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Abstract. In this paper we present a theoretical framework for novelty based
feedback regulation in artificial neural networks. Novelty is assessed on the
basis of monitoring the coherence of network dynamics. The result of novelty
detection is dynamically coupled to parameters that control the dynamics of
the recognition process. The paper presents a new measure of novelty
detection — the strength of the local field — and presents new simulation results
concerning novelty detection. It also integrates previously published models
and simulation results into a general dynamical model of feedback regulation.
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INTRODUCTION

Novelty in the enviroment carries information that
needs to be decoded in order to provide the individual
with better chances of adaptation. Often it is crucial for
survival. It is therefore natural that the nervous system
evolved in such a way that novelty detection is fast and
reliable. The effects of this process have been extensive-
ly researched but little is known about its mechanisms.

On the behavioural level, the effects of novelty are
most easily seen as an improved fluency and efficiency
of processing of repeatedly presented stimuli (Habib
2001). This means that stimuli, once thay become famil-
iar, are processed differently from novel ones. On the
neural level, single unit recordings reveal that repeated
presentation causes a reduction of neural activity —
which again implies that with novel stimuli cell activa-
tion is elevated. This effect has been witnessed in many
experimental designs (Gilbert et al. 2001, Henson and
Rugg 2003, Miller at al. 1991) and may last for different
periods of time (Sanchez-Vives et al. 2000, Schoups et
al. 2001, Sobotka and Ringo 1994). Therefore it was
termed either repetition suppression or adaptation.
However, Ranganath and Rainer (2003) propose that in
fact these are instatiations of the same cellular mecha-
nism. Reduced neural activity to repeated stimuli has
also been observed as a decrease in metabolic changes
as witnesses in fMRI studies (Grill-Spector and Malach
2001, Huk et al. 2001).

Another well researched effect of novelty is the
P300 component in the event-related potential (ERP)
recordings (Sutton et al. 1965), which, at the behav-
ioural level, correlates with an orienting reflex
(Sokolov 1963, 1969). The P300 potential is composed
of several subcomponents of which the P3a has been
directly linked to novelty processing (Friedman et al.
2001, Knight 1984, Squires et al. 1975). The orienting
reflex may be thought of as a vivid indication (e.g., ori-
enting of the body) of deploying cognitive resources to
process the novel stimulus. Novelty is also directly
linked to emotional response — it was shown in mere-
exposure paradigm that known stimuli elicit positive
affective response while novel stimuli evoke negative
affect (Zajonc 1980).

All these cases provide examples of feedback regu-
lation in the nervous system. In all of them the novelty
of the stimulus is assessed early in perception — even
before the actual recognition — and it changes the way
in which the neural system processes information.

The notion of feedback is traditionally related to
constant modulation of the process by the results of the
process itself and is often conceptualized as a func-
tional link leading from output to input. This notion
does not capture however important properties of nov-
elty based feedback regulation, which requires that
novelty is detected and the regulation takes place
before the output is reached.

Although both the principles of feedback regula-
tion in general and the effects of novelty of stimuli
on the processing of these stimuli have been well
documented experimentally, the specific model
describing feedback regulation based on novelty of
the stimulus is still missing. Such a model should
describe how novelty of the stimulus is detected in
early stages of stimulus processing, and how the
detection of novelty influences the functions of the
nervous system.

GENERAL APPROACH

Previous work investigated specific measures of
dynamical recognition of novelty and specific models
of feedback based regulation (Lewenstein and Nowak
1989a, b, Vallacher and Nowak 1999, Zochowski et al.
1994). Another line of research related the measure-
ments to the emotional response (Drogosz and Nowak
1996, Winkielman and Nowak 2005, Winkielman et al.
2002). In the current paper we present a novel criteri-
on for fast novelty detection and a general model of
novelty based feedback regulation.

Our model is based on the assumption that pre-
recognition of novelty, taking place in the very first
moments of stimuli processing, affects the dynamics
of recognition. A schematic course of this process is
presented in Fig. 1. We assume that early dynamics of
recognition carries information that can be decoded
and fed back into the system, so that it affects the
recognition process itself. As can be inferred from the
figure, there are two crucial steps here — monitoring
the initial response of the system and modulating the
dynamics of the network. The first is responsible for
the detection of dynamical response of the system
based on type of the incoming stimuli (i.e., familiar
vs. novel), the other for implementing this informa-
tion.

