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NEUROTROPHINS AND THEIR 
RECEPTORS

Neurotrophins

In the early 1950s Levi-Montalcini and Cohen 
(Levi-Montalcini and Hamburger 1951, Cohen et al. 
1954) were first to describe the nerve growth factor 
(NGF) and for that discovery they won the Nobel 
Prize in Physiology or Medicine in 1986. Afterwards, 
several novel structurally homologous neurotrophic 
factors belonging to the nerve growth factor family 
termed neurotrophins were discovered in verte-
brates. These were BDNF, NT-3, NT-4/5 (Barde et 
al. 1982, Phillips et al. 1990, Ibáñez et al. 1993). 
Other members of neurotrophins neurotrophin-6 
(NT-6) and neurotrophin-7 (NT-7) were only cloned 
from some teleost species (Götz et al. 1994, Lai et al. 

1998) and are not expressed in other vertebrate than 
teleost fishes.

Structure of all neurotrophins is highly conserved 
with the exception of NT-4/5 (Hallböök 1999) that 
shares only about 50% amino acid identity with other 
neurotrophins (Shooter 2001). An important common 
feature of all neurotrophins is the presence of six 
cysteine residues that enable formation of disulfide 
bridges. Neurotrophins are synthesized as pre-pro-
proteins by both neuronal and non-neuronal cell types 
(Thoenen 1995, Seidah et al. 1996). Protein products of 
all genes encoding neurotrophin contain a signal pep-
tide for protein secretion (pre-protein) and the precur-
sor protein (pro-protein). When the hydrophobic region 
of the signal peptide is removed from pre-proneurotro-
phin at the N-terminal, the proneurotrophin is gener-
ated (Fig. 1). The proneurotrophin is either cleaved of 
the signalling peptide in the endoplasmic reticulum 
and converted to the mature neurotrophin or is trans-
ported to the plasma membrane and released in an 
unprocessed form (Seidah et al. 1996). In that case 
plasmin or another extracellular protease converts the 
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precursor proneurotrophins to mature neurotrophins 
through proteolytic cleavage (Pang et al. 2004). Mature 
neurotrophins are secreted as homodimeric proteins 
into the extracellular space and act in a paracrine and/
or autocrine way (Lu et al. 2005), controlling many 
crucial processes in development of the nervous sys-
tem such as proliferation, migration, differentiation, 
survival, apoptosis and synaptic plasticity. All these 
processes lead to control neuronal numbers and den-
dritic growth.

Neurotrophin receptors

Neurotrophins interact with three distinct classes of 
receptors: three members of the tropomyosin receptor 
kinase (Trk) family of receptor tyrosine kinases (TrkA, 
TrkB and TrkC), the p75 neurotrophin receptor belong-
ing to the tumor necrosis factor receptor (TNFR) 
superfamily and sortilin, a Vps10p domain-containg 
transmembrane protein. All neurotrophins mediate 
their effects via activation of one or more Trk recep-

Fig. 1. Schematic design of neurotrophin receptors and their specific ligands. Neurotrophins bind to their receptors with high 
affinity (bold arrows) or low affinity (thin arrows). All isoforms of TrkA (I, II), TrkB and TrkC full length (FL), truncated 
(T1, T2, T3) and with insertion (14, 25, 39 - number of aminoacids) contain two cysteine rich regions (C1, C2), leucine rich 
region (LRR) and two immunoglobulin-like domains (Ig1, Ig2) in the  extracellular region, the transmembrane domain (TM) 
and tyrosine kinase domain (TK) in the cytoplasmic region. Low affinity p75 neurotrophin receptor contains four cysteine 
rich regions (C1-C4) or one - C4 cysteine in the truncated form (s) in the extracellular region and D - “death” domain in the 
cytoplasmic part. Vps10p – extracellular domain of sortilin receptor, I – internalization motif in the cytoplasmic domain of 
sortilin.
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tors. NGF activates the TrkA receptor, BDNF and 
NT-4/5 bind to the TrkB receptor and NT-3 activates 
predominantly the TrkC receptor but NT-3 can also 
bind to other Trk receptors. All these neurotrophins 
bind to the p75 receptor. 

Proneurotrophins (precursor proteins) are also active 
as ligands of Trk receptors, but their binding elicits 
functional effects opposite to those elicited by binding 
of mature neurotrophins. All proneurotrophins interact 
with p75 or co-receptor complex of p75 and sortilin 
receptors inducing cell death or survival (Lee et al. 
2001, Nykjaer et al. 2004, Teng et al. 2005).

