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Introduction

The opioid system is one of the main system 
engaged in strongly conserved evolutionary mecha-
nisms like pain perception and modulation, reward, 
addiction and fear behaviors (Herz 1998, Inturrisi 
2002, Petrovic et al. 2008, Lehner et al. 2010). Opioid 
receptors and their corresponding agonists are key 
players in the inhibition and modulation of pain. It has 
long been postulated that sufficient clinically-relevant 
analgesia is obtained exclusively via activation of cen-
tral opioid receptors (Lipkowski and Carr 2002). In 
addition to inducing an analgesic effect, typical cen-
trally-active opioids are the source of undesirable side 
effects which may limit their therapeutic use in chron-

ic pain. This effect of opioids is a consequence of their 
expression patterns in the areas of the CNS responsible 
for sensorimotor integration and cognitive function-
ing. Nevertheless, in some pain states including nerve 
damage, painful inflammation, tissue destruction by 
cancer expansion opioid receptors located in the 
periphery play a significant role in the development of 
analgesia. Besides their profound expression in the 
CNS, opioid receptors are also present in the PNS on 
peripheral sensory nerve terminals as well as on other 
nonneural tissues such as the vascular epithelium or 
keratinocytes (see Table I).

 The expression of opioid receptors and their 
enhanced transport to sensory nerve terminals becomes 
prominent especially in the presence of inflammation. 
Immune cells are then recruited to the damaged tissue 
and secrete opioid peptides which bind to peripheral 
opioid receptors reducing pain. This endogenous pain-
relief mechanism became an inspiration for the exog-
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enous administration of endogenous, synthetic opioid 
peptides and novel peptidomimetics in the hope to 
conquer pain.

Opioid receptor types

Opioid receptors belong to the rhodopsin-like sub-
family of GPCR seven-transmembrane domain 
metabothropic receptors. Ligand binding facilitates 
coupling to the inhibitory Gi/o protein decreasing 
cAMP levels by inhibiting Ca2+/Na+ influx. This results 
in a decrease of releasing of proalgesic mediators such 
as substance P, CGRP and nociceptor excitability. The 
existence of opioid receptors was first reported in 1973 
in a series of radioligand binding experiments where 
radiolabeled opioid ligands bind to a receptor in the rat 
brain membrane homogenate (Pert and Snyder 1973, 
Simon et al. 1973, Terenius 1973). The first attempt to 
classify “opiate receptors” into three types was pro-
posed by Gilbert and Martin (1976) and Lord and 
coworkers (1977) based on the efficacy of opiate bind-
ing in chronic spinal dogs and mouse vas deferens. 
Later in the early nineties the DOR (Evans et al. 1992), 
MOR (Chen et al. 1993, Thompson et al. 1993) and 
KOR (Li et al. 1993, Yasuda et al. 1993, Meng et al. 
1993) genes were cloned. Although all three types of 
opioid receptors are encoded by a different gene they 

share high homology but can also exist in several 
splice variants due to a differential mRNA processing 
(Knapp et al. 1995, Wei et al. 2004, Wei and Loh 2011). 
Different pharmacological profiles of the existing opi-
oid receptors may be a result of posttranslational 
modifications and dimerization (Bouvier 2001, Levac 
2002, Rios et al. 2001, Gupta et al. 2006). 

Peripheral opioid receptors

Peripheral opioid receptors are synthetized in cell 
bodies of primary afferent neurons and intra-axonally 
transported to peripheral sensory nerve endings where 
they can interact with both endogenous and exogenous 
opioid agonists (Rau et al. 2005, Wang et al. 2010). 
Many studies have shown that the role of peripheral 
opioid receptors is more pronounced during peripheral 
inflammation due to a number of inflammation-driven 
processes. Under normal conditions nerve fibers are 
encapsulated by a perineurial barrier preventing the 
diffusion of high molecular weight particles and 
hydrophilic opioid receptors ligands. In pathological 
conditions such as inflammation easier access of opi-
oid agonists through the perineurium of sprouting 
peripheral nerve fibers is observed (Olsson 1990, 
Antonijevic et al. 1995). Moreover, the expression of 
peripheral opioid receptors and their axonal transport 

