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Abstract. Methods of non-linear dynamics and deterministic chaos may

provide us with effective quantitative descriptors of the dynamics of postural

control. The goal of this study was to introduce a new measure, which would

allow to determine the fractal structure of posturographic signals and to

measure the effect of the loss of visual feedback information in postural

control. The results of the study show that fractal dimension (Df ) is a very

useful, reliable and sensitive measure of the complexity of posturographic

signals. Therefore Df can be used for the evaluation of postural stability and its

changes due to pathology or an age-related decline.
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INTRODUCTION

The upright posture is defined bymutual relationships

of the body segments and the global, vertical orientation

of the body in the gravitational field. Such the orientation

in addition to a narrow base of support and multi-seg-

mental body architecture determines a potential instabil-

ity of the posture. The classical definition of the postural

stability is based upon the center-of-mass (COM) posi-

tion and its displacements within the base of support

(Blaszczyk et al. 1994a). Only due to an active control of

the COMposition in the space and particularly in respect

to the psycho-physiological stability borders, the system

remains stable (B³aszczyk et al. 1994a). The nature of the

control i.e., nonlinearities of the neuro-muscular control

causes that COM is not maintained in a single point of

the space but oscillates around it. These tiny movements

in the literature are described as a postural sway. In the

research on postural control an easy accessible sway

component, the center of foot pressure (COP) is usually

exploit. The COM position signal, while transmitted to

the support surface is transformed by the dynamical,

multi-linked system of the body. The final effect of this

transmission is observed at the base of support as a com-

poundCOP signal. Thus, the COP reflects not only char-

acteristics of the COM excursions but also exhibits

properties of active signals used in the control of equilib-

rium (Maki 1986, Prieto et al. 1993, Blaszczyk et al.

1994b, Winter 1995). Thus, as can be expected the COP

signal may give a better insight into quality of the equi-

librium control. This hypothesis gained a strong support

from the studies of Sheldon (1963). He first showed that

the inability to control sway in the elderly is a major

cause of their postural instability. Postural instability is,

in turn, a commonly accepted risk factor that contributes

to falls in the elderly population.

TheCOP is an easily accessible signal. In posturography

the COP is measured by a force plate, therefore as a sim-

ple noninvasive technique it is frequently used in medi-

cal diagnostics. Themajor drawback of posturography is

lack of reliable and sensitive sway determinants that

could be used for the evaluation of pathological changes

(Baloh et al. 1998). This results in a rather limited

diagnostic value of this method (Hufschmidt et al. 1980,

Takagi et al. 1985,Carroll andFreedman1993,Blaszczyk

et al. 1993).

It is implicitly assumed that postural sway is a station-

ary process. This assumption is not true in most cases

(Carroll and Freedman 1993). For this reason Collins

and De Luca (1994, 1995) applied the theory of stochas-

tic (random) processes to the analysis of postural control

mechanisms. They hypothesized that there are two pro-

cesses in the control of posture: open- and close-loop.

However, more profound analysis of postural control

suggests that consideration of the two mechanisms may

be inadequate to for its analysis and thus premature. The

stochastic properties of the randomwalk of the COP tra-

jectory in quiet, upright stance remains to be elucidated

(Newell et al. 1997).

In the present research, the problem of characterizing

postural control is approached from the perspective of

nonlinear dynamics and chaos theory. Nonlinear dy-

namics brought us new concepts and tools for detecting

chaos in physiological systems (West 1990, Schiff et al.

1994, Myklebust et al. 1995, Accardo 1997). Chaotic

phenomena may be observed only in systems exhibiting

nonlinear characteristics, i.e. where reactions are not

simply proportional to the applied stimuli. "Chaotic" is a

term assigned to a deterministic process which, because

of extreme sensitivity to initial conditions and system’s

parameters, for an observer may seem to behave com-

pletely randomly. Chaotic systems are deterministic and

should not be confused with random (stochastic) sys-

tems i.e., systems govern by laws of probability. Unlike

random systems, deterministic chaos may be rather eas-

ily controlled (Schiff et al. 1994). Many physiological

systems including postural ones are chaotic (West 1990,

King 1991, Myklebust et al. 1995).

