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Abstract. The article discusses the role played by decision mechanisms in the

leading model of timing, scalar expectancy theory. Examples of the roles

played by decision mechanisms in explanations of behaviour on temporal

generalization and bisection are presented. Decision mechanisms for different

timing tasks often have a common form (thresholded normalized difference,

TND), where differences between durations are "normalized" (i.e., divided)

by another duration value, then compared with a threshold. The TND

principle provides a rule for both similarity and identity judgements of

duration. The role of threshold mechanisms in timing is discussed, and it is

shown that some procedural manipulations appear to specifically alter

threshold values. Finally, problems in modelling the decision processes

involved in verbal estimation are discussed.
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INTRODUCTION

A reader unfamiliar with the details of recent devel-

opments in the study of the perception of time by ani-

mals and humans might think that the principal problem

of time psychology was the identification of some basic

internal timing process, for example a type of internal

clock or oscillator-based mechanism, which translates

physical time into a code that a behaving organism can

use. This view is at least partly correct, in that a search

for an "internal clock", or some other equivalent mecha-

nism, occupies an important place in contemporary re-

search on time (for just a few recent studies, see

Droit-Volet and Wearden 2002, Gibbon et al. 1984,

Penton-Voak et al. 1996, Treisman et al. 1990, Wearden

and Penton-Voak 1995).

The present article will briefly discuss some sorts of

clocks that have been proposed by recent work, as well

as the involvement of memory mechanisms in timing,

but its main focus is not on clock processes necessary

for timing, but decision processes. Why are decision

processes necessary at all? Part of the answer is general:

we can only observe the behaviour emitted by our ex-

perimental subjects (be they rats pressing levers, or peo-

ple making verbal responses), and it thus seems likely

that the operation of the basic time-keeping mechanism

(the putative clock) will only be indirectly revealed in

behaviour, with other sorts of processes intervening be-

tween the appreciation of subjective time inside the or-

ganism, and the response that emerges. Another way of

answering this question is to consider how people might

be performing on some simple timing tasks, of which

temporal generalization (Wearden 1992) will serve as

an example.

In the simplest form of the temporal generalization

procedure, a person is initially exposed to a standard du-

ration (e.g., a tone 400 ms long), identified as such. Af-

ter a few exposures to the standard, comparison

durations are presented (e.g., tones ranging from 100 to

700 ms in duration) and the participant must simply

judge whether each of them is (a "yes" response) or is

not (a "no"response) the standard, with feedback as to

performance accuracy usually being given.

Temporal generalization rapidly produces orderly

data from humans ranging from 3-year-old children

(Droit-Volet et al. 2001), through student age partici-

pants (Wearden 1992), to the elderly (McCormack et al.

1999, Wearden et al. 1997a). The details of how people

might perform on this task will occupy us later, but for

the moment just consider the psychological

mechanisms that might be needed. Firstly, the standard

is presented alone, and needs to be timed (by the puta-

tive clock), then stored in some sort of "reference" mem-

ory, at least for the duration of the experiment. The

comparison durations presented as test stimuli likewise

need to be timed, and retained, but this time only for the

duration of the trial. A person thus has a "standard" and a

"comparison" (although only the latter has been re-

cently presented), and has to judge their equality. Even

if the comparison and standard durations were physically

the same (e.g., both 400 ms in our example) it seems un-

likely that they will be exactly subjectively equal (as

clock and memory processes may add trial-by-trial vari-

ance), so the participant must have some decision mecha-

nism to decide whether the two durations are "close

enough" to warrant a "yes" response (i.e., an identifica-

tion of the comparison as being the standard).

So, even this very simple task seems to involve mem-

ory (possibly different types of memory, one type for

the standard and the other for the comparison) and deci-

sion processes, and other commonly-used timing tasks

likewise appear to involve much more than just the

clock process itself, although the clock is necessary to

produce the "raw material" that enters into the subse-

quent decision process. For example, in one form of a

bisection task (Wearden 1991b) people initially receive

"short" and "long" standards (e.g., tones 200 and 800 ms

long), then have to classify other tones (comparisons

200-800 ms long) in terms of their similarity to the

"short" and "long" standards. Here, once again, the stan-

dards need to be stored for the duration of the experi-

ment, the comparisons for the duration of the trial, and a

decision process is needed to generate the similarity de-

cision. In verbal estimation, participants assign verbal

labels in conventional time units (seconds or millisec-

onds) to presented stimuli, and once again the choice of

an appropriate verbal label seems to require a complex

decision process, over an above any mechanism needed

to produce the "raw" time representation.

CLOCKS, MEMORIES, AND
DECISIONS: SCALAR TIMING
THEORY (SET)

Although the principal focus of this article will be on

decision processes in timing, it is important to provide a

psychological context in which these decision processes

take place. The simplest way of doing this is to give a
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brief introduction to scalar timing theory (SET), a

multi-process theory of animal and human timing, de-

veloped in its "classical" form by Gibbon et al. (1984)

on the basis of earlier work by Church and Gibbon

(1982), and Meck (1983). Figure 1 shows the tripartite

structure of the SET system, which consists of opera-

tions at 3 levels, usually considered to operate sequen-

tially.

The highest level of the SET system is the clock level

consisting of a pacemaker-accumulator clock: that is, a

pacemaker generates "ticks" or "pulses" which are gated

via a switch to an accumulator which accumulates them.

For example, to time a stimulus of some duration, the

switch is closed by stimulus onset, allowing pulses to

flow to the accumulator, and the switch opens again,

cutting the pacemaker/accumulator connection. Thus,

at the end of the stimulus period, the accumulator con-

tains the number of pulses corresponding to the duration

of the stimulus. Many aspects of the operation of the

pacemaker-accumulator clock have been investigated

in the literature, including attempts to change pace-

maker speed (Burle and Bonnet 1999, Droit-Volet and

Wearden 2002, Meck 1983, Penton-Voak et al. 1996),

and alter switch processes (Droit-Volet 2003, Wearden

et al. 1998).

