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INTRODUCTION

Thioredoxins (Trxs) are antioxidant multifunctional 
ubiquitous proteins with a redox-active disulfide/dithiol 
within the conserved active site sequence Cys-Gly-Pro-
Cys (Holmgren 1985, 1989). Mammalian thioredoxin 
family includes in addition to the long-known and most-
studied cytosolic thioredoxin-1 (Trx-1) many other 
members (Nakamura 2005): mitochondrial thioredox-
in-2 (Trx-2; Spyrou et al. 1997), a larger thioredoxin-

like protein p32TrxL (Hirota et al. 2002); thioredoxin-
like proteins Txl-1 (Miranda-Vizuete et al. 1998, Jimenez 
et al. 2006) and Txl-2 (Sadek et al. 2003), and sperma-
tid-specific thioredoxins Sptrx-1 (Miranda-Vizuete et 
al. 2001, Jimenez et al. 2002a, b), Sptrx-2 (Sadek et al. 
2001, Miranda-Vizuete et al. 2003) and Sptrx-3 (Jimenez 
et al. 2004). Also mammalian thioredoxin superfamily 
include specific thioredoxins of endoplasmic reticulum 
ERp18 (Alanen et al. 2003) and ERdj5 (Cunnea et al. 
2003), Trp-Cys-Gly-His-Cys-Lys motif-containing 
phospholipase C-alpha (ERp57; Hirano et al. 1994) and 
protein disulfide isomerases: CabP1, the rat analog of 
the hamster protein P5 and CabP2, the rat analog of the 
murine protein ERp72 (Rupp et al. 1994).
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Trx-1 and Trx-2 are small (about 12 kDa) proteins. 
They are induced by hypoxia/ischemia (Tomimoto et 
al. 1993, Berggren et al. 1996, Stroev et al. 2004a, b) 
and protect cells against different kinds of oxidative 
stress (Hori et al. 1994, Sasada et al. 1996, Spyrou et 
al. 1997, Takagi et al. 1999, Chen et al. 2002, Ueda et 
al. 2002). In particular, in experiments with transgenic 
mice it was shown that overexpression of thioredoxin 
protects the brain cells against damage during focal 
ischemia (Takagi et al. 1999), and that addition of thi-
oredoxin to cultural medium significantly reduces the 
damaging effects of hypoxia/reoxygenation in cell cul-
ture (Isowa et al. 2000). In contrast, inhibition of thi-
oredoxin increases oxidative stress (Yamamoto et al. 
2003).

It is known that hypoxia/ischemia induces both 
pathological effects (Takagi et al. 1998a, b, Simonova 
et al. 2003, Cai et al. 2010) and adaptive mechanisms 
for their compensation (Wojcik et al. 2009). Preliminary 
training (preconditioning) by mild hypoxia or isch-
emia improves resistance of organism to subsequent 
severe hypoxia (Vladimirov et al. 1939, Sirotinin 1939, 
Kreps et al. 1956, Vataeva et al. 2004a, b, Rybnikova 
et al. 2005a, b) including structural and functional 
resistance of brain neurons (Kitagawa et al. 1990, 
Kirino et al. 1991, Corbett and Crooks 1997, Samoilov 
et al. 2003, Duszczyk et al. 2006). The expression of 
Trxs and other antioxidants appears to provide one of 
the neuroprotective mechanisms activated by the pre-
conditioning (Andoh et al. 2002, Samoilov et al. 2002, 
Stroev et al. 2004 a, b, Chiueh et al. 2005).

In our experimental paradigm the acute severe 
hypobaric hypoxia caused extensive neuronal damage 
in hippocampus and neocortex (about 30% cell death 
in CA1 region by the seventh day after severe hypoxia), 
but the preceding preconditioning by the three-time 
mild hypobaric hypoxia prevented severe hypoxia-in-
duced neuronal death (Rybnikova et al. 2005a, b, 
2006a). The preconditioning increased survival rate of 
rats following severe hypobaric hypoxia from 50% to 
85% (Rybnikova et al. 2005a, b), shifted of the ratio of 
the Bcl-family pro- and anti-apoptotic proteins in the 
favor of antiapoptotic ones (Samoilov et al. 2005, 
Rybnikova et al. 2006a), reduced the hypoxia-evoked 
alterations in glutamatergic Ca2+ signaling (Semenov et 
al. 2008), ameliorated the memory and behavioral dis-
turbances induced by the severe hypoxia (Vataeva et 
al. 2004a, b, Rybnikova et al. 2005b) and prevents 
development of post-stress depressions (Rybnikova et 

