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Abstract. Nowadays, there is a common practice in biomedical research to
perform multiple time series recordings. In the first part of this paper, basic
information about analysis of such multichannel biomedical data is given. A
short overview of important differences between single-channel, two-channel
and multichannel data sets is presented and various coherence functions are
reported. Causal relations between channels are investigated by means of the
Directed Transfer Function (DTF) and its dynamic version, the Short-Time
Directed Transfer Function (SDTF). The introduced formalism was used to
analyze 12-channel human electrocorticogram (ECoG) records. Preliminary
results of a study of causal dependence in beta and gamma frequency bands
in two patients performing a motor task are reported. Specific characteristics
in activity propagation consistent for both subjects for different rhythms were
found.
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INTRODUCTION

The technological progress in data recording equip-
ment, especially visible in the biomedical research
field, has resulted in the production of multichannel sets
of data. Today a typical dataset contains not only two or
four but dozens of channels. This is especially true for
electro- or magnetoencephalography (EEG/LFP/MEG)
recordings. Analysis of multichannel data can give a
better insight in the relations between the investigated
sites and allows for estimation of network properties of
the subject of interest. However, it may be challenging
to extract the desired information from such datasets.
Besides many experimental and computational difficul-
ties, the problem quite often lies in the proper applica-
tion of existing mathematical tools. Multichannel data
sets require adequate handling in order to get proper
results. For instance, the popular technique of the map-
ping of signal power on the head surface may seem at a
first glance to be a multichannel method, because it
uses information from all the channels. In fact, this
technique uses values calculated for each channel sepa-
rately, neglecting the covariance structure (inter-
dependencies between channels) of the dataset and
from this point of view it cannot be called a truly mul-
tichannel method (see Discussion section). In this paper
an introduction of basic aspects of multichannel data
processing will be presented. In the Experiment section
a brief report of a new, ongoing study of human ECoG
will be presented, which will additionally serve as an
example of the introduced formalism. Unlike other
studies, in the presented research we have focused on
transmissions of activity between channels, not on the
level of activation of each site separately.

METHODS

A typical neurobiological data recording consists of
several time series: observations of the investigated
variables at certain time intervals. For each time series,
many quantities characterizing it can be calculated e.g.,
the average amplitude or variance in the time domain
or power spectrum in the frequency domain. Such
measures, applicable to separate data channels are
called auto-quantities. However, a multichannel set of
data contains more information than the values charac-
terizing each channel separately. For instance, two data
channels can be either correlated with each other or
uncorrelated, while still having the same power spectra

in each case. To describe inter-relations between chan-
nels we use cross-measures which simultaneously
depend on two (or more) channels. Typically, for a pair
of channels, cross-correlations in the time domain or
coherences in the frequency domain are commonly
used. For a k-channel system its power spectrum S( /)
is a matrix with auto-spectra on the diagonal and cross-
spectra outside the diagonal (formulas for calculating
the spectral matrix can be found in the literature e.g., in
Jenkins and Watts 1998).
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The cross-spectral terms (S, for i #j) represent com-
mon (signals which are synchronized in phase) power
appearing in two channels. The normalized version of
the cross-spectrum is called (ordinary) coherence and
is defined for a pair of channels 7 and j by the formula:
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The modulus of the coherence function lies in the
range [0, 1]; zero means that the channels are not relat-
ed with each other at the given frequency.

When a system consists of more than two channels,
new possibilities of inter-dependency of the channels
appear. They can be connected with several other chan-
nels, either simultaneously or in chain. To evaluate a
set of more than two channels, making use of the pre-
vious observation, special multichannel measures
should be used. The most popular are partial and mul-
tiple coherences (Jenkins and Watts 1998). The modu-
lus value of each type of coherence lies in the range
[0, 1]; values close to zero indicate a lack of relation.