The "raw" representation of stimulus duration repre-

sented by accumulator contents is transferred to a

"short-term or working memory" for time (in some re-

cent versions of SET, the accumulator and working

memory are combined), and this memory is one part of

the next level of the system, the memory level. After a

stimulus has been presented, its duration representation

is considered to reside in working memory, and it may

undergo changes there (a full discussion is beyond the

scope of this article, but see Wearden et al. 2002). The

other memory store (reference memory) is considered to

contain "important times" such as standards used in

temporal generalization and bisection. Once again, a

full discussion of the operation of this memory system

requires too much space to be done here, but Jones and

Wearden (2003, 2004) provide one.

Finally, there is a decision level, where the usual

comparison made (as will be discussed in detail later) is

between a sample drawn from the reference memory of

the standard or standards appropriate for the task, and

the contents of working memory. What the comparison

process is depends on the task, as will be seen later, but

only after the comparison process is complete does a

behavioural response occur.

It is clear from this brief introduction that SET is a

rather complex multi-process theory, and it is further

clear that according to SET we must regard observed be-

haviour as reflecting underlying clock processes only in-

directly. Different conditions and different participant

groups may produce different behaviours not because

their "raw" timing (i.e., clock) processes differ, but be-

cause of differences in memory and decision mecha-

nisms. Likewise, attempts to unravel the underlying

physiology of timing must not only consider how internal

clocks might be instantiated in the brain, but also how

memory and decision processes might be mediated by

neural systems, a problem possibly more difficult than

imagining how "neural pacemakers" might work. A cor-

ollary of this approach is that measurements of brain elec-

trical activity during timing tasks are likely to pick up

activation not only resulting from clock processes, but

also from memory and decision processes too.

DECISION PROCESSES IN ACTION:
TEMPORAL GENERALIZATION
AND THE MCG MODEL

The temporal generalization task (developed for hu-

mans by Wearden (1991a, 1992) from a procedure em-
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ployed with animals by Church and Gibbon (1982))

serves to illustrate how decision processes work in the

SET system. The basic procedure was described earlier,

but how does SET explain the behaviour obtained?

Wearden (1992) developed a "modified Church and

Gibbon" (MCG) model which, as its name suggests, is a

variant of a model used to model temporal generaliza-

tion in rats in Church and Gibbon’s original article.

The task begins with a number of presentations of the

standard, s, which is assumed to reside in reference

memory. Each comparison stimulus, t, is assumed to be

timed without error, and each is successively present in

working memory, which is overwritten with each com-

parison presentation. The reference memory is assumed

to be represented as a Gaussian distribution with accu-

rate mean (i.e., s), and some coefficient of variation

(standard deviation/mean), c. On each trial, a random

sample, s*, is drawn from the reference memory of s,

and the participant identifies a comparison duration, t,

as the standard when

abs (s* - t)/t < b*

where s* and t are as defined above, b* is a threshold vari-

able from trial to trial, and abs indicates absolute value.

Temporal generalization gradients from adults usu-

ally: (i) peak at the standard, s; and (ii) are asymmetrical

in that durations longer than the standard are more con-

fused with it than durations shorter by the same amount

(e.g., if s is 400 ms, 500 ms is more confused with it than

300 ms is). Inspection of equation 1 shows that it reflects

both of these properties. The left-hand side of equation 1

reflects the difference between s* and t, with smaller

values indicating greater similarity, and it is obvious

that the difference will be smallest on average when t =

s, so gradients should peak at the standard.

The asymmetry is easily intuitively explained if we

ignore the * indications and treat s and b as constant

(which makes no difference to the average prediction).

For example, suppose s = 400 ms, and we present t1 =

300 ms and t2 = 500 ms as comparisons. In the former

case, the left-hand side of equation 1 is abs (400 –

300)/300 or 1/3, and in the latter (400 – 500)/500 = 1/5,

thus 500 ms is more "similar" to 400 ms according to

this calculation than 300 ms is, i.e., it generates a smaller

value and thus one more likely to be below b, and thus

generate a "yes" response.

Figure 2 shows temporal generalization data aver-

aged over 83 female undergraduates. The standard dura-

tion was 400 ms, and comparisons ranged from 100 to

700 ms. The empirical temporal generalization gradi-

ents peaked at the standard, and showed the aforemen-

tioned asymmetry, with comparison durations longer

than the standard being more likely to be confused with

it than comparisons shorter by the same amount. The

line in Fig. 2 shows the best-fitting MCG model, which

obviously fits the data with a high degree of precision.

To fit the model, the MCG equation was embodied in a

computer program, and the threshold, b, and c, the coef-

ficient of variation of the memory of the standard were

varied to find the best fit in terms of absolute deviation

between the predictions of the model and the data.

A number of comments are in order. One is that the

asymmetry in the temporal generalization gradient is

"predicted" by the MCG model because of its decision

rule. The asymmetry is not a product of internal clock

processes (i.e., it does not result from the way the inter-

nal clock "scales" real time), nor of the way times are re-

membered. If the decision process had been different,

differently-shaped gradients would be predicted. For

example, Church and Gibbon’s (1982) original model

was to respond when

abs (s* - t)/s* < b*

where all terms are as Equation 1. A moment’s consider-

ation shows that Equation 2 predicts symmetrical gener-
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Fig. 2. Data from temporal generalization. The mean propor-

tion of "yes" responses (identifications of a comparison stim-

ulus as the standard) is plotted against comparison stimulus

duration. Data points are shown by filled circles and the

best-fitting MCG model by the line. Data are averaged over

83 female undergraduates. The standard was 400 ms and

comparisons ranged from 100 to 700 ms.
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alization gradients, which were indeed found in rats. To

fit the asymmetrical data found in humans, I modified

the model merely by "normalizing" the raw difference

(s* - t) by t rather than s*: in other words, the difference

is compared with the most recently presented compari-

son rather than the representation of the sample, as it

was in Church and Gibbon’s original model.