Trk receptors

TrkA, TrkB and TrkC receptors belong to the family 
of receptor tyrosine kinases and neurotrophins are 
their common ligands. All Trk receptors consist of 
three structural regions: an extracellular ligand bind-
ing region that contains two cysteine-rich clusters, one 
of which is followed by three leucine-rich repeats and 
two immunoglobulin-like domains, a transmembrane 
region and the cytoplasmic region, where a tyrosine 
kinase catalytic domain is present (Fig. 1). The second 
immunoglobulin-like domain enables each of Trk 
receptors TrkA, TrkB and TrkC to bind selectively to 
their specific neurotrophins. However, other extracel-
lular domains also regulate Trk catalytic activity 
(Arevalo et al. 2000). It has been shown that inhibition 
of N-glycosalytion of the extracellular domain which 
contains consensus sites for N-glycosylation induces 
activation of the Trk tyrosine kinase without binding 
of a ligand (Watson et al. 1999). Binding of a neurotro-
phin dimerizes the Trk receptor (Ohira et al. 2001), 
which activates the tyrosine kinase catalytic domain of 
the cytoplasmic region through its auto trans-phospho-
rylation for adaptor proteins (Huang and Reichardt 
2003). Phosphorylation of tyrosine undergoes also out-
side of the tyrosine kinase domain at the C-terminus of 
the receptor.

Many isoforms of Trk receptors have been described, 
among them four isoforms of TrkA, eigth isoforms of 
TrkB and six isoforms of TrkC. The trkA locus encodes 
two isoforms, TrkA-I and TrkA-II (Fig. 1). TrkA-II 
contains an additional 6 amino acids-long insertion 
between the second immunoglobulin-like domain and 
the transmembrane region of the extracellular domain, 
while TrkA-I lacks that insertion (Barker et al. 1993). 
Both of them are biologically active receptors that rec-

ognize their specific ligand NGF and transduce func-
tional signals. Two other isoforms are distinguished 
from the full-length isoforms by presence of only one 
leucine-rich region in the extracellular domain instead 
of three in the full-length TrkA or absent at all. These 
isoforms are expressed only in the thymus (Dubus et 
al. 2000). Distribution of the two TrkA splice variants 
has been investigated with in situ hybridization tech-
nique (Barker et al. 1993). High level of TrkA-II tran-
scripts has been found in the sympathetic and dorsal 
root ganglia of the rat and human, the human trigemi-
nal ganglia and rat brain whereas expression of TrkA-I 
was high in the non-neuronal tissue like kidney, lung. 
However in a neuronal cell line TrkA-II displays sig-
nificantly higher activation by NT-3 (Clary and 
Reichardt 1994).

Various isoforms may be generated from the trkB 
and trkC genes by alternative splicing of transcripts of 
their exons (Fig. 1). Alternative mRNA splicing of trkB 
exons creates eight receptor isoforms. These isoforms 
that have truncated cytoplasmic domains lack the 
tyrosine kinase motif. The full length TrkB receptor is 
named gp145trkB. Truncated forms lack most of the cyto-
plasmic domain of the full-length receptor but contain 
a short C-terminal sequences (Eide et al. 1996). The 
TrkB-T1 and TrkB-T2 trunctated isoforms differ from 
the full-length TrkB receptor by lacking the intracel-
lular kinase domain. They have short intracellular tails 
of 23 and 21 aminoacids respectively whereas TrkB-T4, 
which has also been described as TrkB-T-ShC (Stoilov 
et al. 2002), is much longer than the other two truncated 
domains and contains a putative internalization 
sequence (Forooghian et al. 2001) as well as an Shc 
binding domain (Stoilov et al. 2002). Additional TrkB 
isoforms are distinguished from the full length TrkB 
receptor or TrkB-T1 that contain one (L1) or none (L0) 
of leucine-rich regions in the extracellular domain. The 
L1 and L0 variants are not biologically active and do 
not bind TrkB specific ligands such as BDNF, NT-3 and 
NT-4/5 (Armanini et al. 1995). High levels of expres-
sion of the TrkB-T1 and TrkB-T2 receptors has been 
found in neurons of the adult CNS (Carim-Todd et al. 
2009) although expression of TrkB-T1 is also observed 
in glial cells such as astrocytes, oligodendrocytes and 
Schwann cells (Silhol et al. 2005). Truncated forms of 
TrkB receptors are also expressed in the choroid plexus 
and ependyma (Fryer et al. 1996).

