in (Rom 2007). The role of the spiking 
network is to perform dynamic optimization of the 
pacing intervals. The network has three functional 
layers. In the input layer, different subgroups of 
synapses are excited selectively according to the 
average heart rate and in each subgroup of synapses 
each synapse is excited with a fixed predefined 
increasing time delay measured from the synchro-
nizing atrial event. The authors propose a reward-
based Hebbian algorithm that is applied to the sec-
ond layer of the network and aims at finding opti-

Fig. 6. Application of spiking neural networks to spatial navigation (Vasilaki et al. 2009). Here, a network trained according 
to the reinforcement learning paradigm has been used for animal navigation in a simulated Morris water maze experiment. 
(A) The network consists of two types of neurons: place cells – that are activated whenever an animal enters a certain spatial 
location; and action cells – that control animals behavior. Connections between place and action cells are altered by the 
learning process with the objective to find the correct action associated with every location of the animal, such that actions 
move the animal towards the target location. (B) Two sample sequences of the activity of action cells (left) and the corre-
sponding animal behavior (right) are shown. (C) Navigation map of the animal visualized by a set of direction vectors. Plots 
from left to right show map formation after 1, 10 and 50 trials, respectively (modified from Vasilaki et al. 2009, with permis-
sion in accordance with Creative Commons Attribution License).
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mal pacing intervals for a given heart condition. 
The last – output layer is composed of two sets of 
LIF neurons that accumulate postsynaptic respons-
es from the middle layer and manage the pacing of 
the right and left ventricles. For security reason the 
SNN processor operates in a master-slave architec-
ture that allows complete operation of predeter-
mined boundaries set by a master controller. 
According to the authors of the paper, the proposed 
SNN-based system shows a 30% increase of perfor-
mance in simulated cardiac output as compared to 
a nonadaptive biventricular pacemaker.

In addition to the typically engineering or AI appli-
cations of spiking neural networks discussed here, 
there are other fields that can benefit from the use of 
spiking networks. A particularly interesting and 
promising area is the modeling and analysis of bio-
logical neural structures. Deeper insight into neural 
circuitry, information processing and plasticity in the 
central nervous system is fundamental e.g. for under-
standing the relationship between the physio-anatom-
ical disorders at the neural level and the resulting 
mental or physical dysfunctions of a subject. The list 
of recent applications of SNN in this area encom-
passes studies on almost all brain regions. For an 
excellent source of information on those models we 
refer readers to ModelDB – an online neural model 
database (Hines et al. 2004) (database available from: 
http://senselab.med.yale.edu/ModelDb).

In this section we presented selected application 
of spiking neural networks classified according to 
the three paradigms: unsupervised, supervised and 
reinforcement learning. Whereas in the discussed 
applications the networks have typically been 
trained according to single-type learning rules fall-
ing into one of those categories, there are obviously 
systems which may benefit from combining differ-
ent learning paradigms within a single network. For 
example, unsupervised plasticity mechanisms, such 
as those discussed in Savin and coauthors (2010), 
can be used to improve input separation properties 
of the reservoir networks (cf. Section ’Spiking 
Models’) and the supervised learning rules, like 
ReSuMe (Ponulak and Kasinski 2010), will be used 
for training the network outputs. Supervised learn-
ing can also be combined with reward-based learn-
ing. This technique is often used in neural imple-
mentations of the actor-critic model (Witten 1977, 
Sutton and Barto 2002), where supervised learning 

is applied to function approximation in networks 
representing actor or critic modules (Tham 1995, 
Jaksa et al. 1999). Such an approach has been used 
so far in the non-spiking neural implementations, 
but in principles the same approach should be pos-
sible with spiking networks. Similarly, supervised 
and reinforcement learning can be used together in 
systems where both, error signals (for supervised 
learning) and evaluation signals (for reinforcement 
learning) are available from the environment to a 
learning system. Examples of (non-spiking) neural 
network models exploring the supervised-rein-
forcement learning concept are described in 
Rosenstein and Barto (2004) and Conn (2007).

As a concluding remark we would like to note that 
the list of spiking neural network applications pre-
sented in this section is neither exhaustive nor com-
plete. Our intention was rather to provide a reader with 
examples of tasks where spiking networks have been 
successfully used to solve real-world problems (for 
other reviews on applications of SNN see Cios and 
Sala 2000, Gerstner and Kistler 2002b, Bohte and Kok 
2005, Belatreche et al. 2006, Paugam-Moisy 2006).

SUMMARY

In this paper we surveyed selected concepts on 
information processing and learning in spiking neural 
networks. These concepts have proven to be computa-
tionally useful both as theoretical models as well as 
tools for practical applications. Theory of spiking neu-
ral networks can further gain both, from the new algo-
rithms derived within a framework of machine learn-
ing, as well as from new discoveries in neurobiology. 
In particular, it is expected that the availability of more 
efficient learning methods for spiking networks will 
bring benefit to new areas of applications. Particularly 
promising are possible future biomedical applications 
of spiking neural networks in tasks involving interac-
tions of human body with external devices, such as in 
brain-machine interface systems or in neural prosthe-
ses. Still, more work is needed to further explore nec-
essary technology that would allow for efficient and 
safe use of spiking neural networks in these tasks.
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