Table I

Localization of opioid receptor expression

Opioid receptor type
Expression

CNS PNS Non-neural tissues

MOR neocortex, caudate – putamen, 
nucleus accumbens, thalamus, 
hippocampus, amygdala, 
nucleus tractus solitarius

peripheral sensory neuron 
DRG, stomach, duodenum, 
jejunum, oleum, proximal and 
distal colon

vascular endothelium, cardiac 
epithelium, keratinocytes, vas 
deferens, Sertoli cells

DOR olfactory-related areas, 
neocortex, caudate – putamen, 
nucleus accumbens, amygdala

peripheral sensory neuron 
DRG

KOR caudate – putamen, nucleus 
accumbens,amygdala, neural 
lobe of the pituitary gland

sensory neuron DRG, 
stomach, duodenum, jejunum, 
oleum, proximal and distal 
colon
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to the sensory nerve terminals is enhanced in the 
course of inflammation (Hassan et al. 1993, Ji et al. 
1995, Schäfer et al. 1995, Pol and Puig 2004). The most 
extensively studied upregulation of MOR expression 
was observed in animal inflammatory pain models 
(Zhang et al. 1998, Ballet et al. 2003, Puehler et al. 
2004, Taguchi et al. 2010) and in human inflammatory 
bowel disease (Philippe et al. 2004) but downregulated 
in bone cancer pain in mice (Yamamoto et al. 2008). 

In parallel, data supporting DOR and KOR overex-
pression in inflammation has also been published but 
some results remain contradictory (Ji et al. 1995, 
Maekawa et al. 1996, Zhang et al. 1998, Shen et al. 
2005, Puehler et al. 2006). In addition to opioid recep-
tor upregulation, inflammation also changes the envi-
ronment in local tissue via pH decrease rendering 
opioid receptors more active due to an increased 
G-protein coupling and cAMP level (Rasenik and 
Childers 1989, Reddy and Bhargava 1996, Zöllner et 
al. 2003, Shaqura et al. 2004). 

Neuropathic pain resulting from mechanical nerve 
damage is another condition which may involve opioid 
receptor expression changes in peripheral sensory neu-
rons. In many different studies employing different 
neuropathic pain models involving entrapment of the 
peripheral nerve MOR, DOR either KOR expression 
was observed to be unregulated (Sung et al. 2000, 
Truong et al. 2003, Kabli and Cahill 2007, Walczak et 
al. 2005, Obara et al. 2009). Some studies however 
found especially MOR expression to be downregulated 
in neuropathic pain (Rashid et al. 2004, Pol et al. 2006, 
Obara et al. 2010). 

Despite some discrepancies there is overall more 
evidence of opioid receptor overexpression or increased 
binding affinity which makes them more susceptible 
and more accessable for both engogenous and exoge-
nous opioid agonists.

Endogenous peripheral opioid 
peptide analgesia

Endogenous opioid peptides are natural ligands 
which bind to opioid receptors during painful inflam-
mation, neuropathy or cancer invasion. In mammals 
three types of opioid peptides endorphins, enkephalins 
and dynorphins are synthetized via cleavage of the 
precursor proteins. Endorphins derived from POMC 
exhibit a high affinity for MOR and DOR and low 
affinity for KOR. PENK is a enkephalin precursor and 

is characterized by highest affinity to DOR, moderate 
to MOR and very low to KOR. Dynorphins show pref-
erable binding to KOR but possess some MOR and 
DOR specificity. Two endogenous opioid peptides 
EM-1 and EM-2 also activate opioid receptors but their 
precursors are not yet known (Terskiy et al. 2007, 
Perlikowska et al. 2009). Some postulate a de novo 
synthesis of those peptides (Rónai et al. 2009). Several 
other non-mammalian opioid peptides which show 
affinity to opioid receptors have been discovered to 
date. This includes amphibian dermorphin and deltor-
phin (Broccardo et al. 1981, Glaser et al. 1981, Barra et 
al. 1994, Negri et al. 2000, Auvznet et al. 2006, Sinha 
et al. 2009), food opioid peptides formed in the process 
of milk digestion like casomorphins (Rüthrich et al. 
1992) or gluten digestion such as gluteomorphin (Sun 
and Cade 2003) and exorphin (Takahashi et al. 2000). 