In the postural system there exist strong nonlinearities

due to elastic and damping properties of muscles and

nonlinear feedback control (delays and thresholds) in the

nervous system. Thus, displacements of the COM and

correlated with them the COP oscillation during quiet

stance are good candidates tomeasure the chaotic move-

ments of stance (Myklebust et al. 1995). Since methods

of non-linear dynamics and chaos theory (Schuster

1988) may supply us with effective quantitative

descriptors of underlying dynamics in complex systems,

we hypothesize that one can determine the properties of

neuromuscular control based upon the COP signal

analysis. If postural sway is really chaotic one can expect

that there exists a relatively simple dynamical mecha-

nism of balance regulation that will make possible to in-

troduce new therapeutic and preventive strategies for

treatment of postural instability.

Commonly used posturographic measure - the center

of foot pressure - is a non-stationary signal. Therefore

standard time and frequency analysis methods may not
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be adequate for monitoring the dynamic changes in the

body sway. The ability to classify the nature of COP os-

cillations can provide a clue for controlling them. Classi-

cal methods of spectral analysis of posturographic

recordings (Soames and Atha 1982, Powell and Dzendolet

1984, Yoneda and Tokumasu 1986, McClenaghan et al.

1994, Winter 1995) and other simple methods of analy-

sis (Hufschmidt et al. 1980, Taguchi 1985, Takagi et al.

1985, Jeong 1994) turned out to be not sensitive enough.

Methods of non-linear dynamics and quantitative

descriptors (e.g., attractor’s fractal dimension, Lyapunov

exponents etc.) may be applied for the analysis of these

signals, thus permitting assessment of various normal

and pathological states of the posture control system

(Myklebust et al. 1995). However, to compute the above

mentioned chaotic quantifiers it is necessary to recon-

struct from raw data astrange attractor in multi-dimen-

sional phase space. Reconstruction of chaotic attractors

from experimentally measured signals in the form of

time series is far from trivial. It consumes a lot of time,

needs high computing power and the results are difficult

to comprehend formost clinicians. Thus, wemust search

for the characteristics of the measured signals that might

be relatively easily computed and which would help the

doctors in diagnostics. Here we consider application of

the COP and the COM fractal dimension (Df) for analy-

sis of postural stability. We posit that this analysis will

give researchers a new measure that can be used for the

evaluation of quality of the postural system which will

allow a better understanding of the postural sway behav-

ior.

METHODS

Twelve healthy elderly subjects mean age 71.5 ± 3.6

years volunteered, signed an informed consent, and

agreed to participate in the experiment. All subjects re-

ported having no neurological or movement disorders

and that they were engaged in regular physical activity.

During the test, subjects were asked to stand barefoot on

the force platform in a comfortable stance and to stay still

for 2 minutes. Their body sway was recorded during two

trials separated with a five-minute break. The task was

performed in the two experimental conditions: first,

while standing with eyes open (EO), and next, with eyes

closed (EC). The postural sway was assessed by record-

ing both: the center ofmass (COM) and the center of foot

pressure (COP) displacements. The COP was recorded

using an AMTI (Model OR65-1) force platform. The

COM position was calculated from 21 infrared light-

-emitting diodes attached bilaterally to anatomical land-

marks that define a fourteen-segment model (Yeadon

and Morlock 1989). The force platform and Optotrack

data were sampled at the same frequency of 20 Hz.

Complexity of the COM and the COPwere evaluated

using fractal dimension of the signals. Df was calculated

independently for the anteroposterior (AP) and medio-

lateral (ML) components of the COP and the COM, for

all subjects and for both experimental conditions. The

data analysis was made off-line using custom-design

software for calculation of fractal dimension (cf. Appen-

dix). T-tests for dependent samples were performed to

compare the fractal dimensions of the COM and the

COP data and to analyze the effect of the experimental

conditions (EO versus EC).

RESULTS

Fractal dimension analysiswas applied for the evalua-

tion of the postural control in elderly subjects. Validity

of this method has been evaluated by analyzing charac-

teristics and relationships between the COP and the

COM in two commonly used experimental situations:

while standing quietly with eyes open and eyes closed.

Examples of such recordings are given in Fig. 1.