Partial coherence is designed to describe only direct
relations between channels. All relations which can be
explained by linear combinations of other data chan-
nels will not be shown by this measure. It is defined as:
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where M, represents a minor of spectral matrix S with
the i-th row and the j-th column removed.
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describes the similarity of the given signal to any other
signal from the rest of the set. It helps detecting a situ-
ation when a signal is not really connected with the set.

Any measure describing causal relations between
data channels obviously belongs to the “cross” quanti-
ties group. The first attempts to define such a measure
date back to the 1950’s in social sciences. Since then
many functions were proposed, but most of them were
designed for application to a pair of channels only. The
first definition of causality which can be used in time
series analysis and which is now popular in biomedical
data analysis was given by Granger (1969). His defini-
tion is based on predictability of time series. For two
simultaneously measured signals X, and X, if we can
better predict X, by using the past information from
both signals X, and X;:
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than by only using the past information from signal X,
itself,

X(0)= Y 4,()X G~ )+ E'() ©

(e.g., when var(E")<var(E")), then we call signal X,
causal to X,. E values can be called in this case error
functions. Constants p, and p,, determining the consid-
ered time lag of the relation, depend on the particular
situation.

In this paper a parametric method of spectral data
analysis will be used, namely multichannel (multivari-
ate) autoregressive (MVAR) modeling. This well-
known technique relies on the quality of the AR model
fitting. It can be shown (Blinowska et al. 1988,
Franaszczuk and Blinowska 1985) that that type of
model describes well stochastic time series containing
a set of damped sinusoids, so-called rhythms. This
property makes it very useful in analysis of EEG and
other biomedical signals, where specific rhythms of a
certain frequency are embedded in a noisy background.

We assume that a sample of data (vector) X at a time
t can be expressed by its p previous samples with cer-
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tain (matrix) coefficients A(i) plus a (vector) noise
component E in the following way:

X(¢) = Zp:A(z‘)X(r —i)+E(?) 7

By fitting the model to the data we get a set of A(7)
coefficients which describe properties of the original
data. When transforming Eq. 7 to the frequency
domain we get (Marple 1987):

X(f)=(A(/) E(f)=H(NE(S) (®)

where X( /), A(f) and E( /) are Fourier transforms of
the respective time domain variables X(f), A(i) and
E(?). The MVAR model allows for easy calculation of
power spectra and all types of coherences evaluated for
the whole set of data simultaneously. Details of the
model fitting procedure are presented in the literature
(Jenkins and Watts 1998, Kaminski and Blinowska
1991, Marple 1987). Moreover, the MVAR model
gives an opportunity to readily describe causal influ-
ences between data channels as well. The matrix H =
A™ is called the transfer matrix of the system. It con-
tains frequency dependent information about all rela-
tions between channels. The Directed Transfer
Function proposed by (Kaminski and Blinowska 1991)
is a causal influence estimator based on the transfer
matrix. DTF can be calculated in its normalized
(Kaminski and Blinowska 1991) or non-normalized
version. The non-normalized DTF is defined by simply
using elements of the matrix H:

0:(f) =|H,(Nf 9)

Note that 6,( /) describes the transmission of the sig-
nal from channel j to channel i at frequency f.

The definition of Granger causality was originally
given for a pair of channels. It can be extended for
the multichannel case. In this situation we compare
the variance of prediction error £’ where the i-th
channel is included into the prediction of the first
channel (Eq. 10)
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with the variance of prediction error £” where the i-th
channel is not included (Eq. 11):
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If var(E")<var(E") we call the i-th signal causal to the
first one in the multivariate sense.

The DTF function is a truly multivariate measure
and it can be applied to an arbitrary number of chan-
nels. It was shown (Kaminski et al. 2001) that DTF is
equivalent to Granger causality in the multivariate
sense.