Endogenous opioid peptides are released from 
immune cells, which in the presence of inflammatory 
mediators migrate to inflamed tissue in a process 
referred to as “homing“ a centrally-mediated mecha-
nism (Mousa et al. 2001, Shmitt et al. 2003, Heurich et 
al. 2007). Leukocytes roll along the blood vessel wall 
in a process mediated predominantely by L-selectins 
and E- and P-selectins present on endothelial cells 
(Machelska et al. 1998). Adhesion of the leukocytes to 
endothelial cells is mediated by integrins, for example 
ICAM-1. After a firm adhesion immune cells squeeze 
through the endothelium and migrate to the inflamma-
tion site (Butcher and Picker 1996), release opioid 
peptides which in turn bind to peripheral opioid recep-
tors.

Endorphins and enkephalins are postulated to play a 
leading role in endogenous antinociception. In 
β-endorphin deficient mice a short stressful swim 
challenge failed to produce analgesia (Parikh et al. 
2011) whereas antibodies against these opioid peptides 
abolished analgesia upon CRF stimulation of immune 
cells secreting β-endorphin and enkephalin (Cabot 
2001). 

The importance of endogenous peripheral analgesia 
has been examined in various animal pain models 
including chronic inflammatory and cancer pain giv-
ing hope for a potential therapeutic application of this 
natural pain-relief mechanism. In rats with an unilat-
eral CFA-induced hindpaw inflammation, stress 
induced by a cold water swim produced analgesia in 
the inflamed but not in the contralateral non-inflamed 
paw. This analgesic effect was abolished by BBB-
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permeable naloxone and naloxone methiodide a non-
selective peripherally restricted opioid receptor antag-
onist. Nevertheless in chronic CFA inflammation (four 
days after the injection of CFA) analgesia was exclu-
sively naloxone methiodide reversible. These results 
support a notion that acute inflammation is both cen-
trally and peripherally mediated whereas during 
chronic inflammatory pain analgesia is a result of opi-
oid peptide binding to peripheral opioid receptors 
(Machelska et al. 2003). 

At the early stages of the development of mouse 
osteosarcoma β-endorphin containing immune cells 
were detected inside and surrounding the tumoral 
mass. The local administration of non-selective NLXM, 
MOR-selective CYP and DOR-selective NTI produced 
hyperalgesia in the ipsilateral paw. Further confirma-
tion of the involvement of immune cell-derived opioid 
peptides in tumor pain attenuation was the injection of 
a CRF receptor antagonist. Blockade of the CRF 
receptor inhibits opioid peptide release from immune 
cells and promoted the development of pain (Baamonde 
et al. 2006).

The study conducted by Stein and coworkers (1993) 
aimed to target intra-articular opioid peptides present 
in synovia of human patients who underwent 
arthroscopic knee surgery. Synovia samples were 
found to contain immune cells abundant in β-endorphin 
and Met-enkephalin as shown by immunohistochemis-
try staining. The blockage of synovial opioid receptors 
by intra-articular naloxone resulted in higher pain 
scores in numerical rating scale and increased the 
demand for supplementary analgesics. These findings 
further confirm the future application of opioid pep-
tides in pain control not only in animal models but also 
in human patients.