In the COP signals, there was a significant difference

between fractal dimension of anteroposterior (AP) and

mediolateral (ML) sway components. In the eyes-open

condition the mean (± SD) fractal dimension of the COP

for AP excursions was much greater than that in the ML

direction (1.57 ± 0.13 and 1.29 ± 0.14 for AP andML re-

spectively). The difference was statistically highly sig-

nificant (t = 9.8, P<0.00001).

Fractal dimensions of the COM displacements were

significantly smaller than these parameters describing

the COP excursions. Fractal dimension of the COMwas

1.39 ± 0.16 for the AP direction and 1.09 ± 0.12 for the

MLdisplacements. The t-test for dependent variables re-

vealed a significant difference between theCOMand the

COP fractal dimensions (t = 12.95, P<0.000001 for AP

movements, and t = 4.47, P<0.001 for the ML compo-

nent).

Eyes closure resulted in the increase of the postural

sway and in changes of its characteristics. The changes

were reflected by the increase of sway fractal dimension.

During the eyes closed trials the mean fractal dimension

of the anteroposterior COP increased to 1.63 ± 0.16 and

the mediolateral Df was also greater (1.32 ± 0.17) in
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these conditions. The increase of the fractal dimension

reached the level of significance for the AP direction

only (t = -3.29, P<0.008). The results of this analysis are

summarized in Fig. 2.

The same tendency i.e., an increase of fractal dimen-

sionwas seen in theCOMdata. BothAP andMLcompo-

nents exhibited a higher fractal dimension in the EC

conditions compared to the EO trials. Df values for COM

were 1.43 ± 0.16 for the AP excursions and 1.14 ± 0.16

for the ML displacements. These differences, however,

did not reach the level of significance. Results of the

COM fractal dimension analysis are depicted in Fig. 3.

DISCUSSION

Weapplied the fractal dimensionmethod to twomajor

posturographic signals: the COP and the COMmeasured

in the elderly subjects.We showed that a decrease of pos-

tural stability is accompanied with an increase of signals’

fractal dimension. Both signals were collected in two ex-

perimental conditions:while standing still with eyes open

Fig. 1. Example of the COM (left panel) and the COP (right panel) signals recorded simultaneously during quiet stance in a

2-minute trial (subject EN/01, age 74 years). Orthogonal axes show the displacements in millimeters.

Fig. 2. Mean value of the center-of-foot pressure fractal di-

mension in the elderly subjects while standing on the force

platform with eyes open (EO) and eyes closed (EC).

Fig. 3.Mean value of theCOMfractal dimension in the elderly

group during quiet stance with eyes open and eyes closed.
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and with eyes closed. In the latter case the absence of vi-

sual feedback was followed by an increased oscillation

of the COM and the COP. As the result, an increase of

chaos in the postural signals was observed.

Our studies showed that chaos in physiological

systemsmaybe characterized andquantified by calculating

fractal dimension, Df, of the time series representing a

biological signal (Accardo 1997). This method, in contrast

to an attractor’s fractal dimension, does not require prelimi-

nary reconstruction of the system’s phase space but can be

directly applied to experimental data. So it ismore intuitive

to apply and a less time-consumingmethod.Df denotes the

fractal dimension of the signal’s time series itself and

should not be confusedwith attractor’s fractal dimension

measured in the system’s phase space. For a simple

smooth curve its fractal dimension is equal 1; for a curve

which nearly fills out a two-dimensional plane, Df is

close to 2. Df of the curve representing the signal under

consideration is a measure of complexity of this curve,

thus itmay be used as a useful characteristic of this signal

and so of the dynamics of the processes that generate it.

So far the applicability of Df has been demonstrated on

EEG-signal analysis (Accardo 1997). It is worth to no-

tice that the fractal dimension allows to reduce the

amount of data without losing diagnostically important

information which spectral analysis supplies. For calcu-

lation of Df the box-counting procedure (also called "ca-

pacity dimension") or the even more convenient method

proposed by Higuchi (1988) may be applied.