al. 2006b, Rybnikova et al. 2007a, b). We previously 
showed that in this experimental model severe hypo-
baric hypoxia increased the expression of Trx-2 (Stroev 
et al. 2004b) and some other antioxidants such as Trx-1 
(Stroev et al. 2004a) and superoxide dismutases (Stroev 
et al. 2005a, b) in rat hippocampus and fronto-parietal 
neocortex, and that preconditioning significantly aug-
mented this induction at early period of reoxygenation 
(Stroev et al. 2004a, b, 2005a, b) which is crucial for 
cell survival.

However, it was unclear whether the augmentation 
of Trx-2 content at 3 h after preconditioned severe 
hypoxia was due to build-up of Trx-2 by mild hypoxia 
before severe hypoxia or by modification of reaction to 
severe hypoxia itself. To answer on this question it was 
necessary to clarify the Trx-2 expression level during 
and after preconditioning, including the starting point 
of severe hypoxia (24 h after last session of three-time 
hypoxia).

METHODS

Male Wistar rats weighing 200 - 250 g and aged 80 
- 90 days were subjected to 1 and to 3 sessions (once in 
day) of mild hypobaric hypoxia that was produced in a 
hypobaric chamber by maintaining the pressure at 360 
Torr (equivalent to altitude 5000 m or to 10% normo-
baric oxygen) for 2 h. The experimental procedures 
were conducted in accordance with the Declaration of 
Helsinki under the approval of the Ethical Committee 
for Use of Animal Subjects at Pavlov Institute of 
Physiology. The Trx-2 immunoreactivity was studied 
in rats of 5 groups (4-6 animals per each group): 
1) at 3 h following one-time hypoxia, 2) at 24 h follow-
ing one-time hypoxia, 3) at 3 h following last session 
of three-time hypoxia, 4) at 24 h following last session 
of three-time hypoxia, and 5) control rats which were 
placed in the same chamber for same time with no 
hypoxia produced.

For immunocytochemistry the rats were anaesthe-
tized and perfused transcardially first with 100 ml of 
saline followed by 4% paraformaldehyde in 0.1 M 
phosphate-buffered saline (PBS pH 7.3) for 4 - 5 min. 
After perfusion the brains were excised and subse-
quently fixed by immersion in the same solution for 60 
min. The samples were cryoprotected with 15% sucrose 
in PBS and stored at 4°C until sectioning in the cry-
ostat. Immunocytochemistry was performed using 
avidin and biotinylated horseradish peroxidase macro-
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molecular complex (ABC) method. Coronal sections 
(11 µm) of the brain (about -2.80 mm from bregma, 
Paxinos and Watson 1986) were mounted onto the 
poly-L-lysine (Sigma) covered slides and then incu-
bated with affinity-purified rabbit antiserum against 
rat Trx-2 (dilution 1:250 in PBS containing 1% BSA 
and 0.3% Triton X-100; Spyrou et al. 1997) at 4ºC 
overnight. After several washes, the sections were 
incubated with biotinylated goat antirabbit (Vector 
Labs) antibodies (dil. 1:300) and ABC for 30 min each. 
Diaminobenzidine was used as a chromogen to visual-
ize the sites expressing Trx-2 immunoreactivity. The 
sections were dehydrated, mounted and assayed with 
image analysis system consisting of IBM PC, Nikon 
Microphot-FXA microscope, SensiCam digital camera 
(PCO Computer Optics GmbH) and Image-Pro Plus 
(Media Cybernetics) program.