Exogenous peripheral opioid 
peptide analgesia

One of the first clinical attempts to target the 
peripheral opioid receptor system for pain control was 
a study which aimed to examine the local analgesic 
effect of intra-articular morphine (Stein et al. 1991). 
Low-dose intra-articular morphine produced more 
pronounced postoperative analgesia than in patients 
injected with intravenous morphine. 

The findings confirming the clinically-relevant and 
selective analgesic effect of opioids in inflamed periph-
eral tissue triggered ideas to administer low, systemi-

cally inactive doses of opioid peptides and their ana-
logs locally into pathologically changed tissue. In the 
visceral pain mouse model an intraperitoneal or subcu-
taneous injection of a cyclic EM-1 analog reduced the 
number of acetic acid induced writhes. The analgesic 
effect was reversed by MOR specific antagonists 
β-FNA and NLZ and peripherally active NLXM but 
not by nor-BNI and NTI suggesting a predominant 
involvement of peripheral MOR. Interestingly, EM-1 
failed to abolish pain behavior presumably due to a low 
stability of the parent compound (Bedini et al. 2010). 

Morphiceptin [Tyr-Pro-Phe-Pro-NH2] is yet another 
example of an opioid peptide showing high opioid 
receptor affinity and peripheral activity in visceral 
pain. It is an amide fragment of bovine β-casein and 
highly specific for MOR but not for DOR (Chang et al. 
1981, 1983, Vogel et al. 1996). Morphiceptin has been 
shown to elicit strong analgesia after intracerebroven-
tricular injection but not when injected peripherally 
due to rapid degradation. However, a more stable mor-
phiceptin analog [Tyr-Pro-NMePhe-Pro-NH2] acted 
peripherally inhibiting diarrhea in mice (Shook et al. 
1989). Chemical modifications of the morphiceptin 
structure led to a synthesis of analogs resistant to pep-
tidase degradation displaying a potent supraspinal and 
peripheral MOR-mediated analgesia (Hau et al. 2002). 
Along with their peripheral analgesic effect new mor-
phiceptin analogs inhibited gastrointestinal transit in 
vivo making them interesting novel therapeutics in the 
treatment of gastrointestinal mobility disorders e.g., 
the irritable bowel syndrome (Gach et al. 2010).

Biphalin [(Tyr-D-Ala-Gly-PheNH-)2], dimeric pep-
tide analog of enkephalin, is another example of an 
opioid peptide that has limited permeability of an 
intact BBB (Silbert et al. 1991). Biphalin expresses 
synergic activities with current drugs used in AIDS 
therapy. Therefore, biphalin has been proposed to be 
applied as a component of antiviral HIV multidrug 
therapies in combination with chronic pain treatment 
in AIDS patients as a primary therapeutic target (Tang 
et al. 2008).

Allodynia is a frequent condition in multiple clinical 
conditions (Peyron et al. 1998, 2004, Becerra et al. 
2006, Moller et al. 2006, Witting et al. 2006) when 
patients perceive normally innocuous tactile or ther-
mal stimuli as painful. Over the years numerous rodent 
models of neuropathy have been developed to help to 
understand the mechanisms governing persistent pain 
resulting from peripheral nerve injury. Animal models 
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of neuropathic pain include: partial ligation of the sci-
atic nerve (Seltzer et al. 1990), chronic constriction 
injury (Bennett and Xie 1988), ligation of the L5/L6 
spinal nerves (Kim and Chung 1992) or the spared 
nerve injury model (Decosterd and Wolf 2000). 
Although these models differ in the type of injury or 
the magnitude or duration of pain symptoms they all 
mimic pain conditions seen in humans (Martin et al. 
2003). 