A reader might point out, correctly, that I have chosen

a model which fits the data, and "arbitrarily" rejected an-

other one. To this I can only reply that: (i) only a fool

would choose a model which obviously didn’t fit the

data; and (ii) the charge of choosing equations to fit data

sets could be levelled equally against Newton or Ein-

stein, but usually isn’t. It is true that there is no clear jus-

tification for the normalization used in Eq. 1, although

the question of how this arbitrariness in modelling can

be addressed is discussed later.

Although the "normalization" factor needs to be t

rather than s* to fit data from humans, other aspects of

the model are more fluid. The original MCG model as-

sumed two sources of trial by trial variance: one in s*

and the other in the threshold b, but exactly where the

sources of variance are located is somewhat arbitrary. In

my 1992 paper I showed that variants with a fixed

threshold (Eq. 3)

abs (s* - t)/t < b

and one with variance also in the comparison t (which

becomes t* on each trial), Equation 4,

abs (s* - t*)/t* < b*

fitted data nearly as well as the MCG model. So, the

modelling has some freedom as to the placement of

sources of variance, but is constrained to fit asymmetri-

cal gradients.

The MCG model can be developed in various ways.

Droit-Volet and colleagues (2001) used a variant to

model temporal generalization data from 3, 5, and 8

year-old children. An added factor in their model was

"random responding", a tendency to respond "yes" or

"no" at random without regard to the comparison dura-

tion. Such putative random responding was needed to

model data from the two youngest groups which were

both sensitive to comparison duration but involved high

levels of "yes" responses at the longest and shortest

comparisons (which adults hardly ever confuse with the

standard). The level of random responding that needed

to be added declined systematically with increasing age,

reaching near-zero levels at 8 years, thus suggesting that

this factor played no role in responding in adults. A fur-

ther factor needed in modelling data from the youngest

children was a shift in the mean of reference memory.

Data were fitted best if it was assumed that the youngest

children remembered s as being on average slightly

shorter than it really was, but this tendency, like random

responding, declined with increasing age.

JUSTIFYING AND TESTING
PARAMETERS: FROM MODELS OF
BEHAVIOUR TO THE BEHAVIOUR
OF MODELS

Droit-Volet et al.’s work (2001) illustrates a persis-

tent difficulty in any sort of modelling, namely that fac-

tors additional to the basic model can always be added

(or things subtracted from the basic model) in order to fit

data. This makes a model almost impossible to disprove

as additional factors can be added without limit (see fur-

ther discussion in Wearden 1999). The main defence

against this proliferation of parameters is commonsense

plausibility, linked to previous psychological knowl-

edge, and the "behaviour" of the parameters used. For

example, the random responding needed to model gen-

eralization data from 3 and 5 year-old children could be

justified in terms of the well-known difficulties that

such young children have in maintaining attention to a

rather tedious laboratory task. This "psychological" jus-

tification for random responding implies that attention

improves with increasing age, so predicts orderly be-

haviour in the random responding parameter: the

amount of random responding needed should decrease

with increasing age, and it does (Droit-Volet et al. 2001)

If, for example, more random responding had been

needed at 5 years than 3, and less at 8 than 5, then the

parameter would not behave in a plausible way and its

use would seem arbitrary, and questionable.

Another method of addressing the problem of arbi-

trariness of models is to examine whether the parame-

ters have testable psychological meaning. For example,

is b in our Eqs. 1 to 4 really a threshold independent of

other factors in the Equation? Wearden and Grindrod

(2003) tested this by using a variant of temporal general-

ization in which participants were given points for cor-

rect responses (hits and correct rejections) with points

deducted for errors (misses and false alarms). In their

study, different groups had different numbers of points
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added for the different correct responses: in one group

hits obtained more points than correct rejections and in

another group the opposite was true. The logic here was

than differentially rewarding hits would tend to make

participants say "yes" more often, whereas differen-

tially rewarding correct rejections would make them say

"yes" less, even when the durations presented in the

different conditions were physically the same.

Wearden and Grindrod’s manipulation had the de-

sired behavioural effect but, more importantly, model-

ling suggested that the behavioural effect was mediated

by changes in b. Differentially rewarding hits increased

b, whereas differentially rewarding correct rejections

decreased it: exactly the result predicted if b is a

response threshold.

The c parameter of the MCG model, essentially the

variability of memory of the standard, likewise might be

expected to show orderly changes across certain com-

parisons. For example, Droit-Volet et al. (2001) found

that c decreased (i.e., reference memory became less

variable) with increasing age (for a similar result see

McCormack et al. 1999), and further evidence for order-

liness in c comes from Wearden et al.’s (1997a) study of

timing in the elderly. Here, normal, community-resident

elderly were tested on a range of timing tasks one of

which was temporal generalization with a 400-ms

standard and 100-700 ms comparisons.

Wearden et al.’s subject population was chosen from

a larger sample so that the normal confound between

age and IQ (i.e., IQ decreasing on average with increas-

ing age) was avoided, so data could be analyzed sepa-

rately in terms of age (with IQ constant between groups)

or IQ (with age constant). Temporal generalization gra-

dients had the normal form (i.e., they peaked at the stan-

dard with a rightward skew) in all groups, but fitting the

model revealed that c increased with both increasing

age, and decreasing IQ, so older participants and those

with lower IQs had more variable temporal memories

according to the model than those who were younger

and with higher IQ. Thus, once again, the c parameter

behaved in an orderly way across comparisons between

subject groups.

SOURCES OF VARIANCE: EPISODIC
TEMPORAL GENERALIZATION

SET has its origins in animal psychology and was de-

veloped initially as an explanation of animal perfor-

mance on reinforcement schedules involving temporal

requirements or temporal periodicities, such as the

fixed-interval (FI) schedule (for an application of ideas

related to SET to FI see Lejeune and Wearden 1991). As

discussed extensively in Jones and Wearden (2003,

2004), the legacy of animal psychology has been a con-

ception of reference memory which is problematic

when applied to humans, and perhaps also even when

applied to animals.

