

Serotoninergic impairment and aggressive behavior in Alzheimer's disease

Apostolos Ch. Zarros, Konstantina S. Kalopita, and Stylianos Th. Tsakiris

Department of Experimental Physiology, Medical School, University of Athens, P.O. Box 65257, GR-15401, Athens, Greece

Review

Abstract. The overall goal of all therapeutic interventions in Alzheimer's disease (AD) is to: (a) optimize the impaired functions and (b) restore an affordable quality of life for both the patient and his surroundings. AD has been characterized by a significant serotoninergic impairment. It is well known that impaired serotoninergic function is related to aggressive behavior. We, herein, review the past and recent evidence that seems to link the serotoninergic system with aggressive manifestations in AD patients. Managing the aggressive behavior of these patients might be of significant medical, social and economical importance. However, there is still a long way to go until we verify the exact pathophysiological mechanism(s) involved in the induction of aggression in AD patients. The current data underlines a complex relationship between the observed serotoninergic impairment in AD patients and the (a) cholinergic system, (b) the endocrine (hormonal) state, (c) the nutritional habits, (d) the genetic background and (e) the caregiving environment.

The correspondence should be addressed to S. Th. Tsakiris, E-mail: stsakir@cc.uoa.gr

Key words: aggression, Alzheimer's disease, serotonin

INTRODUCTION

Alzheimer's disease (AD), that was originally described almost a century ago (Alzheimer 1907), is now considered as a very common brain disorder for the elderly and has become a disease of major health concern worldwide. In most patients who develop dementia, the core syndrome of cognitive dysfunction is superimposed over the course of the disease by behavioral disorders such as depression, anxiety, agitation, restlessness, aggression, disturbances of the sleep-wake cycle, delusions and hallucinations (Hock et al. 2000). Over the last decade, a series of genetic studies has significantly improved our knowledge over the pathogenesis of AD. The great diversity of clinical presentations in AD suggests that certain individual factors could possibly influence the disease phenotype. In addition to amyloid plaques and neurofibrillary tangles, the loss of neurons from certain transmitter source nuclei and the associated neurochemical alterations represent a pathologic hallmark of AD (Lai et al. 2003). Since neurotransmitters are the most important regulators of mood and perception, it seems quite reasonable that most (if not all) of the above mentioned

The main 5-HT receptor subtypes in humans

neuropsychiatric symptoms might be related to selective degeneration of certain neurotransmitter systems (Forstl et al. 1994, Lam et al. 2004, Mintzer 2001).

The degeneration of cholinergic neurons (mainly in the hippocampus and the cortex) with a substantial decrease in acetylcholine (ACh) and choline acetyltransferase (ChAT) levels, was one of the earliest findings in AD (Karageorgiou 1999). Since the cholinergic system appears to play an important role in memory functions, the decreased ACh levels (found in AD brains) are though to be a main contributor to the observed cognitive disturbances (Francis et al. 1999). Cholinergic deficits seem to be a major contributory factor of neural susceptibility to additional neurochemical deficits and therefore, a considerable aspect of almost all AD clinical manifestations (Hope et al. 1997, Terry and Buccafusco 2003). There seems to be a link between the cholinergic system and other neural circuits (such as the serotoninergic) deficits, as found in post mortem AD brains (Garcia-Alloza et al. 2005).

Serotonin (5-HT; 5-hydroxytryptamine) has been linked to certain neuropsychiatric symptoms in AD, such as agitation, aggression, depression and psychosis (Lanctot et al. 2001). Treating these noncognitive

Table I

Receptor	Location	Main Effect		
1A	CNS	Neuronal inhibition, sleep, feeding, thermoregulation, anxiety		
1B	CNS, VSM	Presynaptic inhibition, behavioral effects, pulmonary vasoconstriction		
1D	CNS, BV	Cerebral vasoconstriction, locomotion		
2A	CNS, PNS, SM, PL	Neuronal excitation, behavioral effects, smooth muscle contraction platelet aggregation etc.		
2B	GF	Contraction		
2C	CNS, CP	CSF secretion		
3	CNS, PNS	Neuronal excitation, emesis, anxiety		
4	CNS, PNS, GIT	Neuronal excitation, GI motility		
5	CNS	Not known		
6	CNS	Not known		
7	CNS, GIT, BV	Not known		

(CNS) central nervous system; (VSM) vascular smooth muscle; (BV) blood vessels; (PNS) peripheral nervous system; (SM) smooth muscle; (PL) platelets; (GF) gastric fundus; (CP) choroid plexus; (CSF) cerebrospinal fluid; (GIT) gastrointestinal tract; (GI) gastrointestinal. With a total of 14 subtypes, 5-HT receptors hold the record for diversity (for further details see Hoyer et al. 1994).

Fig.1. Synthesis of serotonin. (A) L-tryptophan (Trp); (B) tryptophan-5-monooxygenase; (B₁) O₂ + tetrahydrobiopterine; (B₂) H₂O + dihydrobiopterin; (C) L-5-hydroxytryptophan (5-HTP); (D) aromatic L-amino acid decarboxylase; (D_1) CO_2 ; (E): serotonin (5-HT).

symptoms is of significant importance for clinical practice, since they seem to be a major source of distress for both the demented elder and the patient's caregiver (Donaldson et al. 1997). Among these symptoms, aggression is well related to serotoninergic function in AD patients (Lanctot et al. 2002a, Mintzer 2001, Mintzer et al. 1998, Palmer et al. 1988, Procter et al. 1992). We, herein, review the past and recent evidence that seems to link the serotoninergic system with aggressive manifestations in AD patients.