DTF is not a partial measure. To show only direct
causal relations other functions were proposed and
they can be found in the literature: the DC method,
where the presence of a direct relation of channels i
and ; is indicated by a nonzero value of time domain
MVAR coefficients 4,(¢) (Kaminski et al. 2001), the
Partial Directed Coherence (PDC) method in
(Sameshima and Baccala 1999), or the direct DTF
(dDTF) function where a version of DTF is combined
with partial coherences (Korzeniewska et al. 2003). A
comparison between different estimators is given in
Kus and coauthors (2004).

It should be stressed that the differences between a
two-channel and a multi-channel (k>2) dataset are
very important. This is especially true for estimation of
directions of influence. It can be shown that a pairwise
approach may in this case lead to results which are
likely to be misinterpreted (Blinowska et al. 2004, Kus
et al. 2004).

One of the advantages of an MVAR model spectral
analysis is the fact that the model can be fitted to short
data segments, typically of a length much shorter than
the length required for e.g., Fourier transform methods,
and still give reliable power spectrum estimates.
Moreover, when multiple repetitions of an experiment
are available, the whole ensemble of realizations can
be utilized in calculations. Instead of averaging over
time (which is implicitly done when analyzing long
data epochs) we average the correlation matrix over
the repetitions. This allows for processing even shorter
data segments with acceptable statistical properties of
the estimates. This idea led to the construction of the
Short Time Directed Transfer Function (SDTF)
(Kaminski et al. 2001). This function can be used to
visualize the dynamics of transmissions during the
investigated process. The whole time epoch is divided
into short, overlapping time windows. The MVAR
models are fitted for each window using all the real-

izations of the process. Based on the estimated MVAR
parameters power spectra, coherences and DTFs are
calculated. The details of the procedure can be found in
Ding and coauthors (2000) or in Kaminski and coau-
thors (2001).

The experiment

The study concerned human ECoG data recorded at
the Johns Hopkins Hospital in Baltimore. A selected
group of epilepsy patients had electrode grids implant-
ed over the brain cortex surface, which was part of the
treatment. Some of those patients agreed to participate
in the study. Each subject was asked to perform a spe-
cific task in response to a visual stimulus presented on
a computer screen. For the presented analysis, two
patients performing motor tasks were selected. They
were required to sustain a muscle contraction of a spe-
cific body part (fist or tongue), indicated by a drawing
which appeared on the screen for 3 seconds, and
release the contraction at the moment the drawing dis-
appeared. The task was repeated many times producing
multiple realizations of the investigated process. Both
patients had a subdural 64-electrode array grid
implanted over similar areas of left frontoparietal cor-
tex. The data sampling frequency was 1000 Hz.
Because of our specific interest in the beta and gamma
frequency bands the data were downsampled to 250
Hz. The ensemble of trials was aligned according to
the stimulus onset time. Seven second long epochs
were analyzed (3 s before to 4 s after the stimulus
onset). The number of artifact free trials was around 50
(slightly different for each patient).

RESULTS

Because the beta (20-30 Hz) and gamma (3545
Hz) bands were of primary interest, the data were
bandpass filtered within the specified frequency
ranges. The filtered data was analyzed by the SDTF
function. For the analysis, a sliding time window of
125 ms was chosen. Since the number of data points
should be several times bigger than the number of fit-
ted MVAR parameters, a subset of 12 out of original 64
signals were selected. To find the most relevant chan-
nels, changes of power in respect of the reference peri-
od (2.5 to 1 s before the stimulus) were calculated for
16 successive frequency bands from 10 to 50 Hz for
every time window, giving the time-frequency maps of
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Fig. 1. Analysis of changes in power for 64 data channels for the fist clenching task. For each channel a time-frequency map
of statistically significant relative power change is presented (time in seconds on horizontal axis, frequency in Hz on verti-
cal axis). Values of change coded in grayscale shown aside; no change — gray, increase — white, decrease — black. The ver-

tical lines at second 3 indicate the stimulus onset.

