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Abstract. Matching Pursuit (MP) - a method of high-resolution signal analysis

- is described in the context of other methods operating in time-frequency

space. The method relies on an adaptive approximation of a signal by means

of waveforms chosen from a very large and redundant dictionary of functions.

The MP performance is illustrated by simulations and examples of sleep

spindles and slow wave activity analysis. An improvement of the original

procedure, relying on the introduction of stochastic dictionaries, is proposed.

A comparison of the performance of dyadic and stochastic dictionaries is

presented. MP with stochastic dictionaries is characterized by an unmatched

resolution in time-frequency space; moreover it allows for parametric

description of all (periodic and transient) signal features in the framework of

the same formalism. Matching pursuit is especially suitable for analysis of

non-stationary signals and is a unique tool for the investigation of dynamic

changes of brain activity.
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INTRODUCTION

EEG (electroencephalogram) reflects electrical activ-

ity of a multitude of neural populations in the brain. This

signal is extremely complex, since EEG is generated as a

superposition of different simultaneously acting dynam-

ical systems. The oscillatory activity of neuronal pools

reflected in characteristic EEG rhythms constitutes a

mechanism by which the brain can regulate changes of

state in selected neuronal networks to cause qualitative

transitions between modes of information processing

(Lopes Da Silva 1996).

The complex character of the EEG and its significance

in brain research and clinical practice caused the early in-

troduction of signal analysis methods to EEG studies.

Spectral methods of EEG processing can be traced back

to the first attempt to use Fourier analysis to analyze the

EEG in 1932 (Dietsch 1932). The Fast Fourier transform

(FFT) was applied to the EEG soon after its introduction,

and until today spectral analysis remains the most wide-

spread signal processing method in this field. Limita-

tions of FFT promoted the introduction of parametric

methods such as autoregressive (AR) or autoregressive -

moving average (ARMA) models, free from windowing

effects.

Development of non-linear methods of signal analysis

brought an explosion of work concerning the application

of chaotic formalisms to the EEG (Basar and Bullock

1989, Dvorák and Holden 1991). Work of Freeman,

based on carefully planned physiological experiments,

brought new insights into the mechanisms of non-linear

modes of brain operation (Skarda and Freeman 1987).

However, applying chaos theory to the EEG proved to be

more difficult than was expected. It has been shown that

linear forecasting of signals from human and animal

brains is as good as, and sometimes better than non-lin-

ear predictions (Blinowska and Malinowski 1991). Tests

of non-linear procedures, performed on surrogate (phase

disturbed) data, revealed their failure to describe different

kinds of EEG time series (Pijn et al. 1991, Achermann et

al. 1994).

In view of the evidence presently available, applica-

tion of typical methods of non-linear time series analy-

sis, such as calculation of attractor dimension or

Ljapunov coefficients, seems to be fully justified only

for special cases such as epileptic EEG (Pijn et al. 1991)

or activity of a group of neurons in a well defined opera-

tion mode (Skarda and Freeman 1987). This fact is not

surprising when we consider the multitude of dynamic

processes running in brain and their ever-changing char-

acter.

All the above mentioned methods, linear and non-lin-

ear, assume stationarity of the signal - in spite of the fact

that information processing by the brain is mostly re-

flected in fast dynamic changes of its activity. This fact

suggests that the application to the analysis of EEG and

LFP (local field potentials) of methods operating in

time-frequency space brings the substantial progress.

The first method which allowed for the time-fre-

quency representation of a signal’s energy distribution

was windowed Fourier transform (WFT). It relies on an

estimation of power spectra (by Fourier transform) for

short time windows, shifted along the time axis.