SEROTONINERGIC IMPAIRMENT IN AD

It is known that 5-HT is present in the diet, but can also arise by biosynthesis via a pathway where the precursor amino acid is tryptophan (Trp). Trp is converted to 5-hydroxytryptophan (catalysed by tryptophane hydroxylase), which is then decarboxylated to 5-HT (by 1-amino-acid decarboxylase) (Fig. 1). The mechanisms of synthesis, storage, release and reuptake of 5-HT are very similar to those of noradrenaline. The degradation pathway of 5-HT (Fig. 2) occurs, mainly, through oxidative deamination (by a monoamine oxidase, MAO) followed by oxidation to 5-hydroxyindoleacetic acid (5-HIAA). 5-HIAA is excreted in the urine and serves as an indicator of 5-HT body production/concentration. The actions of 5-HT are numerous and complex, accompanied by a considerable species variation and a significant receptor diversity (as shown on Table I).

The correlation between serotoninergic impairment and AD is well documented and manifested *via* a series of non-clinical and clinical features, such as: (a) alterations in 5-HT and 5-HIAA levels of the brain and the cerebrospinal fluid (CSF), (b) loss of 5-HT synthesizing neurons, (c) loss of 5-HT receptors, (d) numerable 5-HT receptor polymorphisms, and (e) response to sev-

eral treatment schemes directed towards the improvement of serotoninergic function. However, it should be noted that the expression of these features is dependable on the genetic individuality, the followed (antipsychotic or other) treatment, the current stage of the disease, the accompanied pathology, and even the caregiving environment of the AD patient.

Alterations in 5-HT and 5-HIAA levels

Brain 5-HT concentrations were found decreased in post mortem studies of demented AD patients, compared to an age-matched healthy control group (Adolfsson et al. 1979). A joint study that was conducted in *post mortem* brain regions of cases without known brain pathology, showed an age-related decrease of 5-HT levels in the gyrus cinguli and an increase of 5-HT levels in the medulla oblongata (Carlsson et al. 1980). In senile dementia of the nonvascular type, 5-HT concentrations in brain region (such as the caudate nucleus and the hippocampus) samples were also found decreased (see Table II), suggesting that the process of neuronal aging might be accelerated in this type of dementia. In a study where 5-HT metabolism was assessed by measuring the concentration of 5-HIAA in post mortem brains from three groups (normal control subjects, AD and

HO

$$E$$
 H_2
 H_2
 H_2
 H_3
 H_2
 H_2
 H_3
 H_2
 H_3
 H_2
 H_3
 H_4
 H_2
 H_3
 H_4
 H_4
 H_4
 H_5
 H_7
 H_8
 H_8

Fig. 2. Degradation of serotonin. (E) serotonin (5-HT); (F) monoamine oxidase (MAO); (F_1) $H_2O + O_2$; (F_2) $NH_4^+ +$ H₂O₂; (G) 5-hydroxyindoleacetaldehyde; (I) aldehyde dehydrogenase; $(I_1) H_2O + NAD^+$; $(I_2) H^+ + NADH$; (J) 5hydroxyindole acetic acid (5-HIAA); (K) aldehyde reductase; (K₁) H⁺ + NADPH; (K₂) NADP⁺; (L) 5-hydroxytryptophol.

Table II

A 1	1 7 7 7 7 7 7 1 1				
Alterations in 5-H7	and 5-HIAA levels	of nost	mortem	brain	regions

Brain region	Observation	References
Amygdala	(-) 5-HT levels	Yates et al. (1986)
Caudate nucleus	(-) 5-HT levels	Carlsson et al. (1980), Gottfries et al. (1983), Yates et al. (1986)
Cortex	(-) 5-HIAA levels	Cross et al. (1983), Reinikainen et al. (1988)
Gyrus cinguli	(-) 5-HT levels	Arai et al. (1984), Carlsson et al. (1980), Gottfries et al. (1983)
Hippocampal cortex	(-) 5-HT levels	Reinikainen et al. (1988)
Hippocampus	(-) 5-HT levels	Carlsson et al. (1980), Gottfries et al. (1983), Reinikainen et al. (1988)
->>-	(-) 5-HIAA levels	Cross et al. (1983)
Hypothalamus	(-) 5-HT levels	Carlsson et al. (1980)
Medulla oblongata	(+) 5-HT levels	Carlsson et al. (1980)
Putamen	(-) 5-HIAA levels	Reinikainen et al. (1988)
Superior frontal gyrus	(-) 5-HT levels	Arai et al. (1984)
Thalamus	(-) 5-HIAA levels	Reinikainen et al. (1988)

(+) increased; (-) decreased. It should be noted, however, that the experimental data derived from post mortem material might lead to overestimation of the neurotransmitter deficit due to rapid 5-HT metabolism in non-fixed tissue. Thus, in each of the above studies, there seems to be certain dependence on the tissue-preparation conditions, on the method followed, as well as on the sensitivity of the latter.

depressed patients), 5-HIAA levels were significantly reduced in the hippocampus and certain cortical regions of the demented patients, but could not be correlated with the degree of any clinical AD manifestation (Cross et al. 1983). One year later, Arai and coauthors (1984) showed that AD brain samples had lower 5-HT mean concentrations in all regions (significant in 9 areas), while 5-HIAA levels were found reduced in 20 regions (significantly so in 8 areas). The maximal 5-HT concentration reductions were noted in the superior frontal gyrus and the cingulum (Table II).