Trx-2 expression was examined in CA1, CA2, CA3 
hippocampal fields and dentate gyrus (DG). The Trx-
2-immunoreactive cells were quantified in the area of 
500 µm in length, using Morphix program especially 
created by us for such analysis (Tugoy and Stroev 
2006). Seven sections were analyzed from each brain; 
one field of each brain area studied was measured per 
each slice. The intensity of staining was expressed as 
conventional value of optical density scale from 0 
(absolute white) to 100 (absolute black). Immunoreactive 
to Trx-2 cells were divided in 2 relative classes: slight-
ly-labeled (staining intensity was at 1-10 conventional 
units above the background) and intensely-labeled 
(more than 10 units above the background). Trx-2 
immunoreactivity was assayed using following crite-
ria: the total number of immunoreactive cells shown as 
a percent of control (Nt) and the number of intensely-
labeled cells as a percent of control (Ni). One-way 
ANOVA was used for statistical analysis of data and 
result was checked by Wilcoxon non-parametric test.

RESULTS 

Immunocytochemistry revealed that mild 
hypoxia decreased Trx-2 expression in 
hippocampus

At 3 hours after one-time mild hypoxia (that is first 
session of three-time mild hypoxia) the total number of 
Trx-2 immunoreactive cells was significantly decreased 
compared to control in CA2 (Nt = 67%), CA3 (Nt = 
80%) and DG (Nt = 63%); in CA1 (Nt = 77%) decrease 

Fig. 1. Trx-2 immunoreactivity in the CA1 area of hip-
pocampus. Photomicrographs of control hippocampal CA1 
field (A), hippocampal CA1 field at 3 (B), and 24 hours (C) 
after one-time mild hypoxia; hippocampal CA1 field at 3 
(D), and 24 hours (E) after three-time mild hypoxia. Scale 
bar: 50 µm.
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of Nt was not significant (Fig. 1 - 2). Decrease of num-
ber of intensely expressing Trx-2 cells compared to 
control was significant in CA1 (Ni = 33%) and CA3 
(Ni = 8%); in CA2 (Ni = 17%) and DG (Ni = 27%) this 
decrease was quite great but formally statistically not 
significant because the standard error in this cases was 
too large (Fig. 3).

At 24 hours after one-time mild hypoxia the total 
number of Trx-2 immunoreactive cells was very sig-
nificantly decreased compared to control in all hip-
pocampal fields studied (Fig. 1-2): in CA1 (Nt = 38%), 
CA2 (Nt = 14%), CA3 (Nt = 22%) and DG (Nt = 18%). 
In all fields this decrease of Nt was statistically sig-
nificant also in comparison with 3 hours time-point 
(Fig. 1-2). Decrease of number of intensely expressing 
Trx-2 cells compared to control was significant in CA1 
(Ni = 0%) and CA3 (Ni = 9%; Fig. 3).

At 3 hours after last session of three-time mild 
hypoxia the total number of Trx-2 immunoreactive 
cells as well as number of intensively expressed Trx-2 
cells was significantly decreased compared to control 
only in CA1 (Nt = 74% Ni = 33%), in other hippocam-
pal areas studied the changes of Nt and Ni in compari-
son with control were not significant (Fig. 1-3). Nt in 
CA2 at 3 hours after three-time hypoxia was signifi-
cantly higher compared to 3 hours time-point after 
one-time hypoxia; and in all areas studied Nt at 3 hours 
after three-time hypoxia was significantly higher in 
comparison with 24 hours time-point after one-time 
hypoxia (Fig. 2).

At 24 hours after last session of three-time mild 
hypoxia the total number of Trx-2 immunoreactive 
cells was significantly down-regulated in comparison 
with control in CA1 (Nt = 59%), CA2 (Nt = 46%) and 

Fig. 2. Graphs showing changes in the total number of Trx-2-immunoreactive cells ±SEM expressed as a percentage of 
control (Nt) in different areas of rat hippocampus at 3 and 24 h after one-time and three-time mild hypoxia, as compared to 
control group. CA1, CA2, CA3 field of hippocampus and dentate gyrus (DG). Statistically significant (p<0.05) differences: 
* - as compared to control, # - 24 hours time-point as compared to 3 hours time-point, § - three-time hypoxia as compared 
to one-time one (at same time-point).
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CA3 (Nt = 66%) (Fig. 1-2); the decrease of Ni in these 
areas was not significant (Fig. 3). In CA1 and CA2 the 
decrease of Nt at 24 hours was also significant com-
pared to 3 hours time-point after three-time hypoxia 
(Fig. 2). However Nt in all areas studied and Ni in CA1 
and CA3 at 24 hours after three-time hypoxia was 
significantly higher than at 24 hours after one-time 
one (Fig. 2-3).