Widespread application of time-frequency methods

of signal analysis started in eighties with Wavelet Trans-

form (WT), which describes a signal in terms of coeffi-

cients {cs,u} representing the signal’s energy content in a

specified time-frequency region. This representation is

constructed by means of decomposition of the signal f

over a set of waveforms generated by translating (u) and

scaling (s) one function- wavelet �, possibly well con-

centrated in time and frequency:
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The linear decomposition of signals using WT was a

significant improvement over the windowed Fourier

transform (WFT), allowing for orthogonal representa-

tion, fast numerical implementations and multiresolu-

tion decomposition of signals (Mallat 1989). WT has

been successfully applied to the analysis of time-locked

EEG phenomena (evoked potentials), where it’s main

drawback - sensitivity of the representation to the time

shift of analyzed window (Durka 1996) - is not a serious

problem. However, neither WT nor WFT provides

enough resolution and flexibility in a general case, like

description of transients occurring more or less ran-

domly in time.

A high resolution time-frequency representation of

signal’s energy can be constructed by Cohen’s class

transforms (Williams 1997); they all derive from the

quadratic Wigner transform which can be expressed as:
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This representation satisfies the time and frequency

marginals, but contains severe cross terms between dif-

ferent time-frequency structures, which may lead to mis-
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interpretation. Sophisticated mathematics applied to

reduce this effect created a class of Reduced Interference

Distributions (see e.g. Williams (1997)), where reduc-

tion of cross terms is usually achieved at the cost of mar-

ginal properties.

In spite of the high resolution offered by Cohen’s class

transforms, their application is practically limited to vi-

sual inspection of time-frequency plots for each ana-

lyzed data epoch. A method which allows for parametric

- fully quantitative - description of signals in time-fre-

quency space is Matching Pursuit (MP), a method based

on adaptive approximation of time series by functions

chosen for each analyzed epoch. The MP was introduced

by Mallat and Zhang (1993). The first application to bio-

logical signal concerned EEG analysis (Durka and

Blinowska 1995). In the following we will describe the

MP method itself, then point out some of the limitations

of the original approach, and finally present a way of

overcoming the bias of the original method. Properties of

MP parametrization will be demonstrated on the exam-

ple of sleep EEG; however the method is suitable for all

kinds of signals, in particular non-stationary time series.

METHODS

The method relies on the approximation of the signal

by functions (time-frequency atoms) chosen from a very

large and redundant set. Given a set of functions (dictio-

nary) {G={g1,g2,...,gn} such that gi �1, we can define

an optimal M -approximation as an expansion minimiz-

ing the error � of the approximation of signal f by M at-

oms. Such an expansion is defined by the set of indices

{�i}i=1...M of the chosen functions g
i�
and their weights wi:
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Finding such an optimal approximation is

computationally intractable (Davis 1994). Another

problem emerges from the fact that such an expansion

would be unstable with respect to the number M of used

waveforms: changing M even by one can completely

change the set of waveforms chosen for the representa-

tion. These problems turn our attention to sub-optimal

solutions. A sub-optimal expansion, stable with respect

to the number of chosen waveforms, can be found by

means of an iterative procedure, such as the Matching

Pursuit algorithm proposed by Mallat and Zhang

(1993). A similar approach was discussed by Qian et al.

(1992).

Matching Pursuit algorithm

MP (introduced in Mallat and Zhang (1993)) is an iter-

ative, non-linear procedure which decomposes a signal

into a linear expansion of waveforms chosen from a re-

dundant dictionary. In the first step, a waveform g
o�

best

matching the signal f is chosen, and in each consecutive

step waveform g
n�

is matched to the signal’s residuum

R
n
f, left after subtracting results of previous iterations:
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ergy conservation:
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If the dictionary is complete, which is usually the

case, the procedure converges to f, i.e.

f R f g gn

n
n n

� � �
�

�

� , � �
0

Discrete dyadic Gabor dictionary

A waveform (atom) from a time-frequency dictionary

can be expressed as a translation (u), dilation (s) and

modulation (�) of a window function g t L R( ) ( )� 2
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Optimal time-frequency resolution is obtained for

gaussian g(t), which for the analysis of real-valued dis-

crete signals gives a dictionary of Gabor functions

(sine-modulated gaussians):
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The value of K( , )� � is such that g� �, �1. Complete

sampling of discrete parameters u N�1... ,� �1 2... / ,N

s N�1... where N is the signal’s size in points, produces

a huge dictionary even for a relatively small N. There-

fore in the "classical" implementation proposed by

Mallat and Zhang (1993) the dictionary’s atom’s param-

eters are chosen from dyadic sequences. For a discrete

signal of length N L� 2 sampling is governed by a new

parameter - octave j (integer). Scale s, corresponding to

(8)

(3)

(4)

(5)

(6)

(7)
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atom’s width in time, is chosen from the dyadic sequence

s j� 2 , 0� �j L. Parameters u and �, corresponding to

atom’s position in time and frequency, respectively, are

sampled for each octave with an interval s j� 2 .