Event Related Desynchronization and Synchronization
(Zygierewicz et al. 2005) (Fig. 1). The channels with
the biggest change in power were the first candidates
for further selection; the final choice was subsequently
consulted with a neurologist.

In the figures below, examples of time-frequency
maps of the transmissions in the selected set of chan-
nels (SDTF function) for the fist clenching task are
presented. The general observation is that patterns for
beta and gamma bands differ. Beta transmissions
(Fig. 2) are high for certain connections and at the time
of the stimulus onset they rapidly vanish (3553,
3545, 53561, 51553, 43553, 43—45 and others).
In some cases the transmissions reappear at the end of
the investigated epoch, sometimes at slightly higher
frequency (35—45, 43—45, 35—44). Such behavior is
common for both subjects, although the precise local-
izations differ.

Gamma activity transmissions (example in Fig. 3)
were less organized, occurred rather in a form of

bursts. Certain connections seem to be active during
the whole investigated epoch (e.g., most transmissions
from channel 43). For specific connections the bursts
could be observed at the beginning and at the end of
the motor activity (51—61, 51—>45).

The matrices of SDTF time-frequency maps may be
difficult to interpret. To solve this problem, the values
of SDTF were integrated over the beta and gamma fre-
quency bands respectively. The integrated transmission
values are presented graphically in form of arrows
pointing from source to destination sites. The values
obtained by the integration of intensity of flows were
coded as color (and transparency) of arrows (Fig. 4).

In this form of presentation we can see the topo-
graphical placement, strength and timing of each trans-
mission in a more natural way. In Fig. 4 an example of
transmissions for the first 10 channels presented in the
form of maps in Fig. 2, is shown for two time points:
1.7 s before and 0.5 s after the stimulus onset (the last
two channels from Fig. 2 were taken from a different
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Fig. 2. SDTF results (transmissions) in the beta range (20—30 Hz) for a set of 12 electrodes for patient 1. In each small panel
SDTF as a function of time (horizontal axis, from -3 to 4 s) and frequency (vertical axis, from 20 to 50 Hz) is presented. For
the sake of clarity, a bigger legend is given only for the bottom left panel; settings are the same for all the panels. The flow
of activity takes place from the electrode marked under the column to the electrode marked at the left of the relevant row.
Black color corresponds to the highest intensity, white to the lowest. The value of transmission grayscale is the same for all

the panels. Time zero is marked by vertical lines.

grid of electrodes and are not represented in this pic-
ture). The phenomenon of vanishing beta transmis-
sions after the stimulus onset (time 0) is clearly visible,
there are no strong flows present at 0.5 s after the stim-
ulus.

DISCUSSION

Multichannel data sets contain not only informa-
tion relevant to each data channel separately, but the
mutual relations of the channels as well. We can fully
utilize it only when all channels are analyzed simul-
taneously and, consequently, a multichannel measure,
describing the covariance structure of a whole set, is

obtained. Additionally, when directions of influence
are of importance, a pairwise analysis of a bigger set
of channels may lead to results which can be misin-
terpreted. The example below (Fig. 5) illustrates the
fact that the correlation structure of a dataset contain
different information than obtained from analysis of
all the channels separately. For two human sleep
scalp EEG segments maps of power were compared
with DTF network analysis. In the first case, the posi-
tion of the maximum on the map agrees with the posi-
tion of the area of the main source of activity. For the
second data segment, where two sources of activity
are present, both methods apparently present different
pictures. In fact, results presented by both methods
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Fig. 3. SDTF results (transmissions) in the gamma range (35—45 Hz) for a set of 12 electrodes for patient 1. Drawing con-

vention like in Fig. 2.

concern different quantities and the problem lies in
the correct interpretation of the obtained pictures. In
particular, a naive interpretation of a map can lead to
a wrong conclusion concerning the localization of
activity sources.