Novelty based feedback regulation may thus be
understood as modulating the properties of the system
depending on its own state or dynamics during infor-



mation processing. To propose such a feedback regula-
tion model we need to identify what dynamics charac-
teristics indicate processing of a novel stimulus and
how they may affect the recognition process.
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Fig. 1. Schematic course of novelty based feedback regulation.

We propose that novelty pre-recognition is based
on dynamical measurment of coherence of the signal
in the information processing system: low coherence
indicates novelty, whereas high coherence indicates
familiarity to the incoming stimulus. The level of
coherence in turn, affects global control parameters
of the system and therefore forms feedback modula-
tion of its dynamics. We will describe here two pos-
sible measures of coherence in artificial neural net-
works — frequency of state changes and local field —
and identify the control parameters of the system
they might modulate to qualitatively change the
dynamics of the network: signal to noise ratio and
connection plasticity. We will present examples of
implementation of these measures in atractor neural
networks. Our simulations indicate that novelty can
indeed be assessed very early during information
processing, and it might in turn modulate this
process to obtain qualitatively different response of
the system. Before we present our models and simu-
lation results, we will briefly discuss the assumptions
of attractor networks, as this type of architecture was
used in the models.

Attractor neural networks

Simplified network models are usually constructed
in very rough analogy to their biological counterparts.
Neurons, or in the case of psychological applications
blocks of neurons, are modeled as relatively simple
input-output elements (McCulloch and Pitts 1943).
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Such elements, which we shall call "neurons" for sim-
plicity, are connected with each other through the so
called synaptic connections. The efficacy of synaptic
connection of the j-th neuron to the i-th neuron is
described by a real number J;, that measures an effec-
tive influence of j-th neuron on the i-th neuron. The
dynamics of such a net, can be described as a process
of adjustment of the state of a given neuron to the
influence that it experiences from different sources:
other neurons or external stimuli (Amit 1989). The
most important property that distinguishes network
models from other models is distributed and parallel
character of information processing and emergence of
complex collective effects.

The class of networks used in models presented here
may be termed attractor neural networks (Rumelhart
and McClelland 1986). These kind of networks, in con-
trast to feed-forward ones, are characterized by a mas-
sive appearance of feedback loops among its elements
and no clear direction of information flow. External
stimuli determine the initial state of the network. The
evolution of the network is determined by network
connectivity and neurons' response function (i.e., spe-
cific rules describing neuron's response to incoming
signal). Dynamics of the classic Hopfield network is
described by

S = Sign[z S;.Jij] (1)
J

where S/ is the state of i-th neuron at time .

During its evolution, after some time the network
approaches an asymptotic state, usually a stationary
(fixed) point where the state of the network does not
evolve over time.

For appropriately constructed connections the fixed
point represents one of the stored configurations in the
network (i.e., memories). This type of networks serves
as associative memory model and they can recognize
highly distorted patterns. The memory retrieval is very
robust with respect to different kinds of perturbations,
such as removal of connection links, noise etc. One of
the most known learning algorithms is the Hebb's rule,
which stores statistically independent configurations
and is given by:

1
Jy=— 2.8} )
b
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where J; is strength of the synapse between i-th and
Jj-th neuron, &' is state of the i-th neuron of the u-th
learning pattern, and p is the number of learning pat-
terns. The algorithm represents a well known neuro-
physiological notion that coupling is formed between
coactive neurons.

All of the known learning rules lead to a finite capac-
ity of the memory i.e., the performance of the model
decreases dramatically if the number of stored patterns
exceeds some critical value. For example the Hebb's
rule allows for storing p~0.14N patterns in the limit of
large number of neurons N € 0. The Hebb's learning
rule, implemented in Hopfield networks, was used in
the models presented in this paper (for a detailed
description of the Hopfield model see Hopfield 1982).

The matrix of connections in a Hopfield network
does not have to be symmetric i.e., J; does not have to
be equal to J,. It has been, however, stressed by
Hopfield that the model simplifies enormously if the
symmetric connections are used. In such a case the
"energy" function may be defined and its dynamics
during a recognition process becomes equivalent to the
process of minimalization of energy.

The concept of energy minimalization allows for a
formulation of a simple intuitive description of the
dynamics. Namely, we can imagine that the energy land-
scape in the space of network configurations is com-
posed of many hills and valleys, as presented in Fig. 2.