Six TrkC isoforms have been identified so far 
(Fig. 1). They differ from the full length TrkC by trun-
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cations or insertions in the intracellular domain. Two 
TrkC isoforms, TrkC-T1 and TrkC-T2 are character-
ized by truncated intracellular kinase domain that is 
replaced by distinct short C-terminal sequences 
(Valenzuela et al. 1993, Hapner et al. 1998). They were 
also named the TrkC-NC1 and TrkC-NC2 noncatalytic 
forms (Menn et al. 1998). Three other isoforms, TrkC-
14, TrkC-25 and TrkC-39 are characterized by differ-
ent length of insertions (14, 25 or 39 aminoacids) in the 
intracellular domain (Valenzuela et al. 1993, Tsoulfas 
et al. 1996, Menn et al. 1998). It has been shown that 
only the truncated isoforms are expressed in periph-
eral nerves and astrocytes, whereas TrkC insert iso-
forms are expressed in the CNS during the postnatal 
period and in the adult life (Tsoulfas et al. 1996). The 
full-length Trk receptors are the major forms early in 
development, whereas truncated forms predominate 
later.

TrkB and TrkC isoforms may modulate signal trans-
duction either by formation of heterodimers with full-
length receptors or by competitive binding of the avail-
able ligand. The truncated Trk receptors can inhibit the 
full-length Trk receptors either by acting as the domi-
nant negative receptor or by forming non-functional 
heterodimers (Eide et al. 1996, Carim-Todd et al. 
2009). Co-expression of the truncated and full-length 
isoforms has been shown for both TrkB and TrkC 
receptors (Eide et al. 1996, Palko et al. 1999). Truncated 
TrkC receptors may function as inhibitors of the TrkA 
or TrkB receptors, even though heterodimerization of 
different Trk receptors has not been demonstrated in 
vivo. The high degree of conservation of the intracel-
lular domains of truncated receptors in evolution may 
suggest presence of other functions of these receptors 
(Hapner et al. 1998, Cheng et al. 2007, Islam et al. 
2009). For example, truncated TrkB receptors may 
sequester ligands and limit their diffusion (Fryer et al. 
1997). What more, after binding neurotrophins they 
may induce an increase in the rate release of acidic 
metabolites from cells (Baxter et al. 1997). Therefore, 
they may autonomously activate signalling cascades in 
a neurotrophin-dependent manner.

p75

p75 belongs to the tumor necrosis factor family of 
receptors. It consists of an extracellular region that 
contains of four cystein-rich domains, a single trans-
membrane domain and the intracellular domain named 

death domain which is characteristic for all members 
of the tumour necrosis factor family receptors (Fig. 1). 
Activation of the cytoplasmic region leads to activa-
tion of NFkB which induces apoptosis (Liepinsh et al. 
1997). The intracellular domain of this receptor can be 
phosphorylated. It can bind a number of death-signal-
ling ligands and the PDZ domain containing proteins 
known for protein trafficking and receptor complex 
association (Roux and Barker 2002, Coulson et al. 
2004). Therefore it was shown that p75 interacts with 
several proteins that transmit signals important for 
regulating survival, differentiation and synaptic plas-
ticity (Underwood and Coulson 2008).

One truncated isoform of p75 has been identified. 
This isoform that was termed s-p75 has only one 
cysteine-rich repeat in the extracellular domain instead 
of four.

Sortilin

A few years ago a novel neurotrophin receptor 
called sortilin has been described. Sortilin is a member 
of the family of Vps10p domain-containing transmem-
brane proteins and binds mature NGF, proNGF, proBD-
NF and proNT-3 (Nykjaer et al. 2004, Teng et al. 2005, 
Yano et al. 2009). NGF binds to sortilin with moderate 
affinity, as compared to its high affinity binding to 
TrkA and p75 (Hempstead et al. 1991). If sortilin is co-
expressed with p75 and associates with it, then the 
affinity of this receptor complex to proNGF is 
increased. Nothing is known about the signalling path-
ways triggered by sortilin. It is not clear whether sorti-
lin acts only as a co-receptor of p75 facilitating its 
binding to proNGF or if it can independently trigger a 
signalling cascade. If such independent function of 
sortilin exists, it has most probably a proapoptotic 
character (Schweigreiter 2006).