The MVAR modeling, which was widely used in
biomedical data analysis, is a proposition of an
approach allowing estimation of all coherence func-
tions and causal connections estimators in the multi-
channel way. Although technological progress delivers
new tools to investigate brain activity, like the func-
tional magnetic resonance imaging (fMRI) technique,
which can be combined with traditional EEG record-
ings (Sommer at al. 2003), we must stress the fact that
such results may not be easily comparable with results
of a causal relations pattern. Methods describing prop-
erties of each site separately give different information
than multivariate analysis of transmissions.

By analyzing EEG or LFP data we observe collec-
tive activity of ensembles of neurons. Such activity
propagates along anatomical tracts. In Fig. 5, where (in
the second evaluated epoch) an alpha wave is ana-
lyzed, the results agree well with other neurophysio-
logical evidence: the alpha activity is known to be gen-
erated in the parietal/occipital region of the cortex
(visual) and then it propagates toward the front of the
head. By applying a linear model tool to the EEG/LFP
signals we detect the presence of causal relations in the
system and we evaluate functional connectivity
between sites (Biichel and Friston 1997, Kaminski and
Liang 2005). We do not detect all possible anatomical
connections, we find the ways of propagations active
during the investigated phenomena.

The presented human ECoG study shows how the
autoregressive modeling can be used to evaluate the
dynamics of transmissions in EEG during motor activ-
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Fig. 4. Propagations in the beta range (20-30 Hz) for a set of 10 electrodes for patient 1 for 1.7 s before (above), and 0.5 s after the
stimulus onset (below). Direction is shown as a triangle-shaped arrow pointing from the source to the destination electrode. Intensity
of transmissions is coded in color and transparency of arrows (scale bar on the left of each picture, identical for both pictures).



ity. It should be noted that the DTF method was
already successfully applied to analyze EEG and LFP
signals, namely to identify epileptogenic foci in
humans (Franaszczuk et al. 1994), to determine a topo-
graphic pattern of transmissions during sleep from
human scalp EEG data (Kaminski et al. 1997), and to
find changes in interrelations between selected limbic
system structures in rats performing locomotion tasks
(Korzeniewska et al. 1997). In the present study for the
first time the dynamic version of DTF was used to
investigate causal relations in human multichannel
ECoG data recorded during motor tasks. The inter-con-
nections between channels are more complex and more
difficult to visualize than quantities referring to sepa-
rate signals, especially for bigger number of channels.

Fig. 5. Comparison of the DTF method with mapping. Two
20 s segments of data were evaluated by both methods.
Conventional maps represent total power in the 0-30 Hz fre-
quency band, the DTF maps propagation in the same fre-
quency band. The strength of flows is reflected by the shades
of gray of the arrows. (Reprinted from Kaminski et al. 1997
with permission from the International Federation of
Clinical Neurophysiology © 1997)
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Integrating transmissions within given frequency
bands reduces the amount of information to display
and allows for the usage of more legible forms of pres-
entation. Although there are differences between sub-
jects (because of inter-subject variability and different
placement of the electrode grids), some general sys-
tematic patterns of transmissions during the task are
visible. The study is now in progress, extending the
number of subjects in order to find common features
and systematic trends in transmissions. In spite of the
fact that the project is in a preliminary stage, we found
that the most active regions identified in the study
agree with those found by other methods to be impor-
tant in motor control e.g., cortical stimulations and
visual analysis of LFP traces by experts. It is especial-
ly important to evaluate the role of each of the rhythms
during a motor task. Event-related desynchronization
in the beta band is a well-known phenomenon related
to motor activity (Gomez et al. 2004, Pfurtscheller and
Arnibar 1979, Pfurtscheller and Lopes da Silva 1999).
We can see that this phenomenon is reflected in the
pattern of transmissions between specific channels.
Similarly, the role of gamma activity in synchroniza-
tion of sites may find its confirmation and further
development by analyzing specific transmissions in
this frequency range (Crone et al. 1998).
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