The COP and the COM characteristics were analyzed

in order to evaluate their applicability in the diagnostics

of postural stability. Because the difference between

COP and COM signals is directly related to the horizon-

tal acceleration of the COM, it can be considered as the

error signal that the balance control system is sensing

(Winter 1995). The magnitude and frequency of this er-

ror signal is of importance in the interpretation of the bal-

ance control system. The postural control system

integrates information from the visual, vestibular, and

proprioceptive inputs. If one or more of these inputs is

impaired as part of the aging process, or in neurologic

disease, then the postural systemmust adjust the relative

weighting factors of the inputs to maintain balance

(Prieto et al. 1993). Thus a decrease of feedback would

elevate the amplitude of an error signal and its distor-

tions. Frequency changes, however, are not so straight-

forward due to specific frequency characteristics of each

feedback channel. An increased amplitude of COP in the

elderly population has been reported as a result of pro-

gressing postural discontrol (Sheldon 1963, Dornan et

al. 1978, Brocklehurst et al. 1982, Horak et al. 1989,

B³aszczyk et al. 1994b,Collins andDeLuca 1995). In all

studies of normal subjects the COP amplitude was

higher when the subjects stood with their eyes closed

(Brocklehurst et al. 1982, Black et al. 1982, Diener et al.

1984, Prieto et al. 1992). In our studies elimination of the

visual input resulted also in the increase of the chaos in

each posturographic signal. Standing with eyes closed is

a commonly used test in posturography. Such a test ex-

cludes one of the major inputs to the postural system.

The impoverished control must inevitably challenge the

postural balance (Horak et al. 1989, B³aszczyk et al.

1993, 1994a, Winter 1995, Collins and De Luca 1995).

It results in the increase of sway fractal dimension. This

effect could be clearly observed in the COP signal but

not in theCOM.Thismay suggest that theCOP is amore

sensitive measure of instability. As we suggested previ-

ously (Blaszczyk et al. 1993) increased sway might act

as noise in postural control especially in the proprio-

ceptive control of the equilibrium. Therefore, the pos-

tural stability might be further decreased by a significant

decline of the signal-to-noise ratio and resultant decline

of sensory sensitivity. However, the effect of noise in the

nervous system is not so obvious. An increase of the

noise in some instancesmay improve the control due to a

stochastic resonance phenomenon (Noest 1995, Ivey et

al. 1998).

Our results are in good agreement with all well-docu-

mented facts about postural control. The fractal dimen-

sion analysis showed that upright posture is

asymmetrical in the frontal and the sagittal plane

(B³aszczyk et al. 1993, 1994a, Winter et al. 1996).

Higher fractal dimension of the antero-posterior sway

component indicates a higher tendency for instability in

this direction. This observation can be simply derived

from the anatomy of the human body (B³aszczyk et al.

1994). As could be expected, the age-related decline in

the control of stability showed a greater effect in the

antero-posterior plane, which is the weakest element of

the postural control. It was documented in our previous

studies that in particular, the posterior border of stability

ismostly deteriorated in the elderly and they are prone to

fall in this direction (B³aszczyk et al. 1994a,b). The ef-

fect of the increase of instability was not clearly pro-

nounced in the COM due to low-passed inertial filtering

of the signals by the body mass (Benda et al. 1994).

In summary, the fractal dimension is an easy accessi-

ble measure that could be used for the study of COP and
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COM complexity and thus postural control. Our results

confirmed that the COP signal is more useful and sensi-

tive in the evaluation of the age-related decline of pos-

tural stability than the COM. This method may be

particularly useful when analyzing subtle changes in sta-

bility caused by some pathologies.

APPENDIX

Fractal Dimension

A signal may be represented by a set of points (a bi-

nary image, called a bitmap) on a plane, either in ampli-

tude-time coordinates (a, t), where a denotes amplitude

of the signal at themoment t, or in Euclidean coordinates

(x,y) , where x and y are amplitudes in two independent di-

rection at the same moment of time, e.g. in posturography

excursions inML and inAP directions respectively. Any

digitized image in formof a bitmap is a pattern stored as a

rectangular data matrix. There exist one-to-one relation

between a bitmap and its representation by the matrix.

Bitmaps are matrices where pixels belonging to the pat-

tern are stored as 1, pixels from the background are

stored as 0. The opposite assignment of the pixels is also

valid. On a video screen the 1 pixels are rendered as

black, the 0 pixels as white or vice versa.