Suppose that an animal performed under FI t s (e.g.,

FI 30 s). In this condition, the animal would be rein-

forced for the first response occurring more than 30 s

from the previous reinforcer, and the temporal con-

straint of the schedule can be learned by a range of ani-

mal species (Lejeune and Wearden 1991) all of whom

eventually produce a pattern of behaviour involving

pausing after reinforcer delivery with an increasing ten-

dency to respond as the time of reinforcement

approaches.

Classical SET supposes that the reference memory is

built up of instances of slight "misrememberings" of the

time of reinforcement (30 s in our case). For example, on

one trial 30 s is stored as 28 s in reference memory, on

another trial 34 s, and so on. Animals may receive hun-

dreds of instances of a certain time of reinforcement

when learning a schedule like FI, so it seemed reason-

able to suppose that gradually a distribution would build

up in reference memory so that the distribution of rein-

forcement times in it would be have a Gaussian form

with a mean of 30 s, and some variability. This sort of

"variance by accumulation" is the source of classical

SET’s argument that an important source of variability

in timing resides in the memory of the standard. In fact,

classical SET regards the internal clock as timing almost

perfectly on every trial, so 30 s is always timed as ex-

actly 30 s, but is misremembered (i.e., in being trans-

ferred from working memory to reference memory it is

transformed by a Gaussian function with a mean of 1.0

and some coefficient of variation, c). Put more casually,

performance is variable not because the subjects cannot

accurately time the interval, but because they cannot re-

member the standard duration for the task with complete

accuracy.

This conception of reference memory needs some

comment. One thing that it does is generate the

well-known scalar property of time. This is a form of

conformity to Weber’s law, and can be tested in various

ways. One test is to plot the standard deviation of time

judgements against the mean, with a result that the stan-

dard deviation is a linear function of the mean.
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Alternatively, a coefficient of variation (standard devia-

tion/mean) statistic can be calculated from behaviour at

different absolute times, and this quantity, a kind of

Weber fraction, should remain constant as the absolute

timed judged varies. Finally, data can be tested for the

property of superimposition, the requirement that tim-

ing measures should superimpose when plotted on the

same relative scale. Wearden et al. (1997b) provided a

good example of superimposition in their temporal gen-

eralization experiment where humans performed with

standards of 2, 4, 6, and 8 s (counting was prevented by

a concurrent task). When the resulting temporal gener-

alization gradients (which were all peaked at the stan-

dard, rightward skewed, and well-fitted by the MCG

model) were plotted on the same relative scale (with

comparison durations plotted as a fraction of the stan-

dard in force for the condition, 2 s, or whatever it was)

the gradients superimposed almost perfectly.

The existence of the scalar property is attributed by

classical SET to the properties of reference memory. If

each instance of a standard in, say, temporal generalization

is misremembered by being multiplied by a Gaussian

function with mean of 1 and some coefficient of variation,

c, then the representation in reference memory will have

the scalar property, as a result of c being a relative measure.

There is some doubt, however, about whether this

conception of reference memory is correct. For one

thing, the idea of reference memory as an accumulation

of a very large number of individual instances of an "im-

portant" time, while plausible in (some) animal studies

seems much less applicable to timing in humans, where

learning of standards in temporal generalization, to give

just one example, may be very rapid (taking place in a

single trial, according to Jones and Wearden (2003)).

Jones and Wearden (2003) present an alternative to the

classical conception of reference memory, but the de-

tails are too complicated for discussion here. There are

even recent data from animal studies that suggest that

once a particular time of reinforcement is learned, an an-

imal may change its behaviour very rapidly when the re-

inforcement time is changed, even after a few

experiences with the new time of reinforcement (e.g.,

Lejeune et al. 1997). Such rapidity of behavioural ad-

justment obviously suggests a reference memory that

can be rapidly over-written rather than one which

changes gradually as a result of accumulation of

instances.

Another problem with classical SET may reside in its

assertion that the source of scalar variability resides in

reference memory. A more commonsense view might

be that the "raw" representations of durations produced

by the internal clock itself already contain the necessary

scalar variance, because the clock runs at slightly differ-

ent speeds on each trial, so the number of pulses accu-

mulated in some constant time, t, varies from one trial to

another. Gibbon et al. (1984) even presented a potential

clock mechanism which would generate scalar

properties directly.

If the reference memory is the source of scalar vari-

ance, then what happens when tasks are devised where

reference memory is not used? The last few years have

seen the development of a number of timing tasks which

appear to make the use of reference memory difficult or

impossible ("roving standard" or "episodic" tasks, see

Allan and Gerhardt 2001, Rodriguez-Girones and

Kacelnik 2001), and here I will concentrate on only one

of these, the "episodic temporal generalization" method

of Wearden and Bray (2001).

A condition from their Experiment 3 illustrates the

basic method. Each trial consisted of the presentation of

2 tones, separated by a brief random-length gap, and the

participant’s task was to judge whether the two tones

had the same duration, although no feedback was given.

One of the tones (the sample) was drawn from one of

three distributions, 350-500 ms, 450-750 ms, or

600-1 000 ms, and the other (the comparison) was one of

the following multiples of the sample, 0.25, 0.5, 0.75, 1,

1.25, 1.5, 1.75. The order of the sample and the compari-

son was randomized from trial to trial. In this task, dura-

tion pairs were never repeated except by chance, and

durations presented could be very variable from one

trial to another. There was, obviously, no standard dura-

tion presented and even constructing a standard (e.g., by

averaging all the durations presented together, resulting

in 600 ms) seems useless to the participant. Superimpo-

sition could be tested by plotting data obtained from the

different duration ranges, and was found to hold (see

Wearden and Bray 2001 (Fig. 4, p. 305)).

This experiment, like others, showed the scalar prop-

erty of time even in the likely absence of reference mem-

ory, so questioned whether reference memory could be

the sole, or principal, source of variance in timing mod-

els. How might the episodic temporal generalization

task of Wearden and Bray be modelled?

The MCG model (Eq. 1) makes two assumptions

which are inappropriate for modelling episodic data:

first, it assumes that reference memory of s is used, and

second, by implication it assumes that s and t are treated
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differently (i.e., one has variance and the other does not,

and one serves as the denominator – the "normalizing

factor" for the absolute difference between s* and t).