EXPRESSION OF NEUROTROPHINS AND 
THEIR RECEPTORS DURING EARLY 
DEVELOPMENT OF THE NERVOUS 
SYSTEM

The level of expression of neurotrophins and their 
receptors is generally high throughout development of 
the mammalian CNS (Knusel et al. 1994, Kordower et 
al. 1994, Fryer et al. 1996, Tessarollo 1998, Quartu et 
al. 2003a, b, Beltaifa et al. 2005, Numan et al. 2005, 
Tang et al. 2010). During development neurotrophins 
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are expressed selectively at different stages in various 
structures of the nervous system (Table I), regulating 
different processes in various brain areas. It is worth to 
note, that almost all data relating to timing and local-
ization of expression of neurotrophins and their recep-
tors at early stages of development are derived from 
studies on rodents, carnivores and primates including 
human. Very few data are available on other species of 
mammals.

Expression of NGF and TrkA during 
development

During development of the nervous system various 
processes such as neurogenesis, migration, growth of 
neuritis and forming connections, apoptosis, develop-
ment of the neuronal dendritic field and their pruning 
occur in a sequential order and at specific developmen-
tal stages. Therefore timing of expression of neurotro-
phins and specific forms of their receptors defines the 
scope of developmental events they influence. It has 
been shown that NGF and its TrkA receptor are 
expressed during early or mid stages of development 
(Table I). In the rat PNS, e.g., in the trigeminal gan-
glion, the peak of NGF expression occurs at E12 
(Arumäe et al. 1993), while in the human it takes place 
during 23rd week of gestation (Quartu et al. 1997). In 
the rat spinal cord NGF mRNA starts to be expressed 
at the stage E12 and it is detectable until E17.5 (Ayer-
Lelievre et al. 1983, Elkabes et al. 1994). In primates 
expression of NGF in the CNS appears at compara-
tively later stages. In the monkey neocortex the NGF 
mRNA starts to be present at E120 till birth at E165 
(Mori et al. 2006) and in the human neocortex at the 
15-16th week of gestation (E105-112). Its expression in 
the hippocampus occurs even later, between 23rd and 
28th weeks of gestation (Pizzuti et al. 1990, Quartu et 
al. 2003a). 

Expression of TrkA receptors also occurs at early 
stages of brain development. Martin-Zanca and coau-
thors (1990) cloned the mouse trk proto-onconge (pres-
ently known as TrkA) and selected two of its putative 
exons for generating probes that were used in the 
Northern analysis and in situ hybridization. They found 
that in the mouse the TrkA mRNA could be first detect-
ed in the brain at the stage E8.5. The trk-specific band 
was first observed in Northern blots from brains of E9.5 
embryos and its intensity increased until E13.5. 
Afterwards, its expression decreased to the level found 

in the adult. Analysis of expression of trk receptors with 
in situ hybridisation in E12.5-E14.5 mouse embryos 
showed the highest expression of trk mRNA in the sen-
sory cranial and spinal dorsal root ganglia. Also in the 
rat expression of TrkA in the dorsal root sensory gan-
glia was first observed at E12.5 (Elkabes et al. 1994). 

Development of expression of TrkA receptor was 
also investigated in mammalian species other than 
rodents (Table I). No data is available regarding pres-
ence the TrkA receptor in the monkey at earlier stages. 
In E133-135 fetuses of the macaque monkeys (Macaca 
fascicularis) NGF receptor immunoreactivity labeled 
with the monoclonal antibody against the human NGF 
receptor was visible in axons of the retinal ganglion 
cells, in Mueller glial cells of the retina and in the cer-
ebellum (Schatteman et al. 1988). In the cerebellum the 
level of NGF receptor declined starting from E164 
(Schatteman et al. 1988). In the rat cerebellum the NGF 
receptor was present during the first 20 days of post-
natal development which is equivalent to the late pre-
natal period of the primate cerebellum (Quartu et al. 
2003b). It has been shown that during late phases of the 
CNS development NGF is also involved in neuronal 
plasticity (Macias 2008, Badowska-Szalewska et al. 
2009).