In an experimental rat model of neuropathy devel-
oped by loosely tying four ligatures around the sciatic 
nerve, locally injected opioid peptides alleviated 
mechanical allodynia in the von Fray test (Obara et al. 
2004). In the study it was demonstrated that MOR ago-
nists: morphine, DAMGO, EM-1 and EM-2, were suc-
cessful in relieving neuropathic pain after intraplantar 
injection as opposed to a subcutaneous injection. 
DAMGO had an antiallodynic effect on the injured 
paw at a relatively low dose compared with endomor-
phins which required much higher doses to induce a 
similar magnitude of analgesia. EM-2 produced a simi-
lar effect as EM-1 at a similar dose range but its effect 
started to diminish 10 min after injection. Interestingly, 
opioid peptides were more effective in pain relief than 
a prototipical alkaloid – morphine, which analgesic 
effect was delayed in time. The reason for these differ-
ences in effectiveness between opioid peptides and 
morphine are still not cleat-cut. Several possible expla-
nations have been raised like the involvement of differ-
ent subtypes of MOR (Labuz et al. 2002), unequal 
receptor binding and a change in receptor binding 
parameters (Patel et al. 2002). The latter arguments 
may be supported by the role of activated macrophages 
which gather around the site of injury and take part in 
the regeneration process in this model (Stoll et al. 
1992). The change in the specific milieu may in turn 
affect opioid receptor binding properties and their 
availability for various opioid peptides. Another plau-
sible explanation is the fact that morphine readily 
crosses the BBB exerting profound central analgesia 
but rudimentary analgesia in the periphery due to a 
rapid uptake by the CNS and escape from local tissue. 

Cancer pain can also be in the area of interest when 
discussing antihyperalgesic effect of opioid peptides. 
The peritumoral injection of a selective MOR agonist 
- DAGO inhibits thermal hyperalgesia in a mouse 
model of cancer pain produced by intratibial implanta-
tion of NCTC 2472 cells. The analgesic effect of 
DAGO was only observed in tumor-bearing animals 

and completely abolished by NLXM strongly support 
the hypothesis that this agonists action is peripherally 
and not centrally mediated (Menéndez et al. 2003). 
Very similar results were obtained by Baamonde 
(2006) where the study confirmed peripheral analgesia 
elicited additionally by a DOR agonist - DPDPE and 
KOR agonist - U50,488H. The greatest analgesic effect 
was achieved by stimulation of MOR although analge-
sia produced by DAGO as well as DPDE was shorter 
than that after U50,488H administration.

The potential use of peripheral KOR agonists as 
novel analgesics was encouraged by the observation 
that, unlike MOR agonists, KOR agonists do not cause 
typical morphine-like aversive side effects. The first 
generation KOR agonists however were burdened with 
dose limiting neuropsychiatric side effect like dyspho-
ria as a result of dopamine release inhibition (Donzanti 
et al. 1992; Pande et al. 1996). The second generation 
KOR agonists were targeted towards peripheral KORs 
to decrease brain penetration (Barber et al. 1994). 
Asimadoline a prototypic peripherally active KOR 
agonist has been researched for possible treatment for 
human irritable bowel syndrome and was shown effec-
tive in clinical trials (Delvaux et al. 2004, Szarka et al. 
2007). Unfortunately, apart from peripheral activity, 
oral asimadoline was not devoid of central psychoto-
mimetic effects (Machelska et al. 1999). In order to 
overcome these therapy-limiting difficulties, a third 
generation of peptidic KOR agonists has been estab-
lished. A hydrophilic structure of these peptides pre-
vented from passive transport through biological mem-
branes acting primarily on the periphery. The novel 
D-amino acid tetrapeptide CR665 which is now under 
clinical development by Cara Therapeutics when 
injected intravenously in nanomolar range elicited 
potent analgesia in the mouse writhing test without 
producing motor impairment (Vanderah et al. 2008).

Conclusions

In conclusion, growing knowledge of peripheral 
endogenous pain pathways opens a new chapter in 
pain control which may bring substantial benefit for 
pain sufferers. Many animal and human studies have 
shown a justification for such claims. The development 
of novel peptidomimetics characterized by increased 
plasma stability, lower toxicity, high affinity for opioid 
receptors is a milestone for researchers aiming for sat-
isfactory long-lasting pain relief in patients. 
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