Neither assumption can be used when modelling epi-

sodic data. If the duration pairs are never repeated, then

it seems impossible for the participant to develop any

sort of useful reference memory, so no s can be formed.

Furthermore, the absence of any distinction between s

and t means that neither of the stimuli on the trial can be

a privileged normalizing factor for the judgement. I

therefore sought a model in which the two durations pre-

sented on the trial (t1 and t2) were treated identically.

The starting point, like that of the MCG model, was to

assume that the basis of the decision to classify a pre-

sented duration as the standard was a difference, in the

present case the absolute difference between the two du-

rations presented on the trial. Previous data from epi-

sodic generalization (Wearden and Bray 2001) showed

that response functions from different duration ranges

showed approximate superimposition, suggesting that

absolute differences, by themselves, could not be the ba-

sis of the decision to classify a presented duration as the

standard, and that some normalizing factor was needed.

Given that neither of the stimuli on the trial had any

privileged status I decided to use the mean of the two as

the normalizing factor, and thus derived a quantitative

model of the episodic task.

In the episodic model, a "yes" response was produced

when

abs (t1*– t2*)/m < b*

where t1* and t2* are transformations of t1 and t2 (the

to-be-compared pair of stimuli), m is the mean of the

pair of transformed stimuli, and b* is a variable thresh-

old. t1 and t2 are transformed by converting each time

value into a Gaussian distribution with mean accuracy

and a coefficient of variation c, and drawing a random

sample from this distribution. b* is assumed to be drawn

from a Gaussian distribution with mean b and a standard

deviation of 0.5b. In this model, c is assumed to reflect

perceptual (rather than mnemonic) variance, since there

are no repeated stimuli in the episodic task that could be

stored in reference memory.

Figure 3 shows data from an unpublished experiment

like that of Wearden and Bray (2001), conducted in col-

laboration with Steven Grice. One point of interest is

that the empirical generalization gradients (upper panel)

show superimposition. For the "short" range condition

the sample was drawn from a uniform distribution

running from 300-500 ms, and for the "long" range con-

dition the sample was drawn from a distribution running

from 600-1 000 ms. Data from both ranges superim-

posed, confirming the contention of Wearden and Bray

(2001) that scalar timing could be found in the absence

of reference memory.

However, in addition, inspection of the empirical

generalization gradients shows that they are asymmetri-

cal (with more "yes" responses occurring when the com-

parison/standard multiples are above 1.0). At first sight

this seems inexplicable, as according to the arguments

made here there is no psychological distinction between
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Fig. 3. Data and modelling of episodic temporal generaliza-

tion. Upper panel: proportion of "yes" responses (judgements

that the two presented durations are equal) plotted against

comparison/sample ratio (see text for details). Data are shown

separately for the "short" range and "long" range conditions.

Lower panel: data points as upper panel (unconnected cir-

cles), and best-fitting episodic model (solid and dotted lines).

See text for other details.
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the two stimuli presented, but the fit of Equation 5 is

shown in the lower panel, and this also predicts asym-

metrical gradients. The reason becomes clear on inspec-

tion of Eq. 5: when multiples are greater than 1.0, the

comparison is absolutely longer than when the multi-

ples are less than 1.0, so the mean of the comparison and

the sample is higher. This means that some given abs

(t1* - t2*) difference will be smaller (and thus more

likely to be below threshold and thus generate a "yes"

response) when normalized by a larger m (i.e., one de-

riving from absolutely longer duration values). Note

that once again, the predicted asymmetry of the gradi-

ents comes from the assumed decision processes: had

these been different, then the predicted gradients may

not have been asymmetrical.

It is also important to note the similarity of the MCG

model (Eq. 1), and its variants, and the episodic model

(Eq. 5). They are both psychologically and mathemati-

cally similar, and both have the form of a thresholded

normalized difference (TND) model. That is, they both

use a difference between two durations, this difference

is "normalized" (i.e., divided) by something, then the re-

sult compared with a threshold. The left-hand sides of

both Eqs. 1 and 5 thus represent models of subjective

difference, or conversely subjective similarity, and the

judgement of identity required in both types of temporal

generalization task (normal and episodic) is obtained

when this similarity is sufficiently great (or the differ-

ence sufficiently small) to warrant the decision that the

durations compared are the same.

MODELLING TEMPORAL
BISECTION

The temporal generalization task offers simple exam-

ples of how decision processes play a central role in the

explanation of timed behaviour. The task of temporal

bisection, which has been even more frequently used in

recent studies of human timing, offers some slightly

more complicated cases. In bisection (Wearden 1991b),

as outlined earlier, the participant is initially presented

with two standards, one identified as "short" (S, e.g.,

200 ms) and another as "long" (L, e.g., 800 ms). Follow-

ing these standard presentations, comparison durations

(e.g., from 200 to 800 ms in 100-ms steps) are presented,

and the participant is required to make one response

("short") if the comparison is judged more similar to S

and another response ("long") if the comparison seems

more similar to L.

The result of this procedure is a psychophysical func-

tion usually graphed in terms of the proportion of "long"

responses plotted against comparison stimulus dura-

tion. In student-age adults, such a function has an ogival

shape, ranging from virtually no "long" responses when

the comparison duration which is actually S is presented

to nearly 100% "long" when L is.

The psychophysical function can be analyzed to yield

various measures, but the two that have attracted most

interest are: (i) the bisection point, the comparison dura-

tion giving rise to 50% "long" responses; and (ii) the

Weber ratio, essentially a Weber-fraction-like measure

of temporal sensitivity which reflects the steepness of

the psychophysical function.

The location of the bisection point has provoked the

most discussion. In animal studies it is almost invariably

located at the geometric mean of S and L, the square root

of their product (400 ms with the example stimuli given

above, although most studies with animals use longer

standard durations). Studies with humans yield mixed

results. Most find that the bisection point is located at or

near (usually just below) the arithmetic mean of S and L

(500 ms in the example given above), although other re-

sults are sometimes found.