DISCUSSION

Thioredoxins are multifunctional antioxidant pro-
teins. Their most important function is redox status 
regulation. They are involved in various processes 
such as DNA and protein synthesis, protein structure 
formation and folding, regulation of gene expression 
and enzyme activity, apoptosis inhibition, cell growth 

and proliferation  (Holmgren 1985, Biaglow and Miller 
2005, Patenaude et al. 2005, Kondo et al. 2006). 
Thioredoxins regulate the activity of several transcrip-
tional factors including NF-κB, AP-1, CREB,  
PEBP2/CBF, Myb and HIF-1 (Hayashi et al. 1993, 
Akamatsu et al. 1997, Hirota et al. 1997, 1999, 2000, 
Das et al. 2001, Welsh et al. 2002, 2003, Csiki et al. 
2006), the p53-dependent p21 transcriptional activity 
and protein expression (Ueno et al. 1999), suppress the 
apoptosis signal-regulating kinase 1 (ASK1; Saitoh et 
al. 1998, Zhang et al. 2004) and p38 MAP kinase 
(Hashimoto et al. 1999). One of the key Trxs defense 
function is the buffering of reactive oxygen species 
(ROS; Nakamura et al. 1994, Ueda et al. 2002) and 
inhibition of cytochrome c release from mitochondria 
(Andoh et al. 2002, Chen et al. 2002, Damdimopoulos 
et al. 2002, Tanaka et al. 2002, Ueda et al. 2002, Nonn 

Fig. 3. Graphs showing changes in the number of intensely-expressing Trx-2 cells ±SEM expressed as a percentage of con-
trol (Ni) in different areas of rat hippocampus at 3 and 24 h after one-time and three-time mild hypoxia, as compared to 
control group. CA1, CA2, CA3 field of hippocampus and dentate gyrus (DG). Statistically significant (p<0.05) differences: 
* - as compared to control, # - 24 hours time-point as compared to 3 hours time-point, § - three-time hypoxia as compared 
to one-time one (at same time-point).
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et al. 2003). They can also activate other antioxidant 
systems, e.g., Mn-superoxide dismutase (Das et al. 
1997).

Thus thioredoxins play a key role in defense of cells 
during oxidative stress induced in particular by vari-
ous hypoxic/ischemic events. Different forms of 
hypoxia/ischemia commonly up-regulate the Trx-1 
(Tomimoto et al. 1993, Berggren et al. 1996, Stroev et 
al. 2004a) and Trx-2 (Stroev et al. 2004b) expression 
but the extremely severe hypoxic influences on the 
contrary can suppress it. For example Trx protein and 
mRNA expression was down-regulated in the isch-
emic core regions but up-regulated in the perifocal 
ischemic regions since 4 hours after focal brain isch-
emia (Takagi et al. 1998a, b, Hattori et al. 2002).

Based on these data it was possible to suppose that all 
hypoxic influences except the most extreme ones cause 
the defense reaction connected with up-regulation of 
Trxs expression. In preceding studies we have shown 
that severe injuring hypobaric hypoxia (180 Torr, 3h) 
induced the statistically significant increase of Trx-1 and 
Trx-2 expression in rat hippocampus (Stroev et al. 2004a, 
b). It was shown also that preconditioning by three-time 
mild hypoxia enhanced the resistance to subsequent 
severe hypoxia (Rybnikova et al. 2005a, b, 2006a) and 
essentially augmented Trx-1 and Trx-2 immunoreactivity 
at 3 hours after subsequent severe hypoxia (Stroev et al. 
2004a, b). We supposed that mild hypoxia itself also up-
regulate the expression of Trxs. However, the results 
presented here turned out to be unexpected. Analysis 
shown that at 3 hours after three-time mild hypoxia (pre-
conditioning itself) the total number of Trx-2 immunore-
active cells and the number of intensely expressing Trx-2 
cells were significantly decreased compared to control in 
CA1. At 24 h after three-time mild hypoxia, that was a 
start-point of severe hypoxia in previous experimental 
series (Stroev et al. 2004a, b), the total number of Trx-2 
immunoreactive cells was significantly down-regulated 
in comparison with control in all hippocampal areas 
studied except DG.