Sets have dimensions,which can be defined in various

ways. A bitmap, and so the signal it represents, also has

certain dimension. The most popular mathematical di-

mension is so called Hausdorff Besicovitch dimension,

which is often difficult to compute, but is well-defined

and interesting. Other dimensions of interest include the

"box-counting" dimension (also called capacity dimen-

sion), the correlation dimension, and the information di-

mension. When non-integer in value, any of these are

loosely referred to as the fractal dimension, below de-

noted Df .

A fractal is a set for which dimension exceeds its topo-

logical dimension (Mandelbrot 1983). An alternative

definition of a fractal says that fractal is a self-similar ob-

ject. A set is called strictly self-similar if it can be broken

into arbitrary small pieces, each of which is a small rep-

lica of the entire set. Natural objects, like coastlines or

roots, do not show the same shape but look quite similar

when they are scaled down; due to their statistical scaling

invariance they are called statistical self-similar. The same

concerns biosignals, likeEEGorposturographic signals.

If one connects in a certain order a set of points on a

plane it forms a curve. Topological dimension of a curve

is always equal 1, while fractal dimension, Df , of a curve

on a plane is between 1 and 2 and measures its "texture"

or complexity. When estimators for the fractal dimen-

sion of curves (and so of the signals represented by these

curves) or of digitized images (and so of structures repre-

sented by these images) serve as parameters to quantify

textural information and so to supply classification prob-

lems, the structures under consideration do not necessar-

ily have to be strict fractals.

Box Dimension

There are different methods of computing fractal di-

mension of a curve. A comfortable estimator for the

fractal dimension,Df , of a curve (or practically of any ar-

bitrary binary structure) is box dimension, DB. The plane

is covered with a grid of square cells with cell size r (for

binary images it is appropriate to choose the grid length

as numbers of pixels). The number of cells containing a

part (at least one pixel) of the structure, N(r) , is counted,

and the length of the curve is then approximately equal to

L r N r r( ) ( ) *�

A double logarithmic plot of the number N(r) versus

the boxsize r , so called Richardson Mandelbrot plot,

gives the regression line corresponding to the relation

N r const r
DB( ) *�

�

from which the box dimension, DB of the structure can

easily be determined.

This procedure is a proper method to estimate the

Hausdorff Besicovitch dimension of binary structures

(Kraft and Kauer 1995). Several similar procedures, all

based on theRichardson Mandelbrot plot, where differ-

ent measures of a set are plotted against the box size r on

double logarithmic axis and the dimension is then deter-

mined from the slope of the regression line, have been

proposed. To calculate box fractal dimension the data

have to be firstly transformed into a bitmap, e.g. by using

a scanner. Higuchi (1988) proposed another method to

estimate fractal dimension of a fractal curve that may be

applied directly to the raw data.

Higuchi’s Algorithm

Higuchi’s algorithm is based on the measures of the

mean length of the curve L(k) by using a segment of k
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samples as a unit of measure (Accardo et al. 1997). One

takes the series representing the signal under consider-

ation (samples taken at a regular interval):

a(1), a(2), a(3),..., a(N)

where a(i) is the signal amplitude at the i-th discrete point

(moment of time) (i =1,...,N) andN is the total number of

points. From this one then constructs k new time series,

a(m,k):

a(m,k): a(m), a(m+k), a(m+2k), ... , a(m+int[(N-m)/k]* k)

(m=1,2,...,k)

where int[...] denotes the greatest integer not exceeding the

number in the square brackets;m and k are integers indicat-

ing, respectively, the initial time and the time interval. For

example, if N=100 and k=3 one obtains three time series:

a(1,3): a(1), a(4),..., a(97), a(100)

a(2,4): a(2), a(5),..., a(98)

a(3,4): a(3), a(6),..., a(99)

The length, Lm(k), of each curve a(m,k) is then calcu-

lated as:

L k S a m i k a m i k Nm ( ) {[ | ( ) ( ( ) )| ] ( ) /* * *� � � � � �1 1

[(int[( ) / )]) ]} /*N m k k k�

i=1,int [(N-m) / k]

where N is the total number of samples and

(N-1)/[(int[(N-m)/k])*k] is a normalization factor.