Modelling the decision processes involved in bisec-

tion appears at first sight very straightforward. The bi-

section point might be supposed to be duration value

that is equally similar to both S and L. If time accrues on

a linear scale, then the point, t, equidistant from S and L

is their arithmetic mean, that is, the point when L - t = t - S,

is t = (S+L)/2, so such a simple difference decision pro-

cess is consistent with arithmetic mean bisection, which

is close to what is found in many cases. Unfortunately,

other results make such a simple model impossible to

sustain.

Wearden and Ferrara (1995) challenged such a sim-

ple conception of bisection performance in two ways.

Firstly, they showed that, for a constant S/L pair (e.g.,

200 and 800 ms), the location of the bisection point de-

pended on the spacing of comparison durations between

S and L: if the spacing was logarithmic then the bisec-

tion point was lower than when it was linear. Secondly,

Wearden and Ferrara (1995) compared performance on

"normal" bisection of the type described above (which

they called "classification bisection") with another

method which did not involve explicit identification of

S and L at all. In their novel bisection method ("partition

bisection") people just received a set of durations, for

example, from 200 to 800 ms in 100-ms steps, and were
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required to classify each as either "short" or "long", us-

ing any criterion they wished; that is, they were required

to partition the set of durations into two. The set was re-

peated 20 times, and when data from the last 10 repeti-

tions were combined into a psychophysical function,

such a function was identical to that obtained with the

classification method.

It seemed, therefore, that not only did stimulus spac-

ing between S and L affect the classification of a dura-

tion, t, so that, for example, t could be judged more

similar to S in one set and more similar to L in another,

but also that no explicit identification of S and L was

necessary at all for bisection. These results cast doubt on

any models which just use S, L, and t as the basis for

classification of t (as stimulus spacing effects cannot be

reconciled with such a model), and also cast doubt on

whether participants are even making any kind of com-

parisons of presented durations with S and L at all (see

also Allan 2002).

Wearden and Ferrara (1995) proposed that, rather

than using S and L as the basis for classifying some com-

parison, t, as "short" or "long", participants are actually

using the arithmetic mean of the set of all the stimuli pre-

sented. Such an idea has two immediate advantages.

Firstly, a model based on it will "automatically" predict

stimulus spacing effects. For example, the bisection

point is shifted to the left with logarithmic spacing be-

cause the mean of all the durations is lower with loga-

rithmic compared to linear spacing. According to this

reasoning, a "reverse logarithmic" spacing with a mean

higher than the arithmetic mean should shift the bisec-

tion above the arithmetic mean, and it does (Wearden

and Ferrara 1995). The second advantage of Wearden

and Ferrara’s model was, of course, that the similarity of

behaviour under classification and partition bisection

was predicted: in both cases, participants are just using

the average of all the durations presented, regardless of

explicit identifications of S and L in the classification

case.

Specifically, Wearden and Ferrara (1995) proposed

that people classify some duration, t, as "long" when

(t - M)/t < b

and "short" when

(t - M)/t < -b

and when

-b < (t - M)/t < b

a condition of ambiguity, the model responds "short" or

"long" at random with equal probability. In Eqs. 6, 7 and

8, M is the arithmetic mean of the set of presented dura-

tions (assumed to be represented as a Gaussian distribu-

tion with mean M and some coefficient of variation, c),

and b is a fixed threshold.

Inspecting Eqs. 6, 7, and 8, the reader immediately

notes that: (i) they are all of the TND type; and (ii) they

closely resemble the decision rules used for temporal

generalization, in particular the fixed-threshold model

(Eq. 3).

It should be acknowledged that there are other mod-

els of bisection (e.g., Allan and Gibbon 1991, Killeen et

al. 1997) than that mentioned above, and I have con-

ducted a recent unpublished review of an extensive set

studies of temporal bisection in humans which con-

cluded that that the best model was a slight modification

of that of Wearden and Ferrara’s model, one which as-

sumes that participants are using 95% of the arithmetic

mean of the set of durations instead of 100%, although

the arguments justifying this position are too lengthy to

be repeated here.

It can be seen therefore that the basic TND structure

of decision processes needed to model temporal gener-

alization (where judgements are about the identity of

durations) can be extended to temporal bisection (where

the judgements appear to involve similarity of dura-

tions). In fact, the TND structure implies that identity is

just thresholded similarity, and the same rules can apply

to both sorts of decisions about durations.

WHAT AFFECTS DECISION
PROCESSES?

Are there factors in timing experiments that affect de-

cision processes alone? One example, from Wearden

and Grindrod (2003), has already been presented above

and the reader will recall that we used differential payoff

manipulations to encourage or discourage participants

from identifying comparisons as the standard in tempo-

ral generalization. Another similar example comes from

Wearden and Culpin (1998) who used differential pay-

offs for errors made to different comparison stimuli.

The standard was always 500 ms, with comparison du-

rations ranging from 200 to 800 ms. Points were gained

for correct responses and were deducted for errors, but

in different conditions identifying one comparison stim-
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ulus as the standard was particularly heavily punished

by point loss. In one case this was the comparison (600

ms) just longer than the standard, and in another the

comparison (400 ms) just shorter. This manipulation

shifted the shape of the generalization gradient,

presumably by affecting decision processes, although

no modelling was conducted to test this.

A more interesting example of a factor that is both

widespread in timing experiments and which may affect

decision processes directly is task difficulty. Ferrara et

al. (1997) noted such an apparent effect in a temporal

generalization experiment with a 600-ms standard. Two

different groups had non-standard comparisons dura-

tions spaced in either 150-ms or 75-ms steps around the

standard, and the two groups thus experienced some

common stimuli (i.e., both experienced trials where 750

ms and 450 ms had to be compared with the 600 ms stan-

dard). Ferrara et al. (1997) found that the discrimination

between the comparisons and the standard was better in

the group that performed the more difficult discrimina-

tions overall (the group with the 75-ms spacing). This

result was replicated by Wearden and Grindrod (2003)

who again found apparently greater timing sensitivity

when the discrimination to be performed was more dif-

ficult. The problem in these cases is to understand how

trials which involve physically identical stimuli, and

identical comparisons, can actually produce behaviour

which is different.