The size of this dictionary (and the resolution of de-

composition) can be increased by oversampling by

2 0l l( )� the time and frequency parameters u and�. The

resulting dictionary has O N Nl( log )22
2 waveforms, so

the computational complexity increases with oversam-

pling by 2l. Time and frequency resolutions increase by

the same factor:
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where fs is the sampling frequency of analyzed signal.

Resolution is hereby understood as the distance between

centers of dictionary’s atoms neighboring in time or fre-

quency, and depends on the octave j (scale s j� 2 ). Scale

s in turn corresponds to the width of an atom in time (and

frequency). We can define the time width of a time-fre-

quency atom as the half-width of the window function

g(t):
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In spite of the oversampling, the algorithm still looks

for a signal’s expansion only over a relatively small sub-

set of the possible dictionary’s functions. Issues related

to the particular structure of this subset will be discussed

in the section "Stochastic dictionaries".

Time-frequency energy distribution

From equation (6) we can derive a time-frequency dis-

tribution of a signal’s energy by adding Wigner distribu-

tions of selected atoms (Mallat and Zhang 1993).

Calculating the Wigner distribution directly from equa-

tions (2) and (6) would yield
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The double sum, containing cross Wigner distribu-

tions of different atoms from the expansion given in eq.

(6) corresponds to the cross terms generally present in

the Wigner distribution. One usually tries to remove

these terms in order to obtain a clear picture of the energy

distribution in the time-frequency plane. Removing

these terms from eq. (11) is straightforward - we keep

only the first sum; we can define a magnitude Ef t( , )� :
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The Wigner distribution of a single time-frequency

atom g� satisfies
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Combining this with energy conservation of the MP

expansion (eq. 6) yields
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This justifies the interpretation of Ef t( , )� as the en-

ergy density of f(t) signal in the time-frequency plane.

An example: simulated signal with noise

In Figure 1a a simple signal is constructed from a con-

tinuous sine wave (A), a one-point discontinuity

(Dirac’s delta, B) and three Gabor functions (C, D and E)

of the same time positions (C and D) or the same fre-

quencies (D and E). Fig. 1b gives the time-frequency en-

ergy distribution obtained for this signal from MP

decomposition by means of eq. (12). On the left of Fig. 1

b, c, d, energy is proportional to height; on the right it is

proportional to shades of grey. The perfect representation

of all the signal structures is due to the fact that the signal

was constructed as a sum of dictionary’s elements only.

In Figure 1c and 1d a white noise of energy twice and

four times the signal’s energy is added. In both cases the

same realization of white noise was used (with different

weights). Table I presents the parameters of the simu-

lated time-frequency structures A-E compared to param-

eters of corresponding time-frequency atoms fitted by

MP to the signals mentioned, with S/N ratio from �
(simulated signal b without noise) through 1/2 (- 3 dB,

signal c) to 1/4 (-6 dB, signal d).

We can observe some characteristic properties of de-

composition:

1. Sine wave retains its frequency up to the noisiest sig-

nal. However, even in the absence of noise additional

shorter structures are fitted near the beginning and the

end of the signal to account for border effects. In noisy

signals the "infinite" sine tends to be explained by two

shorter structures, due to border effects again.

(11)

(14)

(10)

(9)

(12)

(13)
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2. Dirac’s delta disappears in the strongest noise, but till

then preserves its exact time position.

3. Gabor function C, being the only structure in this fre-

quency, retains relatively well all of the parameters with

a slight flow of time position at higher noise levels.

4. Finally, the two Gabor functions D and E lying at the

same frequency with different time positions and widths

exhibit slight flow of parameters for S/N=1/2. At higher

noise levels they divide in to two longer structures: one

in between (in Table I assigned to structure D) and one

more to the right.