The dynamics of the network then corresponds to
the strongly damped motion from the initial configura-
tion to the "closest” minimum in the direction of the
steepest descent.
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Fig. 2. Energy landscape in an attractor neural network.

As we mentioned before, attractor networks, includ-
ing the Hopfield system, are hugely simplified model
of biological neural networks. Nevertheless, when
interpreted properly, they may give much insight into

how the nervous system works. To understand their
potential, one has to take into account that attractor
networks are qualitative models. They do not seek to
precisely mimic real neuronal groups but are rather
aimed at simulating simplified and generic brain mech-
anisms — not dependent on properties of a particular
group of cells. Furthermore, nodes in the case of
Hopfield model do not represent activity of a single
cell. Rather, the state of a node in this type of network
is interpreted as an averaged activity of a group of neu-
rons, or their active vs. non-active state. Thus, although
attractor neural networks cannot be regarded as realis-
tic models of neural systems, they may provide quali-
tative understanding on some processes occurring in
real neural nets.

RESULTS

In the following sections we will propose two meas-
ures that may function as a dynamical novelty check in
artificial neural networks: neuronal flip frequency and
measurement of the local field. Next, we will show
how they might be coupled with control mechanisms,
such as adjusting noise level and plasticity of connec-
tions, to produce a self-adaptive, dynamical system.
We will use two examples to show the workings of
those mechanisms. In the first, the self-adjustment of
noise levels in the system will allow the network to
vary its dynamical state between the retrieval regime
and quickly evolving ustable state that could be inter-
preted as "don't know" answer. In the second model the
self-adjustment of the speed of synaptic modifications
will drive the network into retrieval or learning phase,
depending on stimulus novelty.

Flip frequency

In the standard Monte Carlo simulation (Binder
1979, 1984) of a neural network of the Hopfield type,
randomly chosen neurons are checked for their align-
ment with the signal arriving from other neurons. If
neural state agrees with the sign of this signal the neu-
ron does not change state. Conversely if the field has
an opposite sign to that describing the neural state, the
neuron modifies it. Thus the average flip rate of neu-
rons is a good measure of the agreement of initial state
of the network with one of its stable points (stored
memories). If the state of the network does not overlap
with one if the stored memories (i.e., is novel) the flip



rate in the network is high (flip rate probability is 0.5).
On the other hand, if the initial state of the network
overlaps with one of the stable points the flip rate is
very low or zero.

We have tested flip frequency as novelty indicator in
computer simulations (compare also Lewenstein and
Nowak 1989a, b). We used a standard Hopfield net-
work with a slightly modified Hebb's rule in which dif-
ferent patterns contribute to connection weights with
different strength:

1 &
Jy Y > WL €)
u=l

where w" is the weight of the u-th pattern. This
allows for definition of "weakly" and "strongly" mem-
orized patterns.

The net was presented with an input state that was one
of the memorized states ", partially distorted. The
distortion was done by choosing randomly a given
fraction of N neurons and changing their states. Such
distorted initial patterns S/ are very well character-
ized by their overlap ¢ with their ancestor states

1
q =F;t5sf “)

The overlap ¢g=1 means that the overlap is com-
plete — none of the elements was changed and the
actual pattern is identical to its ancestor. On the other
hand, the overlap 0 means that the similarity of an
actual pattern and its ancestor is at the level of chance
i.e., 50 percent.
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Fig. 3. Flip frequency as a function of memory strength.

Feedback regulation in neural networks 457

T
| =——no. memaries =10
no. memaries =100

o7 T T T T T T

Y|

Relative Flip Frequency
[=] o [=]
w £ in

o
(X}
T

[ | EOS—-

(=]

Fig. 4. Flip frequency as a function of pattern overlap.

Figure 3 summarizes the effects of memory
strength on flip frequency, while Fig. 4 shows that the
relative frequency of flips is a monotonic function of
the initial overlap of the input pattern with its ances-
tor. This measure works even for heavily overloaded
network (400 neurons gives maximum network
capacity about 56 stored patterns). In the latter simu-
lations stored patterns weights were equal and set to
1 — there was no division into weak and strong mem-
ories.