The role of NGF and TrkA receptors in the CNS 
development were also investigated in mice in which 
the ngf gene or trkA gene were knocked out (Crowley 
et al. 1994, Smeyne et al. 1994). Pups of the ngf (-/-) 
knockout mice were born alive but had a short life span 
(about 4 weeks) because of massive cell loss in the 
sensory and sympathetic ganglia (Crowley et al. 1994). 
These data provide direct information regarding the 
role of NGF in promoting cell survival of embryonic 
sensory neurons. NGF acts via the TrkA receptor and 
therefore the Trk-A null mice also die shortly after 
birth (Smeyne et al. 1994). TrkA knockout mice con-
tained significantly fewer and smaller cholinergic 
neurons in the basal forebrain and striatum which indi-
cates that the NGF/TrkA signalling plays an important 
role in maturation of neurons (Fagan et al. 1997).

Expression of BDNF, NT-4/5 and TrkB during 
development

Expression of BDNF, NT-4/5 and TrkB receptors 
also occurs at early stages of development of the mam-
malian nervous system (Table I). At E10-E12 BDNF is 
present in the rat trigeminal ganglia (Arumäe et al. 
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1993). There are no data concerning expression of 
BDNF in the PNS of other mammalian species. 
Beginning from E13 BDNF immunoreactivity was 
also present in the CNS, especially in the neocortical 
subplate and developing cortical plate neuroblasts of 
the rat (Fukumitsu et al. 1998). The number of labeled 
cells increased till E18 when all cells of the cortical 
plate were labelled. In the macaque monkey expres-
sion of BDNF mRNA in the cerebral cortex was first 
detected at E121 (Huntley et al. 1992). The level of 
BDNF protein expression was low at that age and 
gradually increased afterwards (Mori et al. 2004).

Hayashi and coworkers (1999, 2000) investigated 
localization of TrkB-FL immunoreactivity in the 
developing hippocampal formation and cerebral cortex 
of the macaque monkey but only at two developmental 
stages (E140 and P7). At both stages the TrkB-FL pro-
tein was detected in the dentate gyrus, Ammon’s horn, 
subiculum and the entorhinal cortex. In the prefrontal 
and visual cortices the number of cells immunoposi-
tive for the full-length TrkB was high at E140 and its 
expression has been maintained till the postnatal day 
7. The truncated TrkB-T1 was also observed at late 
stages of the macaque pregnancy (Ohira et al. 1999). 
At E140 the level of truncated TrkB in the prefrontal 
cortex was about 7% of that in the adult macaque but 
in the hippocampus and cerebellum the level of expres-
sion of the truncated TrkB receptor was already high 
(Ohira et al. 1999). In the rat the truncated form of 
TrkB has not been detected before E15 and its expres-
sion was low until birth. Afterwards it increased 
gradually during neonatal development (Fryer et al. 
1996). In human infants at the postnatal age 2 to 9 
months BDNF and its TrkB receptor are expressed in 
the brainstem nuclei and hippocampus (Tang et al. 
2010), but the time this expression begins is not 
known.

Mouse trkB cDNA has been cloned (Klein et al. 1989, 
1990) and expression of its products during mouse 
embryogenesis was studied. Expression of trkB tran-
scripts has been first visible at E9.5 in the neuroepithe-
lium and neural crest cells that formed the dorsal root 
ganglia. At E13.5 trkB mRNA has been shown with the 
in situ hybridization in the lateral wall of the telenceph-
alon, trigeminal nerve and the PNS (from sensory gan-
glia of the spinal cord to the visceral plexus). At that age 
and also at E16.5 particularly high levels of trkB expres-
sion in the CNS were visible in the olfactory lobe and 
ependymal layer of the fourth ventricle.

The full-length TrkB protein (TrkB-FL) is expressed 
in the brain during early embryonic development: in 
the rat at E13-14 (Knűsel et al. 1994, Freyer et al. 1996, 
Fukumitsu et al. 1998), in the mouse at E12.5 (Klein et 
al. 1989, 1990, Barnabé-Heider and Miller 2003, 
Bartkowska et al. 2007, Islam et al. 2009) and in the 
pre-term human newborns (Quartu et al. 2003a, b). In 
the rat E13 embryos TrkB immunoreactivity was 
strong in the cortical primordial plexiform layer and 
ventricular zone cells. Transient expression of TrkB 
that was observed at E18 in the cortical plate and sub-
plate neurons disappeared at E20 (Fukumitsu et al. 
1998). In the cingulate and entorhinal cortex expres-
sion of TrkB also appeared at E18 and increased till 
birth (Fryer et al. 1996) while expression of BDNF 
mRNA in the occipital cortex appeared only during 
postnatal development. At P10 the level of BDNF 
mRNA was still low and gradually increased until P30 
(Schoups et al. 1995). Expression of NT-4/5 mRNA 
was found only in the rat trigeminal ganglia at E10-E11 
(Arumäe et al. 1993, Ibáñez et al. 1993).