The above example demonstrates the robustness of

the method in the presence of linearly added white noise

- in this case most of the basic time-frequency character-

istics were represented even in S/N=1/4 (- 6 dB).

Sleep spindles detection and analysis based upon

Matching Pursuit parametrization

As described above, "classical" MP with a dyadic

Gabor dictionary allows for computationally effective

implementation, and hence was the first kind of MP ar-

chitecture applied in biomedical signal processing. A

study of sleep spindles, presented below, demonstrates

the possibilities opened by the MP approach in EEG

analysis.

Fig. 1. (a): left - components of the simulated signal: sine A, Dirac’s delta B and Gabor functions C, D and E. Right - signals, la-

belled b, c and d, constructed as sum of structures A-E and white noise, and decomposed in corresponding panels (b), (c) and (d).

(b): time-frequency energy distribution (eq. 12) obtained for sum of structures A-E; in 3-D representation on the left energy is

proportional to the height, in right panel - to the shades of gray. Panels (c) and (d): decompositions of signals with linear addition

of noise, S/N = 1/2 (-3 dB) in (c) and -6 dB in (d), the same realization of white noise was used in both cases. Exact parameters of

presented time-frequency structures are given in Table I.
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Experimental data

Overnight recordings of sleep EEG contained stan-

dard polysomnographic channels, 21 channels of EEG

according to the 10-20 standard system (see insert in Fig. 5)

and A1 and A2 derivations (ears). Silver electrodes were

applied with collodion. Maximal accepted resistance

was less than 5 Kohms. A 12 bit analog-digital converter

was used with a conversion rate of 128 Hz (in some cases

102.4 Hz). Results described below were obtained from

recordings of the second night’s sleep of healthy volun-

teers, usually about 7 hours of EEG. Analysis was per-

formed on signals referenced to the A1/A2 electrodes

(linked ears). Subsequent segments of 20 s length were

subjected to MP decomposition.

Choosing spindles from time-frequency atoms

Sleep spindles play a major role in the analysis of ce-

rebral activity in sleep. Their morphology, described and

defined mainly for the purpose of visual analysis

(Rechtschaffen and Kales 1968), corresponds well to the

basic shape of waveforms from the Gabor dictionary, so

each spindle should be represented by one time-fre-

quency atom. It remains to choose, from the waveforms

fitted to the analyzed segment, those corresponding to

sleep spindles. According to generally accepted criteria

and our previous experience, time-frequency conditions

for a structure to be considered a sleep spindle were

defined as follows: frequency: 11-15 Hz, time width:

0.5-2 s (octaves 6-8, eq. 10). Amplitude presents a sepa-

rate problem - in this study the threshold was set at 25!V

(min), based upon comparison of MP results with visual

detection of sleep spindles. Time of occurrence and

phase had no influence on discrimination, since infor-

mation from different channels was treated separately.

Investigation of sleep spindles properties and

distributions

The previous section defined a filter, which chooses

from the atoms, fitted to the analyzed signal by a general

MP procedure, those atoms corresponding to sleep spin-

dles. Its application provides - in a completely automatic

fashion - precise time-frequency parameters of all the

sleep spindles present in a multichannel overnight EEG

recording. For a clear visualization of this huge amount

of information, several types of reports present parame-

ters of selected atoms (or corresponding sleep spindles)

in different coordinates. These reports are projections of

multidimensional space of the spindle’s parameters onto

2- (or 1-) dimensional subspaces, suitable for presenta-

tion of given phenomena.