Ferrara et al. (1997) reviewed data from bisection ex-

periments and found that if the difficulty of the bisection

task is assayed by the L/S ratio (with smaller ratios indi-

cating greater task difficulty), then Weber ratios (a mea-

sure of temporal sensitivity on bisection tasks, where

lower values indicate greater sensitivity) were systemati-

cally lower when the bisection task was more difficult.

The commonsense explanation of these task diffi-

culty effects is that subjects "pay more attention" when

the task is difficult than when it is easy, and thus dis-

criminate stimuli better. However, this explanation,

while intuitively plausible, does not explain the mecha-

nism by which performance is changed, nor does it fit

clearly into other "attentional" effects on timing. Al-

most all attentional effects on timing involve some sort

of concurrent interference (for a review see Brown

1997) so, for example, timing is poorer if a concurrent

non-timing task must be performed simultaneously with

a timing task, or when the participant must time more

than one duration at once (e.g., Brown and West 1990).

Here, the normal explanation is in terms of attentional or

resource "division" between the two tasks. However, in

the case of the effects noted by Ferrara et al. (1997) there

is no concurrent interfering task, and participants report

that the are trying to perform as well as they can on the

timing task in all conditions. However, their performance

apparently improves when the task is harder!

Ferrara et al. (1997) discussed several possible expla-

nations of task difficulty effects, and were able to model

the effect on temporal generalization in terms of a lower

(i.e., more strict) threshold (b in Eq. 1) in the more diffi-

cult case. This effect is illustrated (with imaginary data)

in the upper panel of Figure 4. Here, temporal general-

Fig. 4. Simulation of task difficulty effects. All results come

from simulations. Upper panel: comparison of temporal gen-

eralization with 100-ms and 50-ms non-standard duration

spacing. The MCG model produced the results, and the

threshold was lower in the 50-ms case. Lower panel: simula-

tion of bisection performance. Results come from the

Wearden and Ferrara (1995) model. Conditions compared in-

volve a 200/800 ms S/L pair and a 300/600 ms S/L pair, with

the threshold being lower for the latter simulation.
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ization gradients are generated by the MCG model, but

the difference between the conditions shown resides in a

threshold difference only. A condition with a 400-ms

and 100-ms comparison spacing around the standard is

contrasted with a more difficult condition with a 50-ms

spacing. The only difference in the simulations was that

the threshold, b, was lower for the 50-ms case, with

everything else remaining the same.

Obviously, such a threshold change changes the gen-

eralization gradient in the direction of greater apparent

timing sensitivity with the stricter threshold. Overall,

"yes" responding is lower at all comparison stimulus

values, but the finer discrimination in the 50-ms case is

evidence by comparing the comparison stimuli com-

mon to both sets. The 300-ms comparison generates

40% of the "yes" responses that occur at the standard in

the 100-ms case, but only 34% in the 50-ms case. Like-

wise, the 500-ms comparison generates 63% of the

"yes" responses that occur at the standard in the 100-ms

case, but only 51% in the 50-ms case.

Ferrara et al. (1997) had no such ready explanation

of bisection performance, yet the similarity of the mod-

els used for bisection (Eqs. 6, 7, and 8) and those used

for generalization (Eqs. 1-4) encourage the same sort

of explanation. Fig. 4 shows that this logic is sustain-

able. In the (imaginary) data shown (lower panel of

Fig. 4), the Wearden and Ferrara (1995) bisection

model is used to simulate performance with a 200/800

ms L/S pair and a 300/600 ms L/S pair. In both cases the

comparison durations are spaced in equal linear steps

between S and L. The only difference between the sim-

ulations was that the threshold, b in Eqs. 6, 7, and 8,

was lower for the 300/600 ms case, reflecting its puta-

tively greater "difficulty". Obviously, the gradient of

the psychophysical function is steeper (indicating

higher timing sensitivity) with more the more conser-

vative b value.

If we assume that task difficulty effects of the type

noted by Ferrara et al. (1997) are mediated by changes in

threshold, then they can only be explained by models

which have such a modifiable threshold, so demonstrat-

ing task difficulty effects in some particular task is tan-

tamount to requiring a threshold-based model for the

task. Episodic temporal generalization also demon-

strates task difficulty effects, as unpublished work con-

ducted in collaboration with Steven Grice demonstrates,

but Eq. 6 (the episodic model) contains a threshold and

can thus potentially account for this effect with thresh-

old changes. In fact, task difficulty effects in episodic

generalization can be modelled by threshold changes in

the same way as Ferrara et al. achieved for "normal"

generalization.

The arguments above show that there may be some

effects in the timing literature which a mediated solely

by their effects on decision processes, rather than by

changes in the "raw" perception of time, such as those

resulting from changes in the operation of the internal

clock.

Overall, the temporal generalization and bisection

tasks (and related procedures like categorical timing

(Wearden 1995)) provide clear examples of the opera-

tion of decision mechanisms in timing, and show how

our understanding of performance on such tasks de-

pends centrally on understanding decision mechanisms

as well as other parts of the timing system.

NEW HORIZONS: MODELS OF
OTHER TASKS

The "mechanics" of psychological models of timing

like SET enable us to develop precise quantitative ac-

counts of how people are performing of timing tasks

rather than just mathematical fits to the data that people

produce. That is, the models specify the psychological

processes involved in some timing task in precise detail

(although, naturally, the models that exist will not al-

ways be accurate or correct). What is true of temporal

generalization and bisection is also true of other tasks:

without a detailed psychological model of the task, dif-

ferences in performance in different conditions or be-

tween different groups (children, elderly, patients of

one sort or another) remain very difficult to interpret

precisely. Yet, some quite commonly used tasks (such

as the threshold determination procedure extensively

used in drug studies by Rammsayer and colleagues

(e.g., 1997) apparently do not have any specified psy-

chological model, so remain "empirical" techniques

which tell us much less about timing than they would if

psychological models of them were developed and

tested.