CSF studies carried out 35 years ago reported a decrease of 5-HIAA and homovanillic acid (HVA) levels in senile and pre-senile patients, accompanied by a negative correlation between the two acids and the degree of the dementia (as represented by intellectual and emotional deterioration as well as social reduction) (Gottfries et al. 1969, 1970): the higher the degree of mental disturbances, the lower the concentrations of 5-HIAA and HVA. Renewal rates of cerebral 5-HIAA and HVA were also found reduced in AD patients (Guard et al. 1976), while 5-HT metabolism was found decreased *via* a CSF investigation on 10 patients with pre-senile Alzheimer's disease

(Argentiero and Tavolato 1980). These findings were confirmed by Soininen and coauthors (1981), who also stated that 5-HIAA levels are reduced accordingly to the severity of the dementia. The outline of these studies was that the observed decrease in the levels of 5-HIAA may reflect an inhibited turnover of 5-HT (Whitford 1986).

Loss of 5-HT synthesizing neurons

The above data suggests that the serotoninergic system is widely affected in AD. However, a decrease in 5-HT synthesis might be secondary to degeneration and/or a loss of serotoninergic neurons (Whitford 1986). In AD, there are extensive losses of 5-HT synthesizing neurons in the dorsal and the median raphe nuclei, which provide the serotoninergic innervation to the forebrain (Aletrino et al. 1992, Halliday et al. 1992, Yamamoto and Hirano 1985). Moreover, studies have indicated a significant reduction of 5-HT re-uptake sites in the cortex (Chen et al. 1996, D'Amato et al. 1987). A disturbance of 5-HT turnover in AD patients was, earlier, also reported by Gottfries and Roos (1973). Benton and coauthors (1982) have studied the monoamine nerve terminals (using markers of both 5-

HT and catecholamine terminals) in temporal neocortex (acquired from 9 histologically confirmed AD cases), and found them to be significantly decreased in number compared to those of similar age controls. These findings were later confirmed by Bowen and coauthors (1983) through the use of non-enzymatic biological markers of the 5-HT synapse.

Moreover, the 5-HT nerve cells of AD necropsy samples demonstrated a significant nucleolar volume and cytoplasmic RNA content reduction by 31% and 38% respectively, in both the medial and the lateral divisions of the dorsal tegmental nucleus (Mann and Yates 1983). One year later, Cross and coauthors (1984) were the first to undertake an extensive ligand binding study (using 3H-LSD ligands) and to report significantly reduced 5-HT receptor binding levels ranging from -53% in the hippocampus to -26% in the frontal cortex. This study was of major importance, since it was the first to report that reduced ligand binding to cortical and hippocampal 5-HT receptors was an exclusive to the senile dementia of Alzheimer type (SDAT) feature.

Loss of 5-HT receptors

A highly significant decrease in 5-HT receptor density (42%) was also confirmed in post mortem brain tissues from patients clinically diagnosed as suffering from dementia (Reynolds et al. 1984). It is accepted that postsynaptic 5-HT(2A) receptors are found reduced in AD (Cross et al. 1986, Reynolds et al. 1984). However, the situation regarding 5-HT(1A) receptor density is not so clear. Some studies suggest that a significant reduction of these receptors exists in AD (Lai et al. 2003, Middlemiss et al. 1986), while others support a loss in receptor density that is lower than that of the 5-HT(2A) receptors mentioned above (Cross et al. 1988). These variations could be due to the diversity observed in the assay techniques and patient selection procedures followed in these studies. Garcia-Alloza and coauthors (2004) report a significant decrease of 5-HT(1B/1D) and 5-HT(6) receptor density in post mortem frontal and temporal cortex of AD patients, who have been assessed so by using the Mini-Mental State Examination (MMSE) and the Present Behavioral Examination (PBE). Moreover, 5-HT(1B/1D) receptor density in the frontal cortex was correlated to MMSE decline, supporting its implication in memory impairment.

Alterations in 5-HT receptor functionality

Recent studies have shown a significant association between several polymorphisms of the serotonin neurotransmission genes and AD neuropsychiatric symptoms. A 102T/C polymorphism of the 5-HT(2A) receptor gene is associated with a variety of psychiatric symptoms such as auditory hallucinations (Holmes et al. 1998), psychosis (Assal et al. 2004, Nacmias et al. 2001), abnormal impulse control disorder and seasonal affective pattern (Arias et al. 2001, Bjork et al. 2002, Correa et al. 2002, Gursoy et al. 2001) in AD patients.