Frequencies in frontal an parietal derivations

Figure 2 is composed from histograms of frequencies

of sleep spindles plotted for each channel and placed on

Table I

Parameters of structures A-E (Fig. 1) - original values in

simulated signal and parameters recovered by MP decomposi-

tion for signals with different S/N ratios. Time position of sine

wave (
1
) and frequency of Dirac’s delta (

2
) are set by conven-

tion as half of the time and frequency ranges, respectively

parameters amplitude scale position frequency

structure A (sine)

original 1.00 512 - 0.5000

S/N=� 0.62 512 256
1

0.5031

0.98 256 506 0.5031

0.9 256 14 0.5031

S/N=1/2 1.40 256 506 0.5031

1.23 256 43 0.5031

S/N=1/4 1.41 256 506 0.5031

1.16 256 43 0.5031

structure B (Dirac)

original 10.00 0 64 -

S/N=� 10.37 0 64 1.57
2

S/N=1/2 8.03 0 64 1.57
2

S/N=1/4 - - - -

structure C (Gabor)

original 3.00 64 128 2.40

S/N=� 2.96 64 132 2.39

S/N=1/2 2.98 64 118 2.39

S/N=1/4 3.10 64 111 2.39

structure D (Gabor)

original 3.00 64 128 1.20

S/N=� 2.96 64 124 1.19

S/N=1/2 2.75 64 132 1.19

S/N=1/4 1.72 256 234 1.18

structure E (Gabor)

original 3.00 128 320 1.20

S/N=� 2.97 128 326 1.20

S/N=1/2 2.35 128 294 1.19

S/N=1/4 1.12 256 361 1.13
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Fig. 2. Histograms of frequencies of sleep spindles detected in one overnight EEG recording. Plots are placed on page according

to relative positions of corresponding derivations - front of head towards the top of page. We observe sparse occurences in pe-

ripheral (Fp*, O*, T* and F[7-8]) electrodes, therefore in the following multi-derivations plots (Figs. 3, 8 and 9) results only for

the central 9 derivations (O*, C* and F[3, 4, z]) will be presented.
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the page according to relative position of electrodes. We

notice that higher frequencies are present in the more pos-

terior, and lower in the more anterior derivations. This

trend, present in all the analyzed recordings, conforms to

the hypothesis of two generators of sleep spindles

(Jankel and Niedermayer 1985, Jobert et al. 1992).

In Figure 3 each spindle is marked in frequency (hori-

zontal) vs. amplitude (vertical) coordinates. Plots for

Fig. 3. Amplitudes of detected spindles (vertical) plotted versus their frequencies (horizontal) for the nine central derivations

from Fig. 2.
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each channel are positioned as in the previous figure. We

observe for predominant frequencies higher amplitudes

of spindles.

Superimposed spindles

In some cases a structure marked by an expert as one

sleep spindle can have a frequency signature varying

with time. Hao et al. (1992) interpreted such cases as a

superposition of two different spindles. They applied

complex demodulation to the structures marked espe-

cially for this purpose by an electroencephalographer.

Figure 4 presents a time-frequency energy distribu-

tion of 20 seconds of sleep EEG, where structures con-

forming to spindle’s criteria are marked by the letters

A-F. Structures C and D, as well as E and F, were classi-

fied as one spindle, i.e., their centers fell within a time

section marked by the encephalographer as one spindle.

Results of MP decomposition of these spindles can be in-

terpreted in two possible ways: either we are dealing

with different phenomena appearing closely together in

time, or the frequency changes within the structure’s du-

ration. The structure of the changing frequency would be

represented as several separate atoms, because in the

applied dictionary there are only structures of constant

frequency (compare Fig. 10).

Additional information can be provided by tracing the

spatial distribution of these structures. Figure 5 presents

the distribution of energy of spindles E and F across the

electrodes. Each box corresponds to one recorded chan-

nel and contains (from the top): frequency [Hz], ampli-

tude [!V], relative position in time [bottom left, ms] and

time width [bottom right, ms] for a spindle possibly

detected in each position. Boxes are positioned topo-

graphically as in Figs. 2-3, shading of each box is propor-

tional to amplitude. We notice that higher-frequency

spindle E is stronger in occipital electrodes, while ampli-

tudes of lower-frequency spindle F are higher in frontal

electrodes, although in some of them this spindle is miss-

ing. These distributions suggest that we are dealing with

two different phenomena rather than one structure of

changing frequency.