The length of the curve for the time interval k, L(k), is

calculatedas themeanof thekvaluesLm(k) form=1,2,...k:

L k SLm k k( ) ( ( )) /� m=1,k

The procedure is repeated for several k=1,2,...,kmax . If

the L(k) value is proportional to k
DH�

, the curve is

fractal-like, with the fractal dimension DH. Higuchi’s di-

mension, DH, may serve as still another comfortable esti-

mator for the fractal dimension, Df , of the curve, and so

to serve as a parameter to quantify “textural information”

and to supply classification problems of the signal a(i)

represented by this curve. DH is easily evaluated as the

angular coefficient of the linear regression of the graph

ln(L(k)) versus ln(1/k) .

While kmax has some influence on the results and

should be selected appropriately (cf. Accardo et al.

1997), it is important that scaling of the signal ampli-

tude, a(i) , has no influence on the results, since it causes

only parallel shifting of the regression line along the

ln(L(k)) axis, without changing its angular coefficient.

ACKNOWLEDGEMENTS

The authors wish to thankMr. J.Ciszewski whomade

the calculations of Df. This research was supported by

grant from the State Committee for Scientific Research

no. 4P05D04417.

REFERENCES

Accardo A. (1997) Use of the fractal dimension for the analy-

sis of electroencephalographic time series. Biol. Cybernet-

ics 77: 339-350.

Baloh R.W., Jacobson K.M., Enrietto J.A., Corona S.,

Honrubia V. (1998) Balance disorders in older persons:

quantification with posturography. Otolaryngol. Head

Neck Surg, 119:89-92.

Benda B.J., Riley P.O., Krebs D.E. (1994) Biomechanical re-

lationships between center of gravity and center of pressure

during standing. IEEE Trans Reh. Eng. 2(1):3-10.

Black F.O., Wall C., Rockette H.E., Kitch R. (1982) Normal

subject postural sway during the Romberg test. Am J.

Otolaryngol. 3: 309-318.

B³aszczyk J.W., Lowe D.L., Hansen P.D. (1993) Postural

sway and perception of the upright stance stability borders.

Perception 22: 1333-1341.

B³aszczyk J.W., Lowe D.L., Hansen P.D. (1994a) Ranges of

postural stability and their changes in the elderly. Gait &

Posture 2(1): 11-17.

B³aszczyk J.W., Piórko A., Lowe D.L., Hansen P.D. (1994b)

Body transfer function as a potential measure of postural

stability in man. Biocybernetics and Biomedical Engi-

neering 14(3-4): 5-15.

Brocklehurst J.C., Robertson D., James-Groom P. (1982)

Clinical correlates of sway in old-age sensory modalities.

Age Aging 11: 1-10.

Carroll J.P., FreedmanW. (1993) Nonstationary properties of

postural sway. J. Biomech. 26: 409-416.

Collins J.J., De Luca C.J. (1994) Random walking during

quiet standing. Phys. Rev. Lett. 73(5): 764-767.

Collins J.J., De Luca C.J. (1995) The effects of visual input on

open-loop and closed-loop postural control mechanisms.

Exp. Brain Res. 103: 151-163.

Diener H.C., Dichgans J., BacherM., Gompf B. (1984) Quan-

tification of postural sway in normals and patients with cer-

ebellar disease. EEG Clin. Neurophysiol. 57: 134-142.

Dornan J., Fernie G.R., Holiday P.J. (1978) Visual input: Its

importance in the control of postural sway. Arch. Phys.

Med. Rehabil. 59: 586-591.

Postural stability 111



Higuchi T. (1988) Approach to an irregular time series on the

basis of the fractal theory. Physica D. 31: 277-283.

Horak F.B., Shupert C.L., Mirka A. (1989) Components of

Postural Dyscontrol in the Elderly: A Review. Neurobiol.

Aging 10: 727-38.

Hufschmidt A., Dichgans J., Mauritz K-H., Hufschmidt M.

(1980) Somemethods and parameters of body sway quanti-

fication and their neurological applications. Arch. Psych.

Neurol. Sci. 228: 135-150.

Ivey C., Apkarian A.V., Chialvo D.R. (1998) Noise-induced

tuning curve in mechanoreceptors. J. Neurophysiol. 79:

1879-90.

Jeong B.Y. (1994) Contour representation of sway area in

posturography and its application. Arch. Phys. Med.

Rehabil. 75(9): 951-6.