The Cys23Ser polymorphism in the 5-HT(2C) receptor gene has been linked to visual hallucinations and hyperphagia in AD patients (Holmes et al. 1998). 5-HT(6) 267 C allele has been suggested to be associated with higher scores in Hamilton Depression Rating Scale (Liu et al. 2001). Moreover, a 44-base pair insertion/deletion of the 5-HT transporter (5-HTT) promoter region (5-HTTPR) was discovered (Heils et al. 1996). The 5-HTTPR alleles are defined by differing numbers of a 44-base pair GC-rich repetitive sequence. The basal transcriptional activity of the long variant (*L) is about 2.5- to 3-fold higher than that of the short variant (*S) (Collier et al. 1996, Heils et al. 1996). This differential rate of transcription results in a reduction of 5-HT reuptake sites by approximately 40% in *S/*S homozygotes and a reduction of approximately 30% for heterozygotes (*S/*L), suggesting that the *S allele is functionally dominant (Lesch et al. 1996). The 5-HTTPR*L allele and the *L/*L genotype were reported to be associated with psychosis and aggression (Sukonick et al. 2001, Sweet et al. 2001).

A variable number tandem repeat (VNTR) polymorphism in intron 2 of the 5-HTT gene was also associated with susceptibility to unipolar or bipolar depression (Ogilvie et al. 1996). However, it should be noted that this association was not confirmed in AD patients with depression (Li et al. 1997).

Treating the impaired serotoninergic function

A pilot study conducted by Lehmann and coauthors (1981) showed that tryptophan administration accompanied by increased tryptophan absorption was a necessary condition for mental state improvement of the elderly. However, this was not entirely confirmed by Smith and coauthors (1984). The administration of alaproclate (a specific 5-HT reuptake inhibitor) in demented patients increased their capacity to cope with life, while irritability, aggression and intolerance were reduced (Bergman et al. 1983). Shaw and coauthors (1984) reported significantly lower tryptophan concentrations in the plasma of demented patients compared to those of age-matched controls. These findings could be due to lower tryptophan absorption (Lehmann 1979) which seems to be more common in demented patients (Lehmann et al. 1981).

CORRELATING AGGRESSION WITH SEROTONINERGIC IMPAIRMENT IN AD

Aggression is considered as a behavior with verbal or physical threats which, if carried out, would cause harm to others, self or property. It can be expressed as situational (provoked), non-situational (unprovoked), passive, physical or interictal. However, aggression is not a diagnosis by itself, but being potentially druginduced (through either intoxication or withdrawal), it can be considered as a symptom of many conditions (including dementia, personality disorders, post-traumatic stress disorders, pre-menstrual syndrome, trauma or as an expression of emotional and behavioral motivations) (Hughes 1999).

For more than 30 years, biological psychiatrists have been exploring the possible relationship between serotoninergic impairment and human aggression (see reviews by Asberg et al. 1986, Bowen et al. 1992, Brown and Linnoila 1990, Coccaro 1992, Karageorgiou 1999, Kunik et al. 1994, Mintzer 2001). AD patients were soon defined as an interesting substrate of clinical and *post mortem* investigation, since they exert aggressive behavior and are easily studied due to their institutionalization.

Shaw and coauthors (1967) were the first to conduct a relative study, proving the existence of a relation between 5-HT and depressive suicides (there is still a long-standing view among many psychiatrists that suicide and violence towards others represent different manifestations of the same underlying aggressive tendency).

Among the large data acquired by the studies that followed, it might be worth mentioning that Asberg and coauthors (1984) reported that depressed patients with low CSF 5-HIAA levels are significantly more aggressive and anxious (based on Rorschach ratings) than patients with normal 5-HIAA levels, but

equal ratings of depression. Brown and coauthors (1982) reported a significant association between aggressive behavior, suicide attempts and lower 5-HIAA levels, suggesting that altered 5-HT metabolism may significantly contribute to these behaviors, irrespectively of the diagnostic group in which they occur.

An interesting study, conducted by Lanctot and coauthors (2002b) on AD patients, showed that NPI (Neuropsychiatric Inventory) aggression scores were positively correlated to prolactin (PRL) concentrations following a d,l-fenfluramine challenge. In addition, aggressive patients showed a greater mean PRL increase than non-aggressive subjects, depending on the level of cognitive impairment and gender; suggesting a complex link between aggression and central serotoninergic dysfunction in AD.

Moreover, results from recent in vivo imaging (Parsey et al. 2002) and pharmacological challenge studies (Cleare and Bond 2000) indicate that reduced 5-HT(1A) receptor binding is related to aggressive traits in healthy subjects. Using post mortem tissues of well-characterized AD subjects, Lai and coauthors (2003) confirmed the above by demonstrating that 5-HT(1A) binding deficits are related to aggressive behaviors. Assal and coauthors (2004) concluded that the presence of 5-HT(2A) polymorphisms might act as a risk factor for the expression of psychosis and aggression in AD patients, while Garcia-Aloza and coauthors (2004) reported an association between aggression and the 5-HT(6) receptors/ChAT ratio of both the frontal and the temporal cortex of AD patients.