In the proposed framework, separation of superim-

posed structures with varying time-frequency signatures

is straightforward. They can be automatically detected

for the purpose of further investigations, based upon

Fig. 4. Time-frequency energy distribution (equation 12) of 20 seconds of sleep EEG; structures corresponding to sleep spindles

are marked by letters A-F. Structures C and D , as well as E and F, were classified as one spindle, i.e. their centers fell within a time

section marked by the expert as one spindle.
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proximity in time. In the work of Hao et al. (1992) each

case of a superimposed spindles was identified visually,

which limits the accuracy of the procedure and the

possibility to process larger amount of data.

A step towards complete description of sleep

EEG

Reports discussed in previous sections were aimed at

a simultaneous presentation of spindles detected in all

EEG derivations. The time course of spindle occurrence

in one channel, as presented in Fig. 6, relates directly to

the classical perception of the sleep process - the "sleep

staircase" or hypnogram (presented in Fig. 6a).

In order to provide a more complete picture, the time

course of slow wave activity (SWA) is drawn simulta-

neously. Description of the SWA was traditionally as-

sessed by spectral analysis. In the framework of MP we

pick from the decomposition (already performed for the

purpose of spindle parametrization) atoms conforming

to the following criteria: frequency 0.5-4 Hz, amplitude >

75 !V and time span > 2.35 s.

Figure 6 presents the time course of spindles (b-d) and

SWA (e-g) together with a hypnogram (a) in the same

time scale. Data from the whole overnight recording is

presented for the Pz electrode. Plots (b-c) show time dis-

tribution of frequencies and amplitudes of spindles, (d)

gives the number of spindles detected per minute. Plots

(f) and (g) give frequencies and amplitudes of SWA

structures, while (e) presents the magnitude correspond-

ing to the spectral power of structures classified as SWA,

calculated for each minute. The time course of the spin-

dle density is quite similar to the time course of the am-

plitudes of detected spindles. That means that in epochs

where more spindles are detected, usually also higher-

-amplitude spindles are present (compare also Fig. 3).

The time course of spindle activity and SWA in

slow-wave sleep episodes [stages 3-4 on hypnogram]

conforms to their previously recognized inverse rela-

tionship (Aeschbach and Borbély 1993).

This example demonstrates how easily MP

parametrization can be extended to describe any time-

-frequency phenomena. Description of SWA was

achieved by a direct implementation of it’s generally ac-

knowledged time-frequency characteristics. Since the

MP decomposition is a general procedure, we do not

have to repeat this time-consuming step to parametrize

each new kind of structure. Construction of filters,

choosing from the fitted atoms those corresponding to

structures of interest, in many cases can be directly based

upon "classical" knowledge of the EEG, formulated in

Fig. 5. Spindles F (upper plot) and E (lower plot) from Fig. 4

across channels. In each box, from top to bottom: frequency

[Hz], amplitude [V], relative position in time [s], phase.

Shades of gray proportional to the amplitude. Boxes posi-

tioned according to the corresponding electrodes from the

10-20. System shown in insert c).

c)

b)

a)

166 K.J. Blinowska and P.J. Durka



terms close to the time-frequency parameters. For a com-

plete concordance with traditional methods, we can

compute from MP parametrization a spectral power den-

sity estimate. In comparison to the traditional spectral es-

timates, this magnitude should reflect the investigated

phenomena more accurately, since we take into account

only the structures of interest, explicitly avoiding other

structures of overlapping spectral characteristics.

Stochastic dictionaries

Closer investigation of Figs. 2 and 3 reveals - apart

from the general finding of lower frequencies in frontal

and higher in parietal derivations - a finer structure of lo-

cal maxima. The question, of whether this is a property

of the analyzed EEG or an artifact of the analysis

method, provoked investigation of the statistical proper-

ties of MP decomposition as it related to the structure of

the dictionary. These considerations, which finally led to

the introduction of stochastic dictionaries, are presented

in this section.