King C.C. (1991) Fractal and Chaotic Dynamics in Nervous

Systems. Progress in Neurobiology 36: 279-308.

Kraft R., Kauer J. (1995) Estimating the Fractal Dimension

from Digitized Images. HTTP Protocol at

http://www.edv.agrar.tumuenchen.de/ane/algorithms/al-

gorithms.html

McClenaghan B.A., Williams H., Dickerson J., Thombs L.

(1994) Spectral signature of forces to discriminate pertur-

bations in standing posture. Clin. Biomech. 9: 21-27.

Maki B.E. (1986) Selection of perturbation parameters for

identification of the postural-control system. Med. Biol.

Eng. Comput. 24: 561-568.

Mandelbrot B.B. (1983) The fractal geometry of nature.

W.H.Freeman, San Francisco.

Myklebust J.B., Prieto T., Myklebust B. (1995) Evaluation of

nonlinear dynamics in postural steadiness time series. Ann.

Biomed. Eng. 23: 711-719.

Newell K.M., Slobounov S.M., Slobounova E.S., Molenaar

P.C.M. (1997) Stochastic processes in postural cen-

ter-of-pressure profiles. Exp. Brain Res. 113: 158-64.

Noest A.J. (1995) Tuning stochastic resonance. Nature 378:

341-2.

Patat A. et al. (1985) Dose-response relationship of

vindeburnol based on spectral analysis of posturographic

recordings, Eur. J. Clin. Pharmacol. 29(4): 455-9.

Powell G.M., Dzendolet E. (1984). Power spectral density

analysis of lateral human standing sway. J. Mot. Beh. 16:

424-41.

Prieto T.E., Myklebust J.B., Myklebust B.M., Kreis D.U.

(1992) Intergroup sensitivity in measures of postural

steadiness. In: Posture and gait: control mechanisms (Eds.

M.Woollacott and F. Horak). Vol. 2. Univ. Oregon Books.

Portland OR. p. 122-5.

Prieto T.E., Myklebust J.B., Myklebust B.M. (1993) Charac-

terization and modeling of postural steadiness in the el-

derly: A review. IEEE Trans. Reh. Eng. 1: 26-34.

Sheldon J.H. (1963) The effect of age on the control of sway.

Gerontol. Clin. 5: 129-38.

Schiff S.J., Jerger K., Duong D.C., Chang T., Spano M.L.,

Ditto W.L. (1994) Controlling chaos in the brain. Nature

370: 615-620.

Schuster H.G. (1988) Deterministic Chaos. An Introduction.

VCH Verlagsgesellschaft, Weinheim.

Soames R.W., Atha J. (1982) The spectral characteristics of

postural sway behaviour. Eur. J. Appl. Physiol. 49:

169-177.

Taguchi K. (1985) Four steps of application of postural con-

trol mechanism to clinical diagnosis. In: Vestibular and vi-

sual control on posture and equilibrium. (Eds. S. Igarashi,

and F. A. Black). Karger, Basel. p. 60-77.

Takagi A., Fujimura E., Suehiro S. (1985) A new method of

statokinesogram areameasurement: Application of a statis-

tically calculated ellipse. In: Vestibular and visual control

on posture and equilibrium. (Eds. S. Igarashi and F. A.

Black). Karger, Basel. p. 74-79.

West B.J. (1990) Fractal Physiology and Chaos in Medicine,

Studies of Nonlinear Phenomena in Life Science. Vol. 1,

World Scientific, Singapore - New York.

Winter D.A. (1995) A.B.C. (Anatomy, Biomechanics and

Control) of balance during standing and walking. Univer-

sity of Waterloo, Waterloo, Canada. p. 1-55.

Winter D.A., Prince F., Frank J.S., Powell C., Zabjek K.F.

(1996) Unified theory of A/P and M/L balance in quiet

stance. J. Neurophysiol. 75: 2334-2343.

Yeadon M.R., Morlock M. (1989) The appropriate use of re-

gression equations for the estimation of segmental inertia

parameters. J. Biomech 22: 683-9.

Yoneda S., Tokumasu K. (1986) Frequency analysis of body

sway in the upright posture.ActaOtolaryngol. 102: 87-92.

Received 24 October 2000, accepted 18 April 2001

112 J.W. B³aszczyk and W. Klonowski