Lithium has been shown to reduce aggression and the frequency of episodes in learning disabilities (Langee 1990) and in patients with organic brain damage (Bellus et al. 1996), possibly via enhancement of the serotoninergic transmission. The administration of serotonin-selective reuptake inhibitors (SSRIs), such as citalopram and sertraline, could be beneficial for dementia and chronic aggression after head injury (Kim et al. 2001). Moreover, the use of anti-androgens is believed to be an effective treatment against the progression of AD psychopathology (Casadesus et al. 2004), since the serotoninergic impairment contributes to the regulation of hypothalamic and hypophyseal secretion and interferes with paracrine activity in both the digestive and the reproductive system (Zdrojewicz et al. 1998).

A more careful view of all the above data might determine: (a) the variety of the criteria used to determine the mental state of the demented patients taking part in clinical studies, (b) the absence of any violent type characterization (in many studies), (c) the variety of the aggression-estimating procedures followed for both living AD subjects and those mentioned in post mortem brain tissue studies, and (d) the absence of certain parameters (such as the caregiving state and the patient's nutritional habits) that might be of significant importance (for the expression of aggressive/depressive behavior and the severe serotoninergic impairment respectively). It is clear that more precise (and widely accepted) criteria are needed in order to maintain a coherent advance in the field.

CONCLUSIONS

The overall goal of all therapeutic interventions in AD is to (a) optimize the impaired functions and (b) restore an affordable quality of life for both the patient and his surroundings. Managing the aggressive behavior of AD patients might be of significant medical, social and economical importance. However, there is still a long way to go until we verify the exact pathophysiological mechanism(s) involved in the induction of aggression in AD patients, since the current data indicates a complex relationship between the serotoninergic impairment and the cholinergic system, the endocrine (hormonal) state, the nutritional habits, the genetic background and the caregiving environment. Pharmacological manipulation of the brain serotoninergic system might be beneficial in preventing or treating certain neuropsychiatric symptoms (such as aggression) in AD patients, but it is still not clear whether this can provide a safe and case-independent treating principle. The investigation of 5-HT receptor polymorphisms is, in this case, of crucial importance: if we establish a more definite association between the genetic individuality of the AD patient and the current antipsychotic drug therapy, a more effective and case-specific treating approach could be attempted.

ACKNOWLEDGEMENTS

This study was supported by the University of Athens. The authors acknowledge their appreciation to Dr Achilleas Antonopoulos for his assistance in manuscript preparation.

REFERENCES

- Adolfsson R, Gottfries CG, Roos BE, Winblad B (1979) Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br J Psychiatry 135: 216–223.
- Aletrino MA, Vogels OJ, Van Domburg PH, Ten Donkelaar HJ (1992) Cell loss in the nucleus raphes dorsalis in Alzheimer's disease. Neurobiol Aging 13: 461-468.
- Alzheimer A (1907) The peculiar disease of the cerebral cortex. Psych 64: 146.
- Arai H, Kosaka K, Iizuka R (1984) Changes of biogenic amines and their metabolites in post-mortem brains from patients with Alzheimer-type dementia. J Neurochem 43: 388-393.
- Argentiero V, Tavolato B (1980) Dopamine (DA) and serotonin metabolic levels in the cerebrospinal fluid (CSF) in Alzheimer's pre-senile dementia under basic conditions and after stimulation with cerebral cortex phospholipids (BC-PL). J Neurol 224: 53-58.
- Arias B, Gutierrez B, Pintor L, Gasto C, Fananas L (2001) Variability in the 5-HT(2A) receptor gene is associated with seasonal pattern in major depression. Mol Psychiatry 6: 239-242.
- Asberg M, Bertilsson L, Martensson B (1984) CSF monoamine metabolites, depression, and suicide. Adv Biochem Psychopharmacol 39: 87-97.
- Asberg M, Nordstrom P, Traskman-Bendz L (1986) Cerebrospinal fluid studies in suicide. An overview. Ann N Y Acad Sci 487: 243-255.
- Assal F, Alarcon M, Solomon EC, Masterman D, Geschwind DH, Cummings JL (2004) Association of the serotonin transporter and receptor gene polymorphisms in neuropsychiatric symptoms in Alzheimer's disease. Arch Neurol 61: 1249-1253.
- Bellus SB, Stewart D, Vergo JG, Kost PP, Grace J, Barkstrom SR (1996) The use of lithium in the treatment of aggressive behaviours with two brain-injured individuals in a state psychiatric hospital. Brain Inj 10: 849-860.
- Benton JS, Bowen DM, Allen SJ, Haan EA, Davison AN, Neary D, Murphy RP, Snowden JS (1982) Alzheimer's disease as a disorder of isodendritic core. Lancet 1: 456.
- Bergman I, Brane G, Gottfries CG, Jostell KG, Karlsson I, Svennerholm L (1983) Alaproclate: a pharmacokinetic and biochemical study in patients with dementia of Alzheimer type. Psychopharmacology (Berl) 80: 279-283.
- Bjork JM, Moeller FG, Dougherty DM, Swann AC, Machado MA, Hanis CL (2002) Serotonin 2a receptor T102C polymorphism and impaired impulse control. Am J Med Genet 114: 336-339.