Influence of dictionary’s structure on statistical

properties of MP decomposition

In order to separate the problem of the algorithm’s

properties from the possible signal characteristics, we

analyzed MP decompositions of 50 different realizations

of white noise. Figure 7c presents a histogram of fre-

quency centers of waveforms fitted to noise by MP de-

composition over a dyadic dictionary. We observe high

peaks in the middle of the frequency range, then in the

Fig. 6. Hypnogram a) and time course - on the same horizontal scale - of: b) frequencies and c) amplitudes of detected spindles,

d) spindle density [1/min], e) SWA power, f) and g) frequencies and amplitudes of structures classified as SWA.
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quarters etc. In the case of atoms fitted to actual EEG

(Fig. 7a), observed structure is superimposed on spectral

characteristics of the signal. The structure observed in

the two lower plots on the left side of the Fig. 7 comes

from the fact that for each realization of the signal the

same time-frequency grid was used. In consequence, in

the plot consisting of the several realizations, the privi-

leged positions connected with the dyadic dictionary are

observed.

Figure 7e presents centers of atoms from the dis-

cussed decompositions using the dyadic dictionary in

time (horizontal) vs. frequency (vertical) coordinates.

Fig. 7. Statistical properties of MP decomposition of 50 epochs of sleep EEG (a, b) and white noise (c-f) over dyadic (a, c, e) and

stochastic (b, d, f) dictionaries. Histograms of frequency centers of atoms fitted by MP decomposition over dyadic dictionary to

EEG (a) and noise (c) reveal additional structure, absent in corresponding decompositions performed over stochastic dictionaries

b and d, respectively. Maximum in the middle of frequency range in panel d results from convention of assigning half of Nyquist

frequency to Dirac’s delta. In the top panel centers of atoms fitted to white noise are given in the time-frequency plane for dyadic

(left, e) and stochastic (right, f) dictionaries.
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Fig. 8. Histograms of frequencies of sleep spindles detected in the same EEG recording as in Fig. 2, decomposed in stochastic

dictionaries. Nine central derivations are presented.
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Fig. 9. Amplitudes of sleep spindles (vertical) plotted versus their frequencies (horizontal) detected in the same EEG recording as

in Fig. 3 (as well as Figs. 2 and 8), based upon MP decomposition over stochastic dictionaries.
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Due to a wide band of decomposed signals, the full struc-

ture of the dictionary can be observed. Higher density of

atoms in certain regions of the dyadic dictionary (equa-

tion 8) "attracts" atoms chosen for decomposition.

Introduction of stochastic dictionaries

The previous section highlighted the influence of a

dyadic dictionary structure on resulting MP decomposi-

tion. In fact, any structure of a dictionary, i.e. constant

subsampling of the space of dictionary’s atoms’ parame-

ters, will influence the statistical properties of the result-

ing decomposition. As a solution of this problem we

propose MP with stochastic dictionaries. Instead of

choosing some fixed positions of dictionary atoms (from

dyadic or any other grid), we draw the parameters of

Gabor functions from uniform distributions within the

acceptable ranges, so that each signal’s expansion is

computed in a dictionary based on a different grid. The

MP procedure based on stochastic dictionaries is more

time-consuming than in case of dyadic dictionaries.

However, recent developments in computer technology

decrease the importance of this problem.

Improvement of statistical properties of

decomposition

Plots on the right side of Fig. 7 (b, d, f) are constructed

from a statistically unbiased MP representation obtained

by decomposition in stochastic dictionaries. The histo-

Fig. 10. Decomposition of signal composed of two chirps - sines of linearly changing frequency - presented in (a). In

3-dimensional plots on the left side energy is proportional to height, on flat pictures on the right - to the shades of gray. (b) pres-

ents results of a single decomposition over a dictionary consisting of 500,000 atoms, and (c) - time-frequency representation av-

eraged over 50 realizations of smaller dictionary (15,000 atoms).
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gram of frequencies in Fig. 7d (decomposition of white

noise realizations) fluctuates around flat characteristics
1
,

while 7b gives a shape related to spectral characteristics

of decomposed EEG
2
.

Figure 7f presents centers of atoms, fitted to white

noise realizations, in the time-frequency plane. Unlike

the corresponding picture in 7e no particular structure is

present, apart from the line in the half of Nyquist fre-

quency, as discussed in the footnote.