Local field

The above proposed novelty check can hardly be
generalized to the case of multilayered neural net-
works. This can be done, however, if we use an alter-
native novelty check based on a criterion of local
field strength. Let us first consider the case of the
standard Hopfield model, and let us look at the so
called local field, which is in fact the signal that
comes to the neuron i'th from all the other neurons
ie.,

h=>J;s, ()

Let us also assume, that the synaptic connection
matrix J; has a standard Hebbian form (Eq. 2). We may
consider two separate cases:

a. The configuration S, is random and is not corre-
lated to any of the memorized patterns ¢”. In
such a case the local field averaged over stochas-
tic properties of #'s is zero.
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b. The configuration S, has a non vanishing correla-
tion to one of the stored patterns, *. In this case
the mean local field is given by

(h)y=q (6)

while its standard deviation by

Sy =2 g

The above two statements allow for formulation of a
novelty check based on the value of the local field.
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Fig. 5. The same as Fig. 3, but for mean local field instead
of flip frequency.
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Fig. 6. Strength of mean local field as a function of pattern
overlap. It can be observed that this measure works for over-
loaded networks as well as relative flip frequency.

Namely, if the values of the local field are large it is an
indication that the current pattern overlaps with one of
the stored memories and thus it is known to the system.
Conversely, if the local fields are small, the current pat-
tern does not overlap with the stored configurations
and thus is novel.

Again we have studied this measure as a novelty
check using computer simulations. The results were
similar to these presented above for flip frequency and
are summarized in Figs 5 and 6.

Properties of the novelty measures

Novelty detection based on the above measure-
ments shows two very interesting and useful features.
First, novelty check may be many times faster then
pattern recognition. Judgment is made on the very
beginning of the cognitive process. Those findings
correspond well with empirical data known as mere
exposure effect. Seamon and coauthors (1984)
showed that human affective evaluation of the pre-
sented pattern is based on the novelty of the stimulus
and occurs much faster then pattern recognition.
Novel stimulus evokes negative and familiar — posi-
tive emotional response. In fact, subjects were able to
distinguish between known and unknown stimulus
even when they did not recognize the patterns, as they
were presented subliminally (Monahan et al. 2000).
The ability of flip frequency model to simulate the
effects of Seamon and coauthors was shown by
Drogosz and Nowak (1996).
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Fig. 7. Effect of overtraining. If number of patterns used dur-
ing learning phase exceeds 14% of the number of neurons,
the network starts to make mistakes during recognition. Plot
of the mean answer and training pattern overlap over 20 tri-
als. N=400.



Second, novelty detection is much more sensitive
and selective than recognition. Hopfield neural net-
works have estimated memory capacity (number of
imprinted patterns) about 14% of the number of neu-
rons.

If one over trains such a network, the memories
will merge and will not represent any of the patterns
from the learning set. In contrast, novelty detection
remains accurate even for a strongly overloaded net-
work.
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Fig. 8. Flip frequency as a function of number of memories.
N=400.
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Fig. 9. Mean local field as a function of number of memo-
ries. N=400.

As we can see from Figs 8 and 9, novelty measures
remain accurate for overloaded networks — there is lit-
tle difference between networks with encoded 10 and
100 memories (0.025 and 0.25 N). Presented stimulus
was one of the learned patterns. Flip frequency remains
low (below 5%) and local field high for number of
learned patterns even 2 times higher then network

capacity.
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Mechanism of feedback regulation

The essence of novelty based regulation is that once
novelty is assessed, the result of this assessment may
be used to change the dynamics of the recognition
process. The general mechanism is based on dynamical
coupling of novelty criteria to parameters that control
the recognition. Below we present two examples of
such feedback regulation. In the first one, model A, the
varied control parameter is the noise level of the net-
work; in the second one — the speed of modifications of
neural connections.

Model "A"

One of the main advantages of neural networks is
the ability of this class of models to recognize highly
distorted patterns. In fact, neural network models are
"too good" in recognizing distorted patterns. The
problem is that eventually any pattern will be recog-
nized as one of the stored ones. In their standard form
networks are not capable of producing "do not know"
answers.

To design a network capable of rejecting unknown
patterns, the noise level may be used as a control
parameter of recognition. The noise level is dynami-
cally linked to a measure of network coherence in such
a way that low coherence (i.e., high flip frequency)
increases the noise level in the system. Low flip fre-
quency decreases the noise level.