- Bowen DM, Allen SJ, Benton JS, Goodhardt MJ, Haan EA, Palmer AM, Sims NR, Smith CC, Spillane JA, Esiri MM, Neary D, Snowdon JS, Wilcock GK, Davison AN (1983) Biochemical assessment of serotonergic and cholinergic dysfuntion and cerebral atrophy in Alzheimer's disease. J Neurochem 41: 266–272.
- Bowen DM, Francis PT, Pangalos MN, Stephens PH, Procter AW (1992) Treatment strategies for Alzheimer's disease. Lancet 339: 132–133.
- Brown GL, Ebert MH, Goyer PF, Jimerson DC, Klein WJ, Bunney WE, Goodwin FK (1982) Aggression, suicide, and serotonin: Relationships to CSF amine metabolites. Am J Psychiat 139: 741–746.
- Brown GL, Linnoila MI (1990) CSF serotonin metabolite (5-HIAA) studies in depression, impulsivity, and violence. J Clin Psychiatry 51: 31–41.
- Carlsson A, Adolfsson R, Aquilonius SM, Gottfries CG, Oreland L, Svennerholm L, Winblad B (1980) Biogenic amines in human brain in normal aging, senile dementia, and chronic alcoholism. Adv Biochem Psychopharmacol 23: 295–304.
- Casadesus G, Zhu X, Atwood CS, Webber KM, Perry G, Bowen RL, Smith MA (2004) Beyond estrogen: targeting gonadotropin hormones in the treatment of Alzheimer's disease. Curr Drug Targets CNS Neurol Disord 3: 281–285.
- Chen CP, Alder JT, Bowen DM, Esiri MM, McDonald B, Hope T, Jobst KA, Francis PT (1996) Presynaptic serotoninergic markers in community-acquired cases of Alzheimer's disease: correlations with depression and neuroleptic medication. J Neurochem 66: 1592–1598.
- Cleare AJ, Bond AJ (2000) Ipsapirone challenge in aggressive men shows an inverse correlation between 5-HT1A receptor function and aggression. Psychopharmacology (Berl) 148: 344–349.
- Coccaro EF (1992) Impulsive aggression and central serotonergic system function in humans: An example of a dimensional brain-behavior relationship. Int Clin Psychopharmacol 7: 3–12.
- Collier DA, Stober G, Li T, Heils A, Catalano M, Di Bella D, Arranz MJ, Murray RM, Vallada HP, Bengel D, Muller CR, Roberts GW, Smeraldi E, Kirov G, Sham P, Lesch KP (1996) A novel functional polymorphism within the promoter of the serotonin transporter gene: Possible role in susceptibility to affective disorders. Mol Psychiatry 1: 453–460.
- Correa H, De Marco L, Boson W, Viana MM, Lima VF, Campi-Azevedo AC, Noronha JC, Guatimosin C, Romano-Silva MA (2002) Analysis of T102C 5HT2A

- polymorphisms in Brazilian psychiatric inpatients: Relationship with suicidal behavior. Cell Mol Neurobiol 22: 813–817.
- Cross AJ, Crow TJ, Johnson JA, Joseph MH, Perry EK, Perry RH, Blessed G, Tomlinson BE (1983) Monoamine metabolism in senile dementia of Alzheimer type. J Neurol Sci 60: 383–392.
- Cross AJ, Crow TJ, Johnson JA, Perry EK, Perry RH, Blessed G, Tomlinson BE (1984) Studies on neurotransmitter receptor systems in neocortex and hippocampus in senile dementia of the Alzheimer-type. J Neurol Sci 64: 109–117.
- Cross AJ, Crow TJ, Ferrier IN, Johnson JA (1986) The selectivity of the reduction of serotonin S2 receptors in Alzheimer-type dementia. Neurobiol Aging 7: 3–7.
- Cross AJ, Slater P, Perry EK, Perry RH (1988) An autoradiographic analysis of serotonin receptors in human temporal cortex: Changes in Alzheimer-type dementia. Neurochem Int 13: 89–96.
- D'Amato RJ, Zweig RM, Whitehouse PJ, Wenk GL, Singer HS, Mayeux R, Price DL, Snyder SH (1987) Aminergic systems in Alzheimer's disease and Parkinson's disease. Ann Neurol 22: 229–236.
- Donaldson C, Tarrier N, Burns A (1997) The impact of the symptoms of dementia on caregivers. Br J Psychiatry 170: 62–68.
- Forstl H, Burns A, Levy R, Cairns N (1994) Neuropathological correlates of psychotic phenomena in confirmed Alzheimer's disease. Br J Psychiatry 165: 53–59.
- Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer's disease: A review of progress. J Neurol Neurosurg Psychiatry 66: 137–147.
- Garcia-Alloza M, Hirst WD, Chen CP, Lasheras B, Francis PT, Ramirez MJ (2004) Differential involvement of 5-HT(1B/1D) and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer's disease. Neuropsychopharmacology 29: 410–416.
- Garcia-Alloza M, Gil-Bea FJ, Diez-Ariza M, Chen CP, Francis PT, Lasheras B, Ramirez MJ (2005) Cholinergic-serotoninergic imbalance contributes to cognitive and behavioral symptoms in Alzheimer disease. Neuropsychologia 43: 442–449.
- Gottfries CG, Gottfries I, Roos BE (1969) Homovanillic acid and 5-hydroxyindoleacetic acid in the cerebrospinal fluid of patients with senile dementia, presenile dementia and parkinsonism. J Neurochem 16: 1341–1345.
- Gottfries CG, Gottfries I, Roos BE (1970) Homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal

- fluid related to rated mental and motor impairment in senile and presenile dementia. Acta Psychiatr Scand 46: 99-105.
- Gottfries CG, Roos BE (1973) Acid monoamine metabolites in cerebrospinal fluid from patients with presenile dementia (Alzheimer's disease). Acta Psychiatr Scand 49: 257-263.
- Gottfries CG, Adolfsson R, Aquilonius SM, Carlsson A, Eckernas SA, Nordberg A, Oreland L, Svennerholm L, Wiberg A, Winblad B (1983) Biochemical changes in dementia disorders of Alzheimer type (AD/SDAT). Neurobiol Aging 4: 261–271.
- Guard O, Renaud B, Chazot G (1976) Cerebral metabolism of dopamine and of serotonin during Alzheimer and Pick's diseases. Dynamic study by the test using probenecid (in French). Encéphale 2: 293-303.
- Gursoy S, Erdal E, Herken H, Madeni E, Alasehirli B (2001) Association of T102C polymorphism of the 5-HT2A receptor gene with psychiatric status in fibromyalgia syndrome. Rheumatol Int 21: 58-61.
- Halliday GM, McCann HL, Pamphlett R, Brooks WS, Creasey H, McCusker E, Cotton RG, Broe GA, Harper CG (1992) Brain stem serotonin-synthesizing neurons in Alzheimer's disease: A clinicopathological correlation. Acta Neuropathol (Berl) 84: 638-650.
- Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D, Lesch KP (1996) Allelic variation of human serotonin transporter gene expression. J Neurochem 2621-2624.
- Hock C, Wettstein A, Giannakopoulos P, Schupbach B, Muller-Spahn F (2000) Diagnosis and therapy of behavior disorders in dementia. Schweiz Rundsch Med Prax 89: 1907-1913.
- Holmes C, Arranz MJ, Powell JF, Collier DA, Lovestone S (1998) 5-HT2A and 5-HT2C receptor polymorphisms and psychopathology in late onset Alzheimer's disease. Hum Mol Genet 7: 1507-1509.
- Hope T, Keene J, Gedling K, Cooper S, Fairburn C, Jacoby R (1997) Behaviour changes in dementia. 1: Point of entry data of a prospective study. Int J Geriatr Psychiatry 12: 1062-1073.
- Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46: 157-203.
- Hughes DH (1999) Acute psychopharmacological management of the aggressive psychotic patient. Psychiatr Serv 50: 1135-1137.

- Karageorgiou H (1999) Alzheimer's disease 2000: current aspects and drug therapeutic approaches. Rev Clin Pharmacol Pharmacokin 17: 53-96.
- Kim KY, Moles JK, Hawley JM (2001) Selective serotonin reuptake inhibitors for aggressive behavior in patients with dementia after head injury. Pharmacotherapy 21: 498-501.
- Kunik ME, Yudofsky SC, Silver JM, Hales RE (1994) Pharmacologic approach to management of agitation associated with dementia. J Clin Psychiatry 55s: 13-17
- Lai MK, Tsang SW, Francis PT, Esiri MM, Keene J, Hope T, Chen CP (2003) Reduced serotonin 5-HT1A receptor binding in the temporal cortex correlates with aggressive behavior in Alzheimer disease. Brain Res 974: 82-87.
- Lam LC, Tang NL, Ma SL, Zhang W, Chiu HF (2004) 5-HT2A T102C receptor polymorphism and neuropsychiatric symptoms in Alzheimer's disease. Int J Geriatr Psychiatry 19: 523-526.
- Lanctot KL, Herrmann N, Mazzotta P (2001) Role of serotonin in the behavioral and psychological symptoms of dementia. J Neuropsychiatry Clin Neurosci 13: 5-21.
- Lanctot KL, Herrmann N, Eryavec G, van Reekum R, Reed K, Naranjo CA (2002a) Central serotoninergic activity is related to the aggressive behaviors of Alzheimer's disease. Neuropsychopharmacology 27: 646-654.
- Lanctot KL, Hermann N, van Reekum R, Eryavec G, Naranjo CA (2002b) Gender, aggression and serotoninergic function are associated with response to sertraline for behavioral disturbances in Alzheimer's disease. Int J Geriatr Psychiatry 17: 531–541.
- Langee HR (1990) Retrospective study of lithium use for institutionalized mentally retarded individuals with behavior disorders. Am J Ment Retard 94: 448-452.
- Lehmann J (1979) How to investigate tryptophan malabsorption and the value of repeated tryptophan loads with some methodological improvements and aspects on the correlation between tryptophan absorption and mental state. In: Origin, Prevention and Treatment of Affective Disorders (Schou M, Stromgren E, eds.). Academic Press, London.
- Lehmann J, Persson S, Walinder J, Wallin L (1981) Tryptophan malabsorption in dementia. Improvement in certain cases after tryptophan therapy as indicated by mental behaviour and blood analysis. Acta Psychiatr Scand 64: 123-131.
- Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274: 1527-1531.