Figures 8 and 9 present improvements of the distribu-

tions, shown in Figs. 2 and 3, achieved by decomposition

of the same data over stochastic rather than dyadic dic-

tionaries. The general trend, discussed in section "Fre-

quencies in frontal an parietal derivations" is still clearly

visible, while evenly distributed local maxima of spindle

density disappeared, which proves that they were indeed

artifacts of the algorithm.

Time-frequency distributions averaged over

dictionaries

In the preceding section we have demonstrated how to

avoid the bias of dictionary structure for averages esti-

mated from multiple realizations. We can use averaging

technique in case of a single data epoch with the aim of

improvement of the time-frequency characteristics. A

signal, which is particularly difficult to represent by

means of MP, is a chirp (a sine with linearly changing

frequency), since in the dictionary there are no wave-

forms of changing frequency. Such a signal has to be ap-

proximated by means of several waveforms. We can

overcome this difficulty by decomposing the signal sev-

eral times, each time over a dictionary with a different,

randomly chosen grid. This procedure is presented on a

signal composed from two chirps.

Figure 10b illustrates a decomposition of the signal

(shown in 10a) over a dictionary containing 500,000

waveforms. We notice that structures of changing fre-

quency are represented by a series of Gabor functions,

since in the dictionary there are only structures of con-

stant frequency. Figure 10c shows the average of 50

time-frequency maps, constructed from decompositions

of the same signal over different realizations of smaller

stochastic dictionaries, each of them containing 15,000

atoms. This result is closer to the expected representation

than the single decomposition given in Fig. 10b. The

computational cost need not to be higher than for a single

decomposition, since in case of repetition of the proce-

dure, dictionaries containing smaller number of atoms

can be used. The problem of the density of the dictionary

in the context of a quality of the decomposition is

dicussed by Durka et al. (2001). The repetition of the de-

composition over several stochastic dictionaries is rec-

ommended when a very accurate estimation of the

frequency changes is of interest. In this particular case of

chirp, better representation could have been obtained by

a method aimed at chirps detection (e.g. Qian et al. 1998)

or some of the time-frequency distributions discussed in

the Introduction. Nevertheless, the proposed approach is

a general one - it is by no means limited to a particular

kind of structures and gives unbiased and free of cross

terms estimates.

DISCUSSION

Matching Pursuit with a time-frequency dictionary of

Gabor functions is a powerful and general tool for

parametrization of non-stationary signals. The described

applications to the analysis of sleep spindles and slow

wave activity show new research possibilities opened by

this approach in EEG analysis. The presented frame-

work can be used for description of other signals struc-

tures. Apart from sleep spindles analysis, adaptive

decomposition into Gabor functions (in its dyadic form)

has been used for analysis of different signals: EEG re-

corded by depth and subdural electrodes (Franaszczuk et

al. 1998), vibrotactile driving responses (Zygierewicz et

al. 1998), vibroartrographic signals (Krishnan et al.

2000), phonocardiograms (Zhang et al. 1998) and

otoacoustic emissions (Blinowska et al. 1997). The MP

method has been recommended as an approach espe-

cially suitable for analysis of non-stationary signals

(Lopes Da Silva 1999). The features, which make MP

unique among other time-frequency methods are high

resolution and parametric description of all kinds of data

structures. No other method possesses both these proper-

ties. Continuous wavelet transform or Cohen’s class

transforms do not provide parametric description. More-

over Cohen’s class transforms are biased by cross-terms.

Discrete wavelet transforms give parametric descriptions,

but their time-frequency resolution is severely limited.

Presented in this work, MP with stochastic dictionaries re-

1
peak in the middle stems from a convention of assigning half of Nyquist frequency to Dirac’s delta (compare also Table I)

2
Histogram in Fig. 7b is not an estimate of the average signal’s spectrum, since frequency centers of fitted atoms were counted regardless of

their amplitudes and frequency widths
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moves bias of the original MP algorithm and further im-

proves time-frequency resolution. It makes the presented

method a unique tool for investigation of dynamic

changes of brain activity.

A complete software package for Matching Pursuit

with stochastic time-frequency dictionaries, used in this

work, is available at .7exhttp://brain.fuw.edu.pl/mp.
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