The energy landscape metaphor, discussed previous-
ly, allows for intuitive understanding of the role of
noise in the dynamics of the network. Namely, the
introduction of random terms into the dynamics corre-
spond roughly to the process of "shaking" of the ener-
gy landscape. If the "shaking" is weak the network
retrieves stored patterns like an ordinary Hopfield
model. On the other hand, if the noise is large enough
the system may leave the local minimum of energy and
"jump" to other one or become random. As we see the
probability of such an event depends crucially on the
fact whether the noise can provide sufficient energy to
overcome the energy barriers that surround any of the
local energy minima.

The recognition dynamics of the simulated system
(presented in Lewenstein and Nowak 1989a, b) is
described by Hopfield equation with additional noise
term. This noise term describes probability of i-th neu-
ron changing the state even if its state is in agreement
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with the sign of the local field and is given by:
P, =1-exp(-2phS,) ®)

where f is the noise level in the system. Thus with the
increased noise levels, the neuron has higher probabil-
ity of flipping even though its state is in agreement
with its local field.

The learning patterns were divided into 'weak' and
'strong' ones like in Eq. 3, with w'>1 for strong memo-
ries and w’=1 for weak memories. Earlier simulations
indicated that the variation of weights reduces the
number of distinctive patterns that such a system may
remember. The stronger memories tend to destroy the
weaker ones.

In the recognition phase, the effect of flip frequency
on noise level was implemented as follows:

* Each neuron that changes state raises the noise

level of the system by some quantity

e Each neuron that does not change state, when

checked, decreases the noise level.
The recognition process starts at relatively low levels
of noise.

BEHAVIOUR OF THE SYSTEM

In our simulations we have observed three types of
dynamics of the recognition process.

1. For initial patterns that were highly similar to
remembered ones (overlap, as in Eq. 4, close to 1), the
initial relative number of neurons changing their states
is small. The pattern is categorized as "known" in the
prerecognition process. The noise level decreases to
zero and the stimulus is perfectly recognized.

2. Processing of highly distorted patterns (overlap
close to 0) is characterized by a high frequency of neu-
ron flips. The noise level rapidly increases. At some
level of noise the system gets into a positive feedback
loop, where the noise increases the frequency of ele-
ments changing states, what in turn increases the noise
level. The dynamics of the recognition process
becomes chaotic and none of the stored patterns can be
retrieved in the recognition process. The resulting
unstable state can be regarded as a "don't know"
answer.

3. For some intermediate levels of novelty (distor-
tion) the noise slowly increases to a level where the
weakly memorized patterns can not be recognized. In
the process of approaching the weakly remembered

pattern the noise level may also slowly drop, but this
change is too slow to allow for recognition. The
recognition is characterized by wandering in the ener-
gy landscape, approaching the weakly memorized
states, but not being able to recognize them. The noise
level raises and drops indicating closeness of stored
patterns. At some time stronger memory is encoun-
tered. It can be recognized at this level of the noise.
The frequency of neurons changing states decreases
and the system reduces its noise level, ending up in
one of the strongly remembered patterns. In effect, it
recognizes distorted versions of one of the poorly
remembered patterns as one of the strongly remem-
bered ones.

4. When the presented patterns belonged to the class
of strongly memorized ones, only two kinds of dynam-
ics were observed. Even at high level of distortion the
ancestor patterns were correctly recognized. "Don't
know" answers appeared only when the presented
stimuli were almost completely random and unfamiliar
(overlap<0.2). For weakly memorized patterns the
recognition is also perfect when distortion levels are
low. For medium levels of familiarity (overlap<0.4)
the third type of dynamics dominates. The weak, dis-
torted patterns are erroneously recognized as strongly
remembered patterns. At still higher levels of distortion
the "don't know" answer dominates.

The results of the model are macroscopically com-
parable to empirical results of Skarda and Freeman
(1987), who have demonstrated that brain dynamics in
response to unknown stimuli may in fact become
chaotic.

Smartnet

One of the main problem of designing neural net-
works, and artificial intelligence systems in general, is
the problem of separation of the learning and recogni-
tion phases. During recognition novel input pattern is
usually transformed to match some memory, therefore
the information which should be memorized is lost. On
the other hand, if the pattern is already in the memory,
it is undesirable to learn it because increasing the
strength of this memory (deepening the attractor) will
lead to distortion of other memories.

Zochowski and coauthors (1995) have shown that a
system able to pre-recognize novelty on the basis of
flip frequency measure is able to switch between two
distinct dynamics:



1. recognition — when the input is known, the net-
work tries to match it with the stored configurations
(neural dynamics plays a dominant role).