- Li T, Holmes C, Sham PC, Vallada H, Birkett J, Kirov G, Lesch KP, Powell J, Lovestone S, Collier D (1997) Allelic functional variation of serotonin transporter expression is a susceptibility factor for late onset Alzheimer's disease. Neuroreport 8: 683–686.
- Liu HC, Hong CJ, Liu CY, Lin KN, Tsai SJ, Liu TY, Chi CW, Wang PN (2001) Association analysis of the 5-HT6 receptor polymorphisms C267T with depression in patients with Alzheimer's disease. Psychiatry Clin Neurosci 55: 427–429.
- Mann DM, Yates PO (1983) Serotonin nerve cells in Alzheimer's disease. J Neurol Neurosurg Psychiatry 46: 96.
- Middlemiss DN, Palmer AM, Edel N, Bowen DM (1986) Binding of the novel serotonin agonist 8-hydroxy-2-(din-propylamino) tetralin in normal and Alzheimer brain. J Neurochem 46: 993–996.
- Mintzer JE (2001) Underlying mechanisms of psychosis and aggression in patients with Alzheimer's disease. J Clin Psychiatry 62: 23–25.
- Mintzer J, Brawman-Mintzer O, Mirski DF, Unger R, Nietert P, Meeks A, Sampson R (1998) Fenfluramine challenge test as a marker of serotonin activity in patients with Alzheimer's dementia and agitation. Biol Psychiatry 44: 918–921.
- Nacmias B, Tedde A, Forleo P, Piacentini S, Guarnieri BM, Bartoli A, Ortenzi L, Petruzzi C, Serio A, Marcon G, Sorbi S (2001) Association between 5-HT(2A) receptor polymorphism and psychotic symptoms in Alzheimer's disease. Biol Psychiatry 50: 472–475.
- Ogilvie AD, Battersby S, Bubb VJ, Fink G, Harmar AJ, Goodwim GM, Smith CA (1996) Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet 347: 731–733.
- Palmer AM, Stratmann GC, Procter AW, Bowen DM (1988) Possible neurotransmitter basis of behavioral changes in Alzheimer's disease. Ann Neurol 23: 616–620.
- Parsey RV, Oquendo MA, Simpson NR, Ogden RT, van Heertum R, Arango V, Mann JJ (2002) Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635. Brain Res 954: 173–182.
- Procter AW, Francis PT, Stratmann GC, Bowen DM (1992) Serotonergic pathology is not widespread in Alzheimer patients without prominent aggressive symptoms. Neurochem Res 17: 917–922.
- Reinikainen KJ, Paljarvi L, Huuskonen M, Soininen H, Laakso M, Riekkinen PJ (1988) A post-mortem study of noradrenergic, serotoninergic and GABAergic neurons in Alzheimer's disease. J Neurol Sci 84: 101–116.

- Reynolds GP, Arnold L, Rossor MN, Iversen LL, Mountjoy CQ, Roth M (1984) Reduced binding of (3H)-ketanserin to cortical 5-HT2 receptors in senile dementia of the Alzheimer type. Neurosci Lett 44: 47–51.
- Shaw DM, Camps FE, Eccleston EG (1967) 5-Hydroxytryptamine in the hind-brain of depressive suicides. Br J Psychiatry 113: 1407–1411.
- Shaw DM, Tidmarsh SF, Thomas DE, Briscoe MB, Dickerson JW, Chung-A-On KO (1984) Senile dementia and nutrition. Br Med J (Clin Res Ed) 288: 792–793.
- Smith DF, Stromgren E, Petersen HN, Williams DG, Sheldon W (1984) Lack of effect of tryptophan treatment in demented gerontopsychiatric patients. A double-blind, crossover-controlled study. Acta Psychiatr Scand 70: 470–477.
- Soininen H, MacDonald E, Rekonen M, Riekkinen PJ (1981) Homovanillic acid and 5-hydroxyindoleacetic acid levels in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Acta Neurol Scand 64: 101–107.
- Sukonick DL, Pollock BG, Sweet RA, Mulsant BH, Rosen J, Klunk WE, Kastango KB, DeKosky ST, Ferrell RE (2001) The 5-HTTPR*S/*L polymorphism and aggressive behavior in Alzheimer disease. Arch Neurol 58: 1425–1428.
- Sweet RA, Pollock BG, Sukonick DL, Mulsant BH, Rosen J, Klunk WE, Kastango KB, DeKosky ST, Ferrell RE (2001) The 5-HTTPR polymorphism confers liability to a combined phenotype of psychotic and aggressive behavior in Alzheimer disease. Int Psychogeriatr 13: 401–409.
- Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306: 821–827.
- Whitford GM (1986) Alzheimer's disease and serotonin: A review. Neuropsychobiology 15: 133–142.
- Yamamoto T, Hirano A (1985) Nucleus raphe dorsalis in Alzheimer's disease: Neurofibrillary tangles and loss of large neurons. Ann Neurol 17: 573–577.
- Yates CM, Simpson J, Gordon A (1986) Regional brain 5-hydroxytryptamine levels are reduced in senile Down's syndrome as in Alzheimer's disease. Neurosci Lett 65: 189–192.
- Zdrojewicz Z, Sztuka-Pietkiewicz A, Zarzycki A, Karwacki J (1998) Serotonin: Structure, activity and clinical significance (in Polish). Postepy Hig Med Dosw 52: 637–654.