Present results suggest that the augmentation of 
Trx-2 content at 3 h after preconditioned severe hypox-
ia is not caused by Trx-2 accumulation during precon-
ditioning: at the start of severe hypoxia session (24 
hours after three-time mild hypoxia) the Trx-2 level in 
preconditioned rats was significantly lower than in 
native ones. Consequently it was due to modification 
of reaction to severe hypoxia itself.

Analogous in principle results were recently received 

by us for cytosolic thiredoxin-1 (Stroev et al. 2009). It 
was shown that at 24 hours after three-time mild 
hypoxia the total number of Trx-1 immunoreactive 
cells as well as the number of intensively expressed 
Trx-1 cells were significantly decreased compared to 
control in all hippocampal areas studied: in CA1  
(Nt = 78%, Ni = 40%), CA2 (Nt = 65%, Ni = 16%), 
CA3 (Nt = 50%, Ni = 7%) and DG (Nt = 75%,  
Ni = 34%). At 3 hours after three-time mild hypoxia 
the Trx-1 immunoreactivity was significantly decreased 
only in CA3 (Nt = 65% Ni = 44%) compared to control 
(Stroev et al. 2009). Inconsistency of these our results 
about possibility of down-regulation of Trx-1 and 
Trx-2 expression after mild hypoxia and literature data 
about up-regulation of Trxs by both hypoxia and isch-
emia (Tomimoto et al. 1993, Berggren et al. 1996) may 
be explained by difference of experimental models.

The effect of three-time mild hypoxia on expression 
of Cu, Zn-superoxide dismutase was also similar 
(Stroev et al. 2011). At 24 hours after third hypoxic 
session the expression of this antioxidant protein was 
significantly lower than in control in both dorsal hip-
pocampal areas: CA1 (Nt = 74% Ni = 39%) and CA2 
(Nt = 70% Ni = 45%). In ventral hippocampus the total 
number of Cu, Zn-superoxide dismutase immunoreac-
tive cells was not differ compared to control but num-
ber of intensively expressed this antioxidant cells was 
at least non-significantly lower than in control: in CA3 
Ni = 67% and in DG Ni = 69%.

It is interesting to note that according to our previ-
ously obtained data the expression pattern of 
Mn-superoxide dismutase is markedly different. At 24 
hours after the last session of three-time mild hypoxia 
the expression of Mn-superoxide dismutase was sig-
nificantly increased in CA1 and DG, but did not differ 
from control in CA2 and CA3 (Stroev et al. 2007). At 
the same time the up-regulating effect of precondition-
ing on the Mn-superoxide dismutase expression after 
subsequent severe hypoxia appears, on the contrary, in 
the CA2 and CA3 but not in CA1 and DG (Stroev et al. 
2005b). Thus, despite the opposite directional changes 
in Mn-superoxide dismutase expression when com-
pared with thioredoxins and Cu, Zn-superoxide dis-
mutase, the result confirms the same conclusion: the 
neuroprotective effect of preconditioning at the early 
periods after severe hypoxia is associated not with the 
accumulation of antioxidant proteins during precondi-
tioning, but with the modification of reaction to severe 
hypoxia. In contrast, in cases where preconditioning by 



250  S.A. Stroev et al.

mild hypoxia increases the expression of antioxidant 
(Mn-superoxide dismutase) at the beginning of severe 
hypoxia, the up-regulation effect of preconditioning on 
its expression after severe hypoxia is absent.