2. learning — when the stimulus is novel, the network
tries to accommodate it by changing the connection
strengths (proceeding with neural dynamics at the
same time).

The dynamics of the synaptic connections J; can be
defined as follows.

t+1 t t t
Jij :Jij+F(y )(Sinj) 9

Here F(y') is a learning force and is an appropriately
designed positive function. It increases rapidly when y
(relative flip frequency) goes away from zero and y
tends to 0.5, and approaches zero when ¥ = 0.

It can be seen that the learning process is significant
only when the pattern is unknown to the network.
Conversely, when the pattern is recognized as known
and y tends to 0, the dynamics of the synaptic matrix is
reduced and the connection strengths change very
slowly. The factor S;S} in the second term of the
above equation is a standard Hebbian learning term.

Learning/recognition phases interchange: at the
beginning of the first study session synaptic intercon-
nections are random and weak. Then we introduce the
patterns that are to be memorized. When a learning
pattern is presented for the first time, the network of
course does not recognize it. There flip frequency is
high and the "learning force" F(y) quickly rises — the
system is memorizing new information.

After introduction of a known stimulus, the system
will quickly reduce the plasticity of the synaptic inter-
connections, and will prevent undesired enlargement
of the basin of attraction of the stimulus presented — it
will not overwrite and destroy other stored memories.
Simulation results have shown that although Smartnet
dynamically switches between learning and recogni-
tion, the network capacity is equal to standard Hopfield
model.

Summary of results

We have introduced novelty measures in neural net-
works that enable the net to dynamically control its
information processing. Both measures can be applied
early in the recognition process and therefore allow for
fast and reliable novelty check. Moreover, both are
robust and work even for very overloaded networks. It
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is reasonable then to state that distinguishing between
novel/familiar stimuli may indeed be faster than recog-
nition itself, as experimental studies suggest (Skarda
and Freeman1987).

Our simulation results show that these measures can
be successfully implemented in self-adapting systems
to produce various phenomena present in cognitive
system — such as a "don't know" response or learning
and recognizing phases. We think therefore that this
novelty check may have a much broader domain of
applications. The same novelty check can, in our opin-
ion, be also applied for multilayered perceptrons and
networks (see also Rumelhart and McClelland 1986).

In this paper we presented two specific models of
feedback regulation. It is worth stressing, though, that
the proposed novelty measures are dynamical and
therefore many other feedback mechanisms might be
implemented by using different network architectures
and different parameters that control the dynamics of
recognition (e.g., Zochowski et al. 1993, 1994).

In model "A", novelty affects noise level in order to
produce a "don't know" response. Adjusting the noise
level can lead to major qualitative changes of the
dynamics. In particular some or all of the stationary
states of the system may become unstable due to the
influence of noise. In such a case even small departures
from learned states may end up in an escape to other
regions of the space of network configurations or in
case of larger departures produce random dynamics
which may be defined as "don't know" response.

"Smartnet", the second model reviewed here, relies
on pre-recognition of familiarity of presented patterns
to switch between recognition and learning phases.
Because of the "overwriting effect", the storage capac-
ity of a standard attractor network with dynamic con-
nections is significantly reduced. For example, the
model discussed by Dong and Hopfield (1992) reveals
such limitation. Here, thanks to the novelty check, the
system is able to dynamically change the speed of con-
nection changes and therefore its capacity remains
unaffected. Broadly speaking, novelty affects the plas-
ticity of neural connections.

CONCLUSIONS

In this paper we presented specific models of feed-
back regulation introduced in Hopfield type networks.
The general principle of feedback regulation may, how-
ever, be applied to a much broader class of networks.
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Constructing a particular model requires specification of
novelty criteria and control parameter that is applicable
to the specific network architecture. While the neural
flip frequency measure is applicable only to attractor
networks with binary neurons, the local field criterion
introduced in this paper may be applied to a larger class
of models — both to models with neurons with continu-
ous activation function and multi-layered networks.
Both the noise level and synaptic plasticity may also
function as control parameters for large class of artificial
neural networks. A question remains about applicability
of the proposed model to biological neural networks.
Extension of the proposed models of self-regulation in
this direction would depend on the ability to specify
how processing of novelty is reflected in the dynamics
of natural neural systems and which properties of such
systems may act as dynamical control parameters.
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