BDNF knockout mice were born alive but most of 
them died before the second postnatal week (Ernfors et 
al. 1994, Jones et al. 1994). They had poor motor coor-
dination and body balance. Knockout of the bdnf gene 
resulted in cell loss of neurons in the sensory ganglia, 
including the vestibular ganglion (Bianchi et al. 1996), 
dorsal root ganglia, trigeminal ganglia (Ernfors et al. 
1994), geniculate ganglia of the facial nerve (Patel and 
Krimm 2010) and the cranial and spinal sensory gan-
glia (Jones et al. 1994). In the bdnf (-/-) knockout mice 
the most affected structures in the brain were thalamus 
(Lotto et al. 2001), substantia nigra (Baker et al. 2005) 
and cerebellum (Schwartz et al. 1997).

trkB (-/-) knockout mice were born alive but majority 
of them died within 48 h after birth. These mutant mice 
had abnormalities in the facial motor nucleus and trigem-
inal ganglion hampering their suckling, which caused 
their death by starvation but abnormalities were also vis-
ible in other sensory ganglia of the head, like the vestibu-
lar and cochlear ganglia (Klein et al. 1993, Piñon et al. 
1996, Silos-Santiago et al. 1997) and also in the dorsal 
root ganglia (Perez-Pinera et al. 2008). During early 
postnatal stage apoptotic cell death was significant in 
various brain regions of the TrkB mutant mice (Alcañtara 
et al. 1997, Holm et al. 2003). Knockout mice lacking 
both truncated and full-length isoforms of the TrkB 
receptor experienced less pronounced neuronal losses 
compared to animals with full-length TrkB knockout 
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(Luikart et al. 2003). Lack of the truncated TrkB caused 
also neurite abnormalities and reduced the length of den-
drites in amygdalar neurons (Carim-Todd et al. 2009).

Expression of NT-3 and TrkC during 
development

Pattern of developmental distribution of NT-3 and 
its TrkC receptor has been investigated in the rat 
embryo (Table I). In the cortex NT-3 immunoreactive 
cells were first present at E13 in the ventricular zone 
cells and primordial plexiform layer and at E15-E18 
they were located in the subplate (Fukumitsu et al. 
1998). Expression of TrkC was first observed in the rat 
at E13 in the primordial plexiform layer. At E18 it was 
visible in the subplate and in the deepest neuronal 
layer of the cortical plate (Fukumitsu et al. 1998).

In the mouse embryo expression of the TrkC mRNA 
was present from the earliest stages of neural tube for-
mation, i.e. about E10.5 (Tessarollo et al. 1993). By 
E11.5 trkC expression was increased throughout CNS 
and trkC transcrips were present in the neocortex, 
striatum, pons, medulla, cerebellum and the mantle 
(postmitotic) layer of the spinal cord. In the human 
embryo TrkC was discovered in the cerebellum at the 
24th week of gestation (Quartu et al. 2003b). The full-
length form of TrkC was highly expressed during 
embryogenesis and at low level throughout postnatal 
development while expression of the truncated forms 
was low during early stages of development (Table I) 
and afterwards gradually increased to reach the mature 
levels by adolescence (Beltaifa et al. 2005).

NT-3-deficient mice displayed severe movement 
defects and most of them died shortly after birth 
(Ernfors et al. 1994). Mice lacking the nt-3 gene expe-
rienced severe loss of the cranial and spinal sensory 
and sympathetic neurons (Fariñas et al. 1994, Ernfors 
et al. 1995, ElShamy et al. 1996, Liebl et al. 1997). The 
number of oligoprogenitors in these knockouts was 
lower (Kahn et al. 1999) and they had lower numbers 
of glial cells in the CNS. In the nt-3 (-/-) mice proteins 
content in the myelin and myelin thickness were 
reduced (Woolley et al. 2008).