One-time and three-time mild hypoxia more or less 
similarly influenced on total number of Trx-2 immu-
noreactive cells (Nt): both of them significantly 
decrease Nt to 24-hours time-point compared to con-
trol in all hippocampal areas studied except DG in 
which this reduction was statistically significant only 
after a one-time hypoxia (Fig. 2). However effects of 
one- and three-time hypoxia on number of intensely 
expressing Trx-2 cells (Ni) varied (Fig. 3). It is also 
interesting to note that the dynamics of changes in 
total number of Trx-2 immunoreactive cells (Nt) from 
3-hours after single to 24-hours after triple moderate 
hypoxia has the wave phase character. It goes down 
from control to 3-hours (statistically significant in 
CA2, CA3 and DG, non-significant in CA1) and fur-
ther to 24-hours time-points after first hypoxic session 
(statistically significant in all areas). Then it goes up 
from 24-hours time-point after first hypoxic session to 
3-hours time-point after third hypoxic session (statisti-
cally significant in all areas); and then in all areas 
except DG (statistically significant in CA1 and CA2, 
non-significant in CA3) it goes down again from 
3-hours to 24-hours time-points after third hypoxic 
session (Fig. 2). It is possible that the periodical recur-
rence of these oscillations and corresponding wave 
oscillations of pro- and antioxidant systems activity 
perhaps is the factor that takes part in formation of 
ameliorative effect of preconditioning and hypoxic 
tolerance of hippocampal neurons that connected with 
ability of rapid and intensive response of antioxidant 
systems to the subsequent severe hypoxia.

Molecular mechanisms of this functional state 
modification require further study. Obviously it can be 
caused either by accumulation of Trxs mRNAs as 
result of up-regulation of transcription or by down-
regulation of mRNA degradation or by enhanced 
translation of protein from mRNA that already exists.

The last hypothesis seems most probable. In our 
study we showed an interesting phenomenon. In CA1 
area the marked induction of Trx-2 mRNA was seen 
only at 24 h after non-preconditioned severe hypoxia 
(Samoilov et al. 2002), however the protein level was 
significantly increased already at 3 h (Stroev et al. 
2004b). Evidently in this case the enhancement of pro-
tein synthesis takes place more rapidly than the 

increase in the transcription of corresponding gene. 
The molecular mechanism of this regulation may be 
connected with the translocation of translation from 
the ER to polysomes or with action of unknown spe-
cific translation factors. One of the factors that can 
have such a role may be the heterogenous ribonucleo-
protein A18 (Yang et al. 2006).

It is known that the ROS mediate the preconditioning-
induced rescue pathways (Marini et al. 1996, Rauca et 
al. 2000, Ravati et al. 2000, 2001, Rudiger et al. 2003) 
and exposure to exogenous antioxidants such as N-acetyl 
cysteine, 2-mercaptopropionyl glycine, dimethyl thio-
urea, N-t-butyl-alpha-phenylnitrone, 2-hydroxyoestradi-
ol and vitamin E during preconditioning at least par-
tially abolished its beneficial effect (Baines et al. 1997, 
Kaeffer et al. 1997, Vanden Hoek et al. 1998, Das et al. 
1999, Rauca et al. 2000, Ravati et al. 2000, 2001, Leak 
et al. 2006). In our experiments the decreases of Trxs 
expression at 24 hours after first and third session of 
mild precondition hypoxia may result in increases of 
ROS level at these time-points. One may assume that 
during preconditioning the increased ROS by feedback 
mechanism induce changes in the expression of regula-
tors of Trxs because it is known that ROS can induce 
Trx mRNA transcription (Taniguchi et al. 1996, Moon et 
al. 2005). Obviously later this modification of Trxs regu-
lators expression or/and up-regulation of Trxs mRNA 

transcription possibly causes the augmentation of Trx-1 
and Trx-2 expression after subsequent severe hypoxia.

Conclusions

One-time and three-time mild hypoxias not increase 
but in some hippocampal areas significantly decrease the 
expression of Trx-2. Thus the augmentation of Trx-2 
content at 3 hours after preconditioned severe hypoxia is 
caused not by Trx-2 accumulation during precondition-
ing but modification of reaction to severe hypoxia itself.

Dynamics of changes in total number of Trx-2 
immunoreactive cells from 3-hours after single to 
24-hours after triple moderate hypoxia has in some 
cases the wave character.
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