However, it should be acknowledged that developing

such models is no trivial task. I have concentrated in this

article on temporal generalization and bisection because

they are both simple and have more than a decade of the-

oretical development behind them. Some other timing

procedures, particularly those used in classical time

psychology such as reproduction and verbal estimation

not only may not have any clear theoretical model which
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accounts for them, but may also be resistant to simple

models of the sort discussed in this article. I recently re-

ported a proto-model of temporal reproduction

(Wearden 2003) which is basically compatible with the

principles of SET, and which fits some aspects of repro-

duction data well (although it fits others less well), but

developing a model of another classical task, verbal

estimation, presents some formidable challenges.

I will outline only some of these here, to illustrate pos-

sible avenues of development. In a procedure commonly

used in my work (e.g., Penton-Voak et al. 1996, Wearden

et al. 1998) people receive a series of auditory or visual

stimuli, all of which are too short to make counting use-

ful, and have to assign verbal labels to their duration esti-

mates, using a scale of 1 000 = 1 second. The behaviour

that results has a number of properties. Firstly, mean esti-

mates grow linearly (but not accurately) with real time.

Secondly, coefficient of variation of estimates (standard

deviation/mean) tends to decrease with increasing dura-

tion, although the shortest duration presented can have a

small coefficient of variation also (see Wearden 1999

(Fig. 2, p. 10)). Thirdly, verbal estimates are almost in-

variably "quantized", so numbers ending in "00", or (less

frequently) "50", are almost the only ones ever used, ac-

counting for more than 98% of estimates in the data I col-

lect. So, for example, a person presented with a tone

which is actually 457 ms long never says "457" but, in-

stead "400", "500", or "550".

To model verbal estimation, not only do we need

some model of how "raw" time "sensations" increase

with real time (a scalar timing mechanism might serve

for this), but we need to tackle the tricky problem of

quantization, how internal sensations are translated into

the numbers that are produced. In the case of verbal esti-

mation, it seems particularly clear that the quantization

process "translates" the raw temporal sensation into the

behaviour observed, so two different individuals could

actually "feel" the stimulus durations in exactly the

same way, yet report different verbal estimates. Like-

wise, measures of the mean and variability of verbal es-

timates are affected both by changes in internal

sensation as stimulus duration changes, and by the

quantization process.

Figure 5 shows an outline of a potential model of ver-

bal estimation. In the upper part, two stimuli (S1 and S2)

give rise to different duration sensations. However, the

verbal responses are quantized to certain values, shown

in the bottom part of the diagram as R0 to R4. One simple

rule might be for the sensation, S, to be translated into

the closest permitted response. This poses no problem

for S1, which produces the verbal response R1, but S2 is

ambiguous, being equidistant from R3 and R4, and mod-

elling might permit probabilistic choice, so sometimes

R3 occurs and sometimes R4. However, the differential

variability of responses to S2 is not a result of its intrinsic

variability (although this may well exist, so that an S

value does not always give rise to the same sensation)

but of the quantization process involving translation be-

tween internal sensations and permitted verbal re-

sponses. Another complexity is that if the sensation is

systematically changed (e.g., by a "speeding up the

clock" manipulation, see Penton-Voak et al. 1996), then

the verbal estimates of some durations may be much

more affected than others. For example, if S2 in Fig. 5 is

"lengthened", then R4 may become much more probable

than R3, so the variability of verbal estimates of S2 may

change, but the effect is largely due to the quantization

of verbal estimates. Increasing the subjective duration

of S2 would be expected, according to scalar principles,

to increase its subjective variability, but pushing S2 to-

wards a value almost invariably quantized as R4 might

reduce variability in its verbal estimates.

Obviously, the development of a precise quantitative

model of verbal estimation remains a significant chal-

lenge, and seems likely to be a much more complex task

than the development of models of procedures like tem-

Fig. 5. Sketch of a potential model of "quantization" in verbal

estimation. S1 and S2 are two stimulus durations, and R0 to R4

permissible verbal responses. Dashed arrows between the

horizontal lines show potential quantization processes.
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R1 R2 R3 R4R0

S1
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poral generalization and bisection. Nevertheless, the ef-

fort involved in developing such a model may well

deepen our understanding of how people scale durations

in conventional units, and enable us to understand more

precisely than before just why the results of experiments

on verbal estimation have the properties that they have.

CONCLUSIONS

The principal points of this article might be simply

summarized.

Firstly, decision processes play an essential role in

the leading contemporary model of timing, scalar ex-

pectancy theory (SET).

Secondly, the predictions of performance on tasks

like temporal bisection and generalization may depend

more critically on the decision processes chosen than by

some other aspects of the theoretical explanation (such

as where timing variance is in the system).

Thirdly, decision processes proposed for different

tasks involving judgements of the similarity or identity of

durations appear to have a common form: thresholded

normalized difference (TND). Here, the absolute differ-

ence between a to-be-judged duration and some kind of

standard is normalized (i.e., divided) by some quantity,

and the result is compared with a threshold.

Fourthly, the decision processes that might be operat-

ing in tasks like verbal estimation of duration may be

much more complicated than any studied up to this time:

however, a precise specification of the decision pro-

cesses may be critical to understanding behaviour on

verbal estimation and other "classical" timing tasks.

This article will have achieved its aim if the reader (i)

has been convinced of the importance of decision pro-

cesses in understanding timing; and (ii) has gained some

insight into the way some simple models employing de-

cision processes have been used. More generally, the

study of differences in timing between groups, or at-

tempts to understand how the brain mediates timing,

might well benefit from some consideration of decision

processes. Different groups may differ in timing perfor-

mance not because of fundamental differences in their

"internal clock", but because of differences in memory

or decision mechanisms. Likewise, a search for brain

mechanisms of timing should not concentrate solely on

putative mechanisms which might serve as a "time-

keeper", such as oscillating neurons. While the search

for a timekeeper (or timekeepers) in the brain is valuable

and important, purely psychological studies which, as

the present article shows, have reached high levels of

quantitative precision, argue that the search for memory

and decision mechanisms relating to timing is at least as

important.
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