Mice lacking TrkC were born alive but died within 
3 weeks after birth. trkC (-/-) mice showed abnormal 
behavior (Klein 1994) and they had reduced numbers 
of sensory neurons (Piñon et al. 1996, Liebl et al. 1997, 
Silos-Santiago et al. 1997). Mice lacking TrkC had also 
deficiencies in glial cells (Kahn et al. 1999).

Expression of the p75 receptor during 
development

Expression of p75 has been shown at early develop-
mental stages of the CNS and PNS (Table I). In the rat it 
was shown at E7 (Ernfors et al. 1988), particularly in the 
forming dorsal root ganglia. During subsequent days of 
development p75 was selectively expressed in the sym-
pathetic and sensory ganglia and also in the forebrain 
(Buck et al. 1987). In the ventrolateral telencephalic wall 
the p75 receptor (described by the authors as the NGF 
receptor) immunoreactivity has been first found at E13 
and its expression increased during following days (Koh 
and Loy 1989). In the monkey immunoreactivity for p75 
was first visible at E56 in the embryonic cerebral wall, 
especially in the subplate which disappeared by birth 
(Meinecke and Rakic 1993).

In carnivores data about timing of expression of the 
p75 receptor in the nervous system during fetal period 
are known only for the cerebral cortex. Development 
of the cerebral cortex has been investigated in two 
carnivore species, the cat and ferret (Allendoerfer et al. 
1990, 1994). NGF receptors (p75) on the subplate neu-
rons were first labeled at E30 of the cat fetuses. They 
were then expressed there for about three weeks. 
Expression of the p75 receptor decreased at around 
E52 and disappeared at E60, when subplate neurons 
were starting to die out. Immunostaining for NGF 
receptors in the subplate neurons of the cerebral cortex 
in the ferret was established at the postnatal (P) day 2 
that is developmentally equivalent to the developmen-
tal stage E43 in the cat. Kittens are born at the 65th 

gestational day, whereas ferret pups are born at the 41st 
gestational day, at much earlier stage of development 
(Luskin and Shatz 1985).

Mice lacking the p75 gene had deficits in the PNS 
(Lee et al. 1992, Jahed and Kawaja 2005). They dis-
played behavioral impairment and loss of neurons in 
the basal forebrain (Peterson et al. 1999). On the con-
trary, Yeo and others (1997) showed that the size of 
neurons in the basal forebrain increased in the p75 (-/-) 
knockout mice. These mice displayed also reduced 
apoptosis in the retina at E15.5.

Expression of sortilin receptor during 
development

Expression of the sortilin receptor was observed in 
the developing nervous system (Table I). Transcripts of 
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sortilin were first detected at E7.5 in the ectodermal cell 
layer of the mouse embryo (Hermans-Borgmeyer et al. 
1999). At E9.5 the hybridization signal was found in the 
neural tube. Later the sortilin gene was expressed in all 
areas of the CNS. Between E14.5 and E16.5 intensity of 
the signal decreased in proliferative zones but was still 
strong in the cerebral cortex and retina. During embry-
onal development of the retina sortilin coexpressed with 
p75 but at the postnatal day 6 only sortilin was expressed 
there. In the retinal neurons at E15 substantial amounts 
of sortilin receptors were localized in the intracellular 
membranes of the Golgi apparatus while at the postna-
tal period sortilin changed its localization and was 
placed on the cell surface (Nakamura et al. 2007). 
Beginning from E11.5 sortilin was also present in the 
peripheral nervous system, i.e. dorsal root ganglia and 
trigeminal ganglion (Hermans-Borgmeyer et al. 1999). 

Sortilin knockout mice showed reduced neuronal 
apoptosis in the developing retina and in retinal cell 
culture (Nykjaer et al. 2004). Although sortilin defi-
ciency did not affect developmentally regulated apop-
tosis in sympathetic neurons, it did prevent their age-
dependent degeneration (Jansen et al. 2007).

CONCLUSIONS

Onset of expression of neurotrophins (NGF, BDNF, 
NT-3 and NT-4/5) corresponds with the onset of neu-
rogenesis in the neural tube during brain development 
of investigated mammalian species and is differen-
tially regulated in later development. In spite of the 
fact that structure of neurotrophins and their receptors 
is very conservative, their functions are variable and 
complex, depending on cells they are expressed in and 
stage of development. What more, all neurotrophins 
are synthesized as proneurotrophins and all proneu-
rotrophins are active ligands binding to the p75 recep-
tor and activating either the apoptosis pathway or sig-
nal cascades that lead